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Abstract  

As there are various replacement policies for maintaining and improving operating and non-operating systems, this paper investigated 

the properties of an age replacement model of a used series system of a certain age. The system is subjected to two types of failures: 

Type I and Type II. It is assumed that, Type I failure is a repairable one, while Type II failure is a non-repairable one. An analytical 

expression of the expected cost rate for a used series system with n components was obtained. A simple illustrative numerical example 

was made available to analyze the effectiveness and properties of the constructed replacement model. 
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Notations 

𝐶(𝑇, 𝑛) Average cost rate of the system 

𝑟(𝑡) 
Rate of Type I failure of component  𝐵𝑖 , 

for 𝑖 = 1, 2, 3, … , 𝑛 

𝐹𝑖(𝑡) 
Type II failure distribution function of 

component 𝐵𝑖 , for 𝑖 = 1, 2, 3, . . , 𝑛 

𝑅𝑖(𝑡) 
Reliability function of component 𝐵𝑖 , for 

𝑖 = 1, 2, 3, . . , 𝑛, due to Type II failure 

𝐹𝑆(𝑡) 
Type II failure distribution function of the 

system. 

𝑅𝑆(𝑡) 
Reliability function of the system due to 

Type II failure 

𝐶𝑖 
Cost of minimal repair of  𝐵𝑖  due to Type 

I failure, for 𝑖 = 1, 2, 3, . . , 𝑛 

𝐶𝑃 
Cost of scheduled replacement of the 

system 

𝐶𝐹 
Cost of unscheduled replacement of the 

system due to Type II failure 

𝑇∗ The system's optimum replacement time 

1. Introduction  

The reliability of a complex system can be achieved and 

maintained through the application of redundancy and 

maintenance action. These techniques have been used in 

many natural complex systems, such as generators, 

radars, and airplanes, where failures during actual 

operation are costly or dangerous. Moreover, consecutive 

failures are dangerous for larger systems, so it is good to 

know when to replace or preventively maintain the 

systems before failure periodically.    

There is extensive literature on replacement models 

involving minimal repair. Alamir and Mo [1] mentioned 

that maintaining a complex system output if the proper 

preventive maintenance schedule is not determined is 

why they presented an integrated preventive maintenance 

scheduling methodology for complex systems. Their 

method was developed to improve the system's reliability 

and minimize costs. Briš et al. [2] introduced a new 

approach for optimizing a complex system's maintenance 

strategy, which respects a given reliability constraint.  

Bris and Jahoda [3] introduced Weibull-based aging 

systems that underwent discrete maintenance 

optimization and devised a model to realize the 

optimization in a context with minimal system costs and 

a prescribed unavailability restriction. In trying to extend 

the classical k-out-of-n systems, Cerqueti [4] assigned 

different roles to the components of a coherent system in 

terms of reliability, such that the components were 

grouped into important and standard ones, and the failure 

of the system depends on how many components of the 

two sets are failed. Coria et al. [5] proposed a new method 

of analytical optimization of preventive maintenance 

policy with historical failure time data. Enogwe et al. [6] 

used a distribution of the probability of failure times and 

developed a replacement model for items that fail un-

notice. In trying to extend from single unit and parallel 

systems to an arbitrary coherent system, Erliymaz [7] 

constructed an age-based preventive replacement policy 

for an arbitrary coherent system consisting of 

independent components with a typical discrete lifetime 

distribution. Fallahnezhad and Najafian [8] investigated 

the number of spare parts and installations for a unit and 

parallel systems to cut down the average cost per unit 

https://www.ijrrs.com/article_195185.html
https://www.ijrrs.com/
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time. Lim et al. [9] studied the characteristics of some age 

substitution policies. Liu et al. [10] developed 

mathematical models of uncertain reliability of some 

multi-component systems.  

In trying to increase the reliability and life of some 

targeted components with an increasing hazard rate of a 

coherent system consisting of independent and repairable 

components, Mirjalili and Kazempoor [11] introduced 

two policies.  Mizutani et al. [12] applied replacement 

first and last to obtain optimal regular and random 

replacement policies for general age and periodic 

replacement models. Furthermore, they showed that 

replacement first includes age-based random 

replacement, periodic-based random replacement, and 

standard age replacement. Nakagawa [13] proposed a 

discrete age replacement model of a single unit. 

