
IJRRS 
International Journal of Reliability, Risk 
and Safety: Theory and Application 
 

Online ISSN:  2676-3346 

 
 

Vol. 6/ Issue 1/ 2023/ pp. 27-45 

DOI: 10.22034/IJRRS.2023.6.1.4 

Received: 22 May 2023, Revised: 18 July 2023, Accepted: 25 July 2023 
Available online at: https://www.ijrrs.com 

 

 
                              Original Research Article 

  

How to cite this article:  
M. Kalaei and M. A. Saniee Monfared. “Remaining Useful Life Prediction for a Multi-Component System with Degradation Interactions,” International 

Journal of Reliability, Risk and Safety: Theory and Application, vol. 6, no. 1, pp. 27-45, 2023. 

 
COPYRIGHTS 

©2024 by the authors. Published by Aerospace Research Institute. This article is an open access article distributed under the terms 

and conditions of  the Creative Commons Attribution 4.0 International (CC BY 4.0) 

Remaining Useful Life Prediction for a Multi-

Component System with Degradation 

Interactions 

Mahdiyeh Kalaei 1*  and Mohammad Ali Saniee Monfared 1  

1. Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran 

* m.kalaei@alzahra.ac.ir 

Abstract 

Remaining useful life (RUL) prediction is crucial in prognostics and health management (PHM) systems. The primary objective is to 

forecast the time to failure (TTF) or anticipate the RUL of a system. In real industrial cases, systems typically consist of multiple 

components that can affect each other, and ignoring these dependencies when modeling PHM systems can lead to erroneous RUL 

predictions and ineffective maintenance planning. Recognizing this, the focus of this paper is on the prognostics of multi-component 

systems, where the degradation processes of the system are influenced by both internal factors specific to the components and external 

factors related to the environment. 
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1. Introduction 

In many real industrial processes, systems often comprise 

components exhibiting failure dependencies. Failing to 

account for these component dependencies can result in 

inefficient remaining useful life (RUL) prediction. This 

paper addresses this issue by focusing on multi-component 

systems and presenting an algorithm for RUL prediction.  

The presented algorithm provides a valuable tool for 

practitioners and researchers working with multi-

component systems. It allows them to understand the 

system's behavior better and make informed decisions 

regarding maintenance and replacement strategies. 

Additionally, the conclusion and further work section 

highlight the significance of this research and suggest 

potential avenues for future exploration and improvement 

in the field of RUL prediction for multi-component 

systems. 

The paper is organized as follows: Section 2 

provides a comprehensive literature review on multi-

component systems, encompassing three aspects: past 

review papers, an overview of multi-component models, 

and a review of mathematical models presented in the 

reviewed papers. In Section 3, a typical multi-component 

system is considered and subsequently modeled to 

capture the interdependencies among the components. 

The proposed model is solved in Section 4, where the 

algorithm for RUL prediction is described and 

implemented. Finally, Section 5 presents the study's 

conclusion and potential areas for further research. 

2. Multi-component systems review 

2.1 Past review paper 

In the field of maintenance in multi-component systems, 

three notable review articles have been published to date, 

providing valuable insights into the topic. 

The first review article, written by [1], focuses on 

multi-component maintenance models with economic 

dependency. The models are categorized into stationary 

and dynamic models. Stationary models assume a long-

term stable situation with an infinite planning horizon, 

further divided into three subcategories: corrective 

maintenance, preventive maintenance, and opportunistic 

maintenance. Dynamic models, on the other hand, deal 

with short-term horizons and are divided into finite 

horizon and rolling horizon subcategories. Dekker et al.'s 

review classifies the reviewed papers into these four 

categories, providing a comprehensive overview of 

different problem classes and associated models in multi-

component systems. 

The second review paper, authored by [2], builds 

upon the subcategories proposed in the first review. 

However, it introduces a new understanding of the 

dependence and interaction that may exist between 

components in a system. The review identifies three types 

https://www.ijrrs.com/article_176119.html
https://www.ijrrs.com/
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://www.orcid.org/0009-0004-4163-7857
https://orcid.org/0000-0002-6265-6115
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of dependencies: economic, structural, and stochastic. 

Accordingly, the reviewed papers are analyzed and 

discussed based on these types of dependencies, 

providing insights into various aspects of multi-

component system maintenance. 

The third review paper, conducted by [3], addresses 

determining maintenance plans for multi-component 

systems. This review paper can be considered the first 

systematic review focusing on multi-component system 

maintenance, considering system characteristics, 

maintenance characteristics, and mission profile 

characteristics. It offers a comprehensive literature 

analysis, guiding maintenance plan selection in the 

context of multi-component systems. 

Together, these three review articles contribute to 

understanding maintenance in multi-component systems 

by categorizing and summarizing the existing literature. 

They offer insights into different aspects, including 

economic dependencies, component interactions, and 

maintenance plan selection, fostering a systematic 

approach to tackle the challenges of maintaining complex 

multi-component systems. 

2.2 Reviewing multi-component models 

Predicting the Remaining Useful Life (RUL) for multi-

component systems requires an accurate estimation of 

degradation states, considering economic dependency, 

structural dependency, and stochastic dependency. 

Numerous research papers have been published in this 

field, which can be categorized based on the number of 

dependent factors considered: 

a) One-factor systems: 

 [4] employ stochastic dependency in modeling 

multi-component systems, using two Brownian 

motions for degradation. They recursively 

estimate degradation states and parameters using 

the Kalman filter and EM algorithm and predict 

RUL distribution using FHT with a known 

threshold. 

 [5] consider a stochastic dependence in modeling 

a multi-component system. The Bayesian 

framework is used to update the predicted RULs. 

 [6] investigate stochastic dependency in a multi-

component system with two major units (A and B) 

subjected to two types of shocks. Type II shocks 

cause complete failures, while type I shocks cause 

minor failures. The probability of shock type is 

age-dependent. 

 [7] study stochastic dependency in a two-

component system with failure interactions, 

considering shock models and three maintenance 

policies for each model. 

 [8] consider structural dependency and analyze the 

impact of disassembly operations on component 

degradation and reliability. They propose a 

connection matrix model considering components' 

properties, connection strength, and technician 

expertise. The proposed model is applied in a 

numerical example for reliability assessment and 

maintenance optimization. 

 [9] consider stochastic dependence in the 

modeling of a multi-component system. They 

propose an integrated framework that combines 

real-time degradation models, mixed-integer 

optimization models, and solution algorithms for 

optimal wind farm maintenance and operations. 

The proposed framework, MC-CBOM, 

outperforms conventional methods regarding 

multiple wind farms with 300 turbines and 1200 

components. 

 [10] study stochastic dependency in modeling 

multi-component systems, focusing on its effects 

on the degradation process and remaining useful 

life. They estimate the dependent degradation state 

and unknown parameters using Kalman filtering 

and the expectation-maximization algorithm. 

 [11] develop a dynamic Bayesian network-based 

maintenance decision framework for complex 

systems with stochastic dependence. They 

compare preventive and predictive maintenance 

strategies in six different thermal power plant 

scenarios, finding that the threshold-based 

maintenance strategy provides the lowest cost and 

maintenance number. 

 [12] investigate condition-based maintenance of a 

two-component system considering stochastic 

dependence under imperfect inspection. They 

propose a dual periodical inspection policy, where 

Component 1 is repairable with two observable 

states (working and failed), and Component 2 

degrades over time modeled by a Wiener process. 

 [13] propose a probabilistic deep learning 

methodology for uncertainty quantification of 

multi-component systems' RUL. They combine a 

probabilistic model and a deep recurrent neural 

network to predict the components' RUL 

distributions. The proposed methodology is 

evaluated using benchmark data provided by 

NASA. 

 [14] studies a multi-component system with 

hierarchical stochastic dependencies. They use the 

Nested Clayton Lévy copula to model a time-

independent hierarchical dependence structure. A 

condition-based maintenance policy is proposed, 

dynamically planning inspection schemes and 

maintenance decisions based on collected 

information. 
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b) Two-factor systems: 

 [15] develop a dynamic opportunistic condition 
based maintenance strategy for multi-component 

systems, considering stochastic and economic 

dependencies. They establish an optimization 

model to minimize long-term average 

maintenance costs by selecting the dynamic 

opportunistic maintenance zone and optimal 

group structure. 

 [16] propose a flexible condition-based 

maintenance model using deep reinforcement 

learning for multi-component systems with 

dependent competing risks. The model maps 

degradation measurements to the maintenance 

decision space and leverages deep reinforcement 

learning for computational efficiency. 