Nakagawa et al. [14] explored the advantages of some 

replacement policies. Safaei et al. [15] investigated a 

system's optimal preventive maintenance action based on 

some conditions. Safaei et al. [16] considered an age 

replacement policy for repairable series and parallel 

systems with n-dependent components. They used copula 

and formulated two optimal age replacement policies 

based on the minimum expected cost function and 

maximum availability function. Hence an offshore wind 

turbine was considered as a case study. Sanoubar et al. 

[17] constructed a long-run expected cost-rate 

minimization model with instantaneous replacements for 

a stochastically deteriorating system with self-

announcing failures, such that the system is replaced at 

failure or at a prescribed replacement time, whichever 

occurs first. Usman et al. [18] used the (𝑚, 𝑇) group 

replacement method and carried out an analysis on a 

replacement model developed to establish the optimum 

time for the replacement of burnt-out bulbs in street 

lighting systems. Sudheesh et al. [19] studied the age 

replacement policy discretely. Waziri and Yusuf [20] 

presented some age replacement models for a parallel-

series system based on proposed policies. Waziri et al. 

[21] analyzed an age replacement model with minimal 

repair of a series-parallel system, such that the system 

contained three series subsystems, which are subsystem 

A, subsystem B, and subsystem C. Xie et al. [22] assessed 

the effects of safety barriers on the prevention of 

cascading failures. Yin and Cui [23] developed two types 

of shock models. They discussed the asymptotic behavior 

of each shock's damage evolution process and the use of 

aggregated stochastic processes. They derived the 

probabilities of each shock eventually disappearing and 

destroying the system. Yusuf et al. [24] developed a 

discrete fix-up limit time function for series and parallel 

formations based on some assumption to provide a 

chance of completing a fix-up action within a discrete-

time, which can reduce the unplanned downtime. Zhang 

et al. [25] addressed the age replacement problem for 

parallel systems with mission durations, where they 

finally suggested that replacement policies should be 

applied in maintaining the pumps of a cooling water 

system of a nuclear power plant. Zhao et al. [26] surveyed 

some periodic replacement policies by considering the 

shortage and excess costs for a periodic. They discovered 

that the shortage and excess costs depend on future events 

outside the cycle. 

Several authors have published many papers on age 

replacement models for single and multi-component 

systems. However, there are limited papers on 

replacement models for used units and systems. The aim 

of this paper is to develop a replacement model with 

minimal repair for a used system, with the hope that the 

proposed model provides a useful quantitative tool for 

managers to evaluate the system performance and design 

an optimal maintenance policy. 

2. Description of the system  

Consider a used system of age 𝑥 (0 < 𝑥 < ∞) with 𝑛 

identical components. It is assumed that each of the 𝑛 

components is subjected to two types of failures, which 

are Type I and Type II failures. Type I failure is 

repairable, which is rectified by minimal repair. In 

contrast, Type II failure is a non-repairable failure, which, 

if it occurs, the failed component is replaced entirely with 

used one of age 𝑥, where 𝑥 is previously specified. Since 

all the 𝑛 components are subjected to Type I and Type II 

failures, the whole system is also subjected to Type I and 

Type II failures. If the system fails due to Type I failure, 

it is minimally repaired and allowed to continue operating 

from where it stopped. If the system fails due to Type II 

failure, the system is replaced with a used one of age 𝑥.  

Let 𝐶𝑖 be the cost of minimal repair of the failed 

component 𝐵𝑖 , 𝐶𝑃 be the cost of the constant scheduled 

replacement of the system due to Type II failure and 𝐶𝐹 

be the cost of unscheduled replacement due to Type II 

failure within every replacement cycle. The mathematical 

expressions of the reliability function and failure rates 

based on some assumptions were used for the 

construction of the average cost rate of the system.  

3. Assumptions 

1. Suppose that 𝑥 (0 < 𝑥 < ∞) was the age of the used system.  

2. If the system fails due to Type I failure, the system is 

minimally repaired. 

3. If the system fails due to Type II failure, the failed 

system is replaced completely with a new one of age 𝑥. 

4. Both Type I and Type II failures arrives according to 

non-homogeneous Possion process.  