 [17] study the reliability of multi-component 

systems with stochastic and structural 

dependence, considering continuous degradation 

processes and categorized shocks. They derive the 

reliability of a series system and propose a 

simulation method to approximate the failure time 

of k-out-of-n systems. 

 [18] propose a stochastic optimization model to 

reduce long-term total maintenance costs in 

complex systems with stochastic and economic 

dependence. They optimize preventive and 

corrective maintenance policies, focusing on 

periodic block-type and age-based maintenance 

policies. 

 [19] propose a state-rate dependence approach for 

analyzing degradation and failure in a two-

component repairable system, considering 

stochastic and economic dependencies. 

 [20] propose a joint predictive maintenance and 

inventory strategy for complex systems with 

multiple non-identical components and stochastic 

and economic dependence. They optimize 

predictive maintenance and spare parts 

provisioning operations based on prognostic 

condition index and structural importance 

measures. 

 [21] develop a condition-based maintenance 

policy for a two-component system with 

stochastic and economic dependencies. They 

propose adaptive preventive and opportunistic 

maintenance rules and find optimal decision 

variables using a cost model. 

 [22] develop an analytic network process and cost-

risk criticality analysis model for selecting a cost-

effective, low-risk maintenance strategy for 

complex systems with stochastic and economic 

dependence. They consider four maintenance 

alternatives: failure-based, time-based, risk-based, 

and condition-based. 

 [23] analyze a condition-based maintenance 

model for a multi-component system with 

stochastic and economic dependence. They use a 

Markov decision process and dynamic 

C) Three-factor systems: 

 [24] developed a bi-level approach to optimize 

condition-based maintenance (CBM) policy for 

multi-component systems with stochastic, 

economic, and structural dependencies. Based on 

system decisions, they identified the optimal 

group of components to be preventively 

maintained. The optimal inter-inspection interval, 

system thresholds, and component conditional 

reliability were jointly determined to minimize 

long-run average cost rates. The optimal 

maintenance policy was derived using a Monte 

Carlo simulation technique and a Particle Swarm 

Optimization (PSO)-based heuristic algorithm. 

The multi-component system considered in the 

paper has a 𝑘-out of- 𝑛: G structure. 

 [25] propose a condition-based maintenance 

policy for continuously monitored multi-

component systems with stochastic, economic, 

and structural dependencies. The policy 

incorporates a utility/reward function that 

minimizes system costs by choosing actions that 

minimize the total long-term penalty. The 

proposed policy outperforms alternative policies 

by reducing system life-cycle costs. Maintenance 

clustering is particularly beneficial for systems 

with strong economic dependence, while 

immediate replacements upon component failure 

are more advantageous for systems with high 

stochastic dependence. 

 [26] studied maintenance optimization of a 

parallel-series system considering stochastic, 

economic, and structural dependencies. They 

jointly optimized maintenance strategies and 

modeled the system's degradation process to 

address stochastic dependence and limited 

capacity issues. The authors employed the 

factored Markov decision process (FMDP) and 

developed an improved approximate linear 

programming (ALP) algorithm. The study found 

that the current approach effectively handles 

decision optimization problems for moderate-

sized multi-component systems with minimal 

maintenance decision-making errors. 

The details of the reviewed papers are summarized 

in Table 1. 
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Table 1. Reviewing multi component models 
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h

an
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 (
2
0

1
6

) 
[4

] 

- Stochastic 

The RUL of 

every 

component 

can be 

derived using 

the FHT (first 

hitting time). 

The degradations 

are affected by a 

common factor 

which is 

assumed to be 

public noise 

Presents a 

methodology to 

predict the RUL of 

a class of 

multi-component 

systems with hidden 

degradation 

processes 

The degradation 

states and 

model are 

unknown 

parameters are 

first identified 

recursively by 

the Kalman 

filter and 

EM algorithm. 

the RUL 

distribution of 

every 

component 

can be predicted 

by inferring the 

first hitting time 

(FHT) 

* PHM 

B
ia

n
 e

t 
al

 (
2
0

1
4

) 
[5

] 

- Stochastic 

Brownian 

motion, 

Gamma 

process 

Degradation-rate 

Predict the residual 

lifetime of a multi-

component system 

A Bayesian 

framework is 

used to update 

the predicted 

RLDs, DRI 

modeling 

framework, and 

Base-Case DRI 

Model, and 

MLE is used to 

estimate the 

parameter 

- - 

S
h

ey
 e

t 
al

. 