5. The system is replaced at scheduled time (𝑇 + 𝑥) 

after its exchanged or at the first instance of Type II 

failure, whichever occurs first. 

6. The cost of scheduled replacement of the system is 

less than the cost of unscheduled replacement due to 

Type II failure, that is, 𝐶𝑝 < 𝐶𝐹. 

7. All cost are positive numbers. 

8. All the required resources are available for 

replacement and minimal repair action.  

9. The time of repair or replacement is negligible.  

https://www.sciencedirect.com/topics/mathematics/cooling-water-system
https://www.sciencedirect.com/topics/mathematics/cooling-water-system
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4. Proposed model 

Based on the assumption, the failure time distribution of 

the system based on Type II failure is  

𝐹𝑠(𝑡|𝑥) =
𝐹𝑠(𝑡+𝑥)−𝐹𝑠(𝑥)

𝑅𝑆(𝑥)
,  for   𝐹𝑠(𝑥) < 1, 𝑡 ≥ 0, (1) 

where  𝑅𝑆(𝑡) = 1 − 𝐹𝑠(𝑡) and 𝑅𝑆(𝑡, 𝑥) = 1 −
𝐹𝑠(𝑡, 𝑥). 

The reliability function of the system, due to Type II 

failure, is   

𝑅𝑆(𝑇, 𝑥) =  ∏ 𝑅𝑖(𝑇, 𝑥),𝑛
𝑖=1   (2) 

where 𝑅𝑖(𝑇, 𝑥) is the reliability function of the 

component 𝐵𝑖  based on Type II failure T. 

The cost of the scheduled replacement time of the 

entire system within one replacement cycle is 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝐶𝑝  (3) 

The cost of unscheduled replacement time of the 

entire system within one replacement cycle, is 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝐶𝐹𝐹𝑠(𝑇|𝑥)  (4) 

The mean replacement time of the entire system, 

within the planned time of one replacement cycle, is 

𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐𝑦𝑐𝑙𝑒 =

∫ 𝑅𝑆(𝑡 + 𝑥)𝑑𝑡/𝑅𝑆(𝑥)
𝑇

0
  

(5) 

The cost of minimal repair of component 𝐵𝑖  due to 

Type I failure before the scheduled time of one 

replacement cycle for 𝑖 = 1,2, … 𝑛, is 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑟𝑒𝑝𝑎𝑖𝑟 =

 ∫ ∑ 𝐶𝑖𝑟𝑖(𝑡)𝑛
𝑖=1 𝑑𝑡

𝑇+𝑥

𝑥
  

(6)   

Using equations (1) to (6), the average replacement 

cost rate is  

𝐶(𝑇, 𝑥) =
𝐶𝑝+𝐶𝐹𝐹𝑠(𝑇|𝑥)+∫ ∑ 𝐶𝑖𝑟𝑖(𝑡)𝑛

𝑖=1 𝑑𝑡
𝑇+𝑥

𝑥

∫ 𝑅𝑆(𝑡+𝑥)𝑑𝑡/𝑅𝑆(𝑥)
𝑡0

0

  (7) 

Equation (7) can be further written as  

𝐶(𝑇, 𝑥) =
𝐶𝑝𝑅𝑆(𝑥)+𝐶𝐹(𝐹𝑠(𝑇+𝑥)−𝐹𝑠(𝑥)) +𝑅𝑆(𝑥) ∫ ∑ 𝐶𝑖𝑟𝑖(𝑡)𝑛

𝑖=1 𝑑𝑡
𝑇+𝑥

𝑥

∫ 𝑅𝑆(𝑡+𝑥)𝑑𝑡
𝑇

0

  
(8) 

where  

 𝐶𝑃: Cost of scheduled periodic replacement of 

the system at constant periodic time,   

 𝐶𝐹: Cost of unscheduled replacement of the 

system due to Type II failure,  

 𝐶𝑖: Cost of minimal repair of failed component 𝐵𝑖 . 

Noting that 𝐶(𝑇, 𝑥) is assumed to be an objective 

function of an optimization problem, and the aim is to 

determine 𝑇∗ that minimizes  𝐶(𝑇, 𝑥). 