(2
0
1

5
) 

[6
] 

- Stochastic 

Non-

homogeneous 

Poisson 

process 

Shock Damage 

Interaction 

cost 

minimization 

Cumulative 

damage model 
- 

Replacement 

policy, shock 

model 

Z
h

an
g
 e

t 
al

. 
(2

0
1

8
) 

[7
] 

- Stochastic 

Weibull 

lifetime 

distribution, 

Exponential 

distribution 

used to 

describe 

the damages 

Failure 
Long-run average 

cost optimization 

The failure 

processes of all 

components are 

modeled by 

either their 

failure rates or 

their 

degradation 

processes, 

imperfect 

maintenance 

(virtual age 

method) 

- 

Corrective 

maintenance, 

Preventive 

maintenance, 

Maintenance 

cost 

derivation (T 

policy, N 

policy, (N, T) 

policy) 
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D
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 (
2

0
2

0
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[8
] 

Series Structural 

The half-

normal 

distribution is 

herein used to 

model the 

adjustment 

factor, B(t) is 

standard 

Brownian 

motion in the 

degradation 

model 

- 

This paper aims to 

investigate the 

impact of 

disassembly 

operations on the 

degradation 

processes and 

reliability of the 

components/system 

Dependence 

modeling and 

formulation of 

disassembly 

impact, 

Degradation 

modeling with 

disassembly 

operations 

impact, 

Reliability 

assessment 

considering the 

disassembly 

operations 

impacts 

- 

Step 1: 

System 

structure 

analysis 

(component 

analysis, 

dependencies 

analysis…)- 

Step 2: 

Dependence 

modeling and 

formulation 

of 

disassembly 

impact 

(Directed 

graph, 

connection 

matrix, 

disassembly 

impact 

model)- Step 

3: 

Degradation 

modeling 

with 

disassembly 

impact 

(degradation 

models, 

impacts 

model)- Step 

4: Reliability 

assessment 

considering 

the 

disassembly 

operations 

impacts 

(maintenance 

policy, 

reliability 

model) 

B
ak

ir
 e

t 
al

 (
2
0

2
1

) 
[9

] 

- Stochastic 
Bayesian 

approach 
- 

The proposed 

framework provides 

significant cost and 

reliability 

improvements. The 

proposed model 

adapts to a wide 

range of operational 

and maintenance 

scenarios. 

The MC-

CBOM policy 

outperforms all 

benchmark 

policies thanks 

to its ability to 

consider and 

adapt to the 

complex 

interactions 

between 

different 

decision layers. 

- 

CBM, 

Large-scale 

mixed integer 

optimization 
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N
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2
0

2
2

) 
[1

0
] 

Series 

structure, 

Parallel 

structure, 

Summation 

structure 

Stochastic 

B(t) indicates 

standard 

Brownian 

motion and 

observation 

noise and 

follows a 

normal 

distribution. 

Degradation, 

This study aimed to 

investigate the 

effects of the 

stochastic 

dependence 

between 

components on the 

degradation process 

and remaining 

useful life (RUL) of 

a system. 

The PDF of the 

RUL was 

derived for a 

multi-

component 

system 

using the FHT 

concept; the 

dependent 

degradation 

state and 

unknown 

parameters of 

the model 

were jointly 

estimated by 

Kalman 

filtering (KF), 

and the 

expectation 

maximization 

(EM) 

algorithm. The 

maximum 

likelihood 

estimation 

(MLE) 

* 
State-space 

model 

Ö
zg

ü
r-

Ü
n

lü
ak

ın
 e

t 
al

 

(2
0
2

1
) 

[1
1

] 

The RAH 

system 

consists of 

two 

parallel 

motors 

groups 

Stochastic - - 

To reduce 

maintenance costs 

while increasing 

system reliability at 

the same time 

Dynamic 

Bayesian 

networks, Tabu 

procedure, 

Generic 

algorithm for 

the proactive 

maintenance 

strategies 

- 

Multi-

component 

hidden 

systems 

Z
h

an
g
 e

t 
al

. 
(2

0
2

2
) 

[1
2

] 

- Stochastic 

A Wiener 

process 

describes the 

degradation 

of component 

2 

with 

parameters 

depending on 

the state of 

component 1, 

the lifetime of 

component 1 

follows a 

Weibull 

distribution 

Component 2 

fails if the 

degradation level 

of component 1 

exceeds a 

predefined 

threshold; the 

whole system is 

renewed if the 

degradation of 

component 2 

exceeds its 

preventive 

maintenance 

threshold 

The expression of 

the maintenance 

cost rate, in the long 

run, is given to 

evaluate the 

maintenance policy 

An algorithm is 

proposed to 

achieve 

maintenance 

optimization 

(The calculation 

of the 

maintenance 

cost in the long-

run horizon); by 

taking the 

maintenance 

cost rate in the 

long run as the 

objective 

function, the 

Markov 

renewal process 

is implemented 

to solve the 

problem. 

- 

Condition-

based 

maintenance 

of a two-

component 

system under 

imperfect 

inspection, 
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2

0
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2
) 

[1
3

] 

Series, 

parallel, 

combined, 

bridge-type 

Multi-

independent-

component 

systems, 

Structural 

Lognormal 

distribution 

and a 

recurrent 

neural 

network 

- 

To develop an 

efficient approach 

able to provide the 

pdf of the RUL and 

outperform existing 

methods for both 

point-wise and 

probabilistic RUL 

predictions with a 

reasonable 

computational cost 

A combination 

between a 

probabilistic 

model, i.e., 

lognormal 

distribution, and 

a recurrent 

neural network, 

i.e., LSTM 

model 

- PHM 

L
i 

et
 a

l.
 (

2
0
2

2
) 

[1
4

] 

Each 

subsystem 

is parallel. 

 

Hierarchical 

stochastic 

dependencies 

Individual 

degradation is 

modeled by 

the Gamma 

process, the 

Inverse Gauss 

(IG) process 

with Gaussian 

the copula is 

used when 

modeling the 

deterioration 

process of 

heavy 

machine, 

Lévy copula 

permits the 

marginal to be 

Gamma 

process and 

the Wiener 

process 

- 

Reducing the 

inspection and 

maintenance cost, 

the optimal 

maintenance cost of 

policies 

The Nested 

Lévy copula, 

Copula methods 

in dependent 

degradation 

modeling 

- 

Condition-

based 

maintenance 

policy, 

Nested Lévy 

copula 

S
h

i 
et

 a
l 

(2
0
1

6
) 

[1
5

] 

- 

Stochastic 

and 

economic 

The system’s 

initial RUL is 

modeled as a 

Weibull 

distribution 

The components 

are divided into 

three categories 

(A, B, and C) 

based on their 

interdependence 

characteristics 

Minimization of the 

long-term average 

maintenance cost of 

the system 

An approximate 

methodology 

for RUL 

prediction using 

a stochastic 

filter 

- 

Dynamic 

maintenance 

strategy, OM 

policy 

Z
h

an
g
 e

t 
al

. 
(2

0
2

0
) 

[1
6

] 

- 

Stochastic 

and 

economic 

Poisson 

Process 

(CPP) and 

Gamma 

Process (GP) 

Agent-

environment 

Cost 

minimization 

objective 

A new CBM 

model for a K-

component 

system subject 

to dependent 

competing 

risks, which are 

general and 

different from 

existing models 

* 

CBM, a novel 

and flexible 

model based 

on a 

customized 

deep 

reinforcement 

learning for 

multi-

component 

systems with 

dependent 

competing 

risks 
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S
h

en
 e

t 
al

 (
2

0
1

8
) 

[1
7

] 

Series, 𝑘-

out of- 𝑛 

Stochastic, 

Structural 

 

The Gamma 

process 

governs 

degradation 

between two 

adjacent 

shocks, 

 
Degradation (the 

degradation 
behavior of a 

particular 
component can 
influence that of 

another 
component), 
Moreover, 
categorized 
shocks are 
assumed to 

selectively affect 
one or more 

components by 
either causing a 
sudden jump in 
the degradation 

level or 
accelerating the 
degradation rate, 

or both. 