5. Numerical example 

This section will present a numerical example to analyze 

and study the properties of the replacement model 

constructed. For a simple illustration of the model 

constructed, a system with ten components was 

considered, and it was assumed that all ten components 

follow the Weibull distribution. Let the Type I failure of 

the component 𝐵𝑖  follows exponential distribution:  

𝑟𝑖(𝑡) = 𝛽𝑖, for   𝑖 = 1, 2, … 𝑛 (9) 

While, let the Type II failure of component 𝐵𝑖  

follows Weibull distribution :  

𝐹𝑖(𝑡) =  1 − 𝑒(−𝜆𝑖𝑡𝛼𝑖) , 𝑖 = 1,2, 3, … n (10) 

For simple illustration of the model, five 

components were considered. Let the set of parameters, 

cost of repair and replacement were used throughout this 

particular example: 

1. 𝜆1 = 0.4, 𝜆2 = 0.4, 𝜆3 = 0.3, 𝜆4 = 0.3 and 

𝜆5 = 0.2. 

2. 𝛼1 = 4, 𝛼2 = 4, 𝛼3 = 3, 𝛼4 = 2 and 𝛼5 = 2. 

3. 𝛽𝑖 = 0.5, for 𝑖 = 1, 2, 3,4, 5. 

4. 𝐶𝑃 = 15 and 𝐶𝐹 = 25. 

5. 𝐶𝑖 = 0.75, for 𝑖 = 1, 2, 3,4, 5. 

By substituting the parameters of the Type I and 

Type II failures in equations (9) and (10), the equations 

below are obtained as follows: 

𝑟𝑖(𝑡) = 0.5, for 𝑖 = 1, 2, 3,4, 5. (11) 

𝐹1(𝑡) = 1 − 𝐸𝑥𝑝(−0.4𝑡4)  (12) 

𝐹2(𝑡) = 1 − 𝐸𝑥𝑝(−0.4𝑡4)  (13) 

𝐹3(𝑡) = 1 − 𝐸𝑥𝑝(−0.3𝑡3)  (14) 

𝐹4(𝑡) = 1 − 𝐸𝑥𝑝(−0.3𝑡2)  (15) 

𝐹5(𝑡) = 1 − 𝐸𝑥𝑝(−0.2𝑡2)  (16) 

Table 1. The Cost  𝐶(𝑇, 𝑥)  for Some Values of  𝑥  

𝑻  𝒙 = 𝟎. 𝟐  𝒙 = 𝟎. 𝟒  𝒙 = 𝟎. 𝟔  𝒙 = 𝟎. 𝟖  𝒙 = 𝟏.  
0.1 3687.05 3892.07 4151.61 4471.70 4859.99 

0.2 1989.47 2220.20 2521.27 2907.90 3400.67 

0.3 1467.44 1731.38 2088.021 2566.91 3210.71 

0.4 1248.60 1556.17 1988.43 2597.84 3465.49 

0.5 1161.66 1527.53 2064.64 2862.96 4071.40 

0.6 1153.52 1598.69 2284.27 3362.86 5105.66 

0.7 1206.70 1761.86 2662.53 4168.45 6775.98 

0.8 1319.68 2030.70 3250.91 5427.83 9482.94 

0.9 1501.90 2438.96 4147.06 7411.56 13979.03 

1 1774.20 3047.53 5522.89 10610.95 21708.94 

1.1 2172.95 3960.48 7681.43 15939.59 35544.68 

1.2 2758.96 5356.42 11169.33 25153.68 61428.08 

1.3 3634.03 7548.53 17004.26 41759.02 112190.40 

1.4 4971.97 11102.22 27149.16 73043.88 216822.46 

1.5 7077.59 17072.93 45538.40 134824.49 444004.17 
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Table 2. The Optimal Replacement Time of the System 

Obtained from Different Values of 𝑥 (Extracted from Table 1) 

𝒙 𝑥 = 0.2 𝑥 = 0.4 𝑥 = 0.6 𝑥 = 0.8 𝑥 = 1. 
𝑻∗ 𝑇∗ = 0.6 𝑇∗ = 0.5 𝑇∗ = 0.4 𝑇∗ = 0.3 𝑇∗ = 0.3 

 

 

Figure 1. The Plot of Cost Rate 𝐶(𝑇, 𝑥) Versus the Scheduled 

Replacement Time 𝑇 for 𝑥 Equal to 0.2 

 

 Figure 2. The Plot of Cost Rate 𝐶(𝑇, 𝑥) Versus the Scheduled 

Replacement Time 𝑇 for 𝑥 Equal to 0.4 

 

 Figure 3. The Plot of Cost Rate 𝐶(𝑇, 𝑥) Versus the Scheduled 

Replacement Time 𝑇 for 𝑥 Equal to 0.6 

 
 

Figure 4. The Plot of Cost Rate 𝐶(𝑇, 𝑥) Versus the Scheduled 

Replacement Time 𝑇 for 𝑥 Equal to 0.8 

 
 

 Figure 5. The Plot of Cost Rate 𝐶(𝑇, 𝑥) Versus the Scheduled 

Replacement Time 𝑇 for 𝑥 Equal to 1 

 

 Figure 6. The Plot of Cost Rate 𝐶(𝑇, 𝑥) Versus the Scheduled 

Replacement Time 𝑇 for Different Values of  𝑥 
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Table 3. The Cost Rate 𝐶(𝑇, 𝑥) of the System as the Cost of 

Unscheduled Replacement Increases with 𝑥 = 0.2 

𝑻  𝑪𝑭 = 𝟐𝟓  𝑪𝑭 = 𝟑𝟎  𝑪𝑭 = 𝟑𝟓 𝑪𝑭 = 𝟒𝟎 

0.1 3687.05 4973.33 5086.66 5199.99 

0.2 1989.47 3538.23 3675.78 3813.34 

0.3 1467.44 3381.05 3551.39 3721.73 

0.4 1248.60 3681.36 3897.240 4113.11 

0.5 1161.66 4352.36 4633.31 4914.26 

0.6 1153.52 5482.52 5859.38 6236.247 

0.7 1206.70 7298.98 7821.978 8344.97 

0.8 1319.68 10236.73 10990.52 11744.31 

0.9 1501.90 15111.54 16244.06 17376.57 

1 1774.20 23488.85 25268.76 27048.67 

1.1 2172.95 38480.22 41415.76 44351.30 

1.2 2758.96 66522.78 71617.48 76712.18 

1.3 3634.03 121517.16 130843.93 140170.69 

1.4 4971.97 234870.17 252917.87 270965.58 

1.5 7077.59 480985.07 517965.98 554946.88 

Table 4. The Cost Rate 𝐶(𝑇, 𝑥) of the System as the Cost of 

Scheduled Replacement (𝐶𝑃)  Decreases with 𝑥 = 0.2 

𝑻 
𝑪𝑷

= 𝟏𝟓 
𝑪𝑷 = 𝟏𝟐 𝑪𝑷 = 𝟗 𝑪𝑷 = 𝟓 

0.1 3687.05 4491.99 4123.99 3755.99 

0.2 1989.47 3168.14 2935.60 2703.07 

0.3 1467.44 3008.51 2806.31 2604.11 

0.4 1248.60 3260.96 3056.44 2851.91 

0.5 1161.66 3842.83 3614.26 3385.69 

0.6 1153.52 4829.54 4553.43 4277.31 

0.7 1206.70 6419.32 6062.66 5706.01 

0.8 1319.68 8993.17 8503.40 8013.63 

0.9 1501.90 13266.19 12553.35 11840.51 

1 1774.20 20610.99 19513.04 18415.10 

1.1 2172.95 33756.08 31967.48 30178.88 

1.2 2758.96 58346.25 55264.43 52182.61 

1.3 3634.03 106571.26 100952.13 95332.99 

1.4 4971.97 205972.41 195122.36 184272.31 

1.5 7077.59 421795.63 399587.09 377378.54 

Table 5.  The Optimal Replacement Time of the System as the 

Cost of Unscheduled Replacement (𝐶𝐹) Increases (Extracted 

from Table 3) 

𝑪𝑭 𝐶𝐹 = 25 𝐶𝐹 = 30 𝐶𝐹 = 35 𝐶𝐹 = 40 

𝑻∗ 𝑇∗ = 0.6 𝑇∗ = 0.3 𝑇∗ = 0.3 𝑇∗ = 0.3 

Table 6.  The Optimal Replacement Time of the System as the 

Cost of Scheduled Replacement (𝐶𝑃) Increases (Extracted 

from Table 4)   

𝑪𝑷 𝐶𝑃 = 15 𝐶𝑃 = 12 𝐶𝑃 = 9 𝐶𝑃 = 6 

𝑻∗ 𝑇∗ = 0.6 𝑇∗ = 0.3 𝑇∗ = 0.3 𝑇∗ = 0.3 

 

 

 

 Figure 7. Comparing the Cost Rate 𝐶(𝑇, 𝑥) of the System as 

the Cost of Unscheduled Replacement (𝐶𝐹) Increases. 

 

 Figure 8. Comparing the Cost Rate 𝐶(𝑇, 𝑥) of the System as 

the Cost of Scheduled Replacement (𝐶𝑃) Decreases.  

5.1 Some observations from the results 

obtained are as follows: 

1. Observed from Table 1 and Table 2, the optimal 

replacement time of the system is 0.6. That is, 

𝐶(𝑇∗ = 0.6, 𝑥 = 0.2) = 1153.52.  Figure 1 

below is the plot of  𝐶(𝑇, 𝑥 = 0.2) against the 

scheduled replacement time T. 

2. Observed from Table 1 and Table 2, the optimal 

replacement time of the system is 0.5. That is, 

𝐶(𝑇∗ = 0.5, 𝑥 = 0.4) = 1527.53.  Figure 2 

below is the plot of  𝐶(𝑇, 𝑥 = 0.4) against the 

scheduled replacement time T. 

3. Observed from Table 1 and Table 2, the optimal 

replacement time of the system is 0.4. That is, 

𝐶(𝑇∗ = 0.4, 𝑥 = 0.6) = 1988.43.  Figure 3 

below is the plot of  𝐶(𝑇, 𝑥 = 0.6) against the 

scheduled replacement time T. 

4. Observed from Table 1 and Table 2, the optimal 

replacement time of the system is 0.3. That is, 

𝐶(𝑇∗ = 0.3, 𝑥 = 0.8) = 2566.91. Figure 4 
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below is the plot of  𝐶(𝑇, 𝑥 = 0.8) against the 

scheduled replacement time T. 

5. Observed from Table 1 and Table 2, the optimal 

replacement time of the system is 0.3. That is, 

𝐶(𝑇∗ = 0.3, 𝑥 = 1) = 3210.71. Figure 5 below 

is the plot of  𝐶(𝑇, 𝑥 = 1) against the scheduled 

replacement time T. 

6. As observed from Table 2, as the specified age 

𝑥 increases, the optimal replacement time of the 

system decreases. 

7. As observed from Table 1 and Figure 6, as the 

specified age increases, the also increases. That 

is,  𝐶(𝑇, 𝑥 = 0.2) < 𝐶(𝑇, 𝑥 = 0.4) < 𝐶(𝑇, 𝑥 =

0.6) < 𝐶(𝑇, 𝑥 = 0.8) < 𝐶(𝑇, 𝑥 = 1). 

8. As observed from Table 3, as the cost of the 

system's unscheduled replacement increases, the 

system's optimal replacement time decreases.  

9. As observed from Table 3 and Figure 7, as the 

cost of the unscheduled replacement of the 

system increases, the cost rate also increases.  

10. As observed from Table 4, as the cost of the 

scheduled system replacement decreases, the 

optimal replacement time also decreases.  

11. As seen from Table 4 and Figure 8, as the cost 

of the scheduled system replacement decreases, 

the cost rate also increases.  

6. Summary and conclusion  

In this paper, an age replacement model for a used series 

system of age 𝑥 based on some proposed assumptions was 

constructed.  It is assumed that all the components that 

made the system are subjected to two types of failures 

(Type I and Type II failures), such that Type I failure is 

repairable, while Type II failure is unrepairable. Finally, 

a numerical example was provided to show the particular 

properties of the replacement model constructed for the 

used system. Thus, from the result obtained, one can see 

the various changes in the optimal replacement times of 

the system with the changes of  𝑥. The model and some 

research results in this paper are both attractive in 

reliability theory and reliability engineering. 
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