The key 

contribution of this 

work is studying the 

reliability of a 

multi-component 

system with 

interacting 

components subject 

to continuous 

degradation 

processes and 

categorized shocks 

Markov 

renewal process 
- 

A Markov 

renewal 

process 

M
ar

ti
n

o
d
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t 

al
 (

2
0
1

8
) 

[1
8

] 

- 

Stochastic 

and 

economic 

The stochastic 

hazard rate of 

each 

component 

has a uniform 

distribution 

 

 

 

State-rate 

 

 

 

 

To reduce the long-

term total 

maintenance cost of 

complex systems 

Periodic block-

type policy, 

Age-based 

policy, 

an ABAO 

corrective 

maintenance 

policy 

- 

 

 

 

 

 

Preventive 

and 

corrective 

maintenance 

policy 

X
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al
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(2
0
1

8
) 

[1
9

] 

Component 

failure 

makes the 

system 

stop 

Stochastic 

and 

economic 

A 

proportional 

hazard model 

(PHM) with 

baseline 

Weibull 

hazard 

function and 

time-

dependent 

stochastic 

covariates is 

used to 

describe the 

equipment 

deterioration 

process 

State-rate 

Effective 

degradation analysis 

and accurate 

condition 

assessment, cost 

minimization 

A state 
discretization 
technique to 

model how the 
health state of 

one component 
affects the 

hazard rate of 
another, an 
extended 

proportional 
hazard model 

(PHM) to 
characterize the 

failure 
dependence and 

estimate the 
influence of the 

degradation 
state of one 

component on 
the hazard rate 
of another, an 
optimization 

model is 
developed to 
determine the 

optimal hazard-
based threshold 

for a two-
component 
repairable 

system 

- 

PHM 

(proportional 

hazard 

model), CBM 
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N
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 (
2

0
1

7
) 

[2
0

] 

Combined 
Economic, 

stochastic 

Gamma 

distribution, 

Weibull 

distribution 

Cost-rate 

To reduce the total 

maintenance and 

inventory cost 

present a joint 

predictive 

maintenance 

and inventory 

strategy for 

systems with 

complex 

structures and 

multiple non-

identical 

components, 

opportunistic 

maintenance 

decision rules 

based on the 

criticality level 

of components 

and their spare 

parts 

availability are 

proposed an 

adaptive 

maintenance 

opportunity 

rule, Monte 

Carlo 

simulation 

techniques 

- 

 

Predictive 

maintenance, 

predictive 

inventory, 

prognostic, 

opportunistic 

maintenance, 

Joint 

predictive 

maintenance, 

and inventory 

strategy 

D
o

 e
t 

al
. 

(2
0
1

8
) 

[2
1

] 

- 
Economic, 

stochastic 

Gamma 

distribution, 

Brownian 

motion 

process 

Economic 

and degradation 
Cost optimization 

A particle filter 

is implemented 

to estimate the 

parameters of 

the proposed 

model, State 

dependence 

modeling, and 

the cost rate is 

evaluated using 

Monte Carlo 

simulation 

- 

Condition-

based 

maintenance, 

an 

opportunistic 

maintenance 

policy, cost 

of preventive 

and 

corrective 

replacement, 

preventive 

and 

opportunistic 

maintenance 

S
h

af
ie

e 
et

 a
l.

 (
2
0

1
9

) 
[2

2
] 

Combined 

Stochastic 

and 

economic 

 

Interactions 

between 

component 

failures 

The model is 

proposed to select a 

cost-effective, low-

risk maintenance 

strategy for 

different sets of 

components in a 

complex system 

AHP, ANP, 

fuzzy logic 
- 

MCDM: 

CBM- TBM- 

RBM-FBM, 

the proposed 

model 

consists of 

two sets of 

criteria, 

namely, cost 

of 

maintenance 

and criticality 

of failure 
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L
iu

 e
t 

al
 (

2
0
2

1
) 

[2
3

] 

 

Stochastic 

and 

economic 

 

Degradation 

follows a 

bivariate 

gamma 

process 

Degradation 

(correlation 

between the 

degradation 

processes) 

 

 

The expected 

maintenance cost is 

minimized 

concerning the 

preventive 

replacement 

thresholds for the 

two components 

 
Markov 

decision 

process (MDP), 

dynamic 

programming is 

used to compute 

the expected 

maintenance 

cost over a 

finite planning 

horizon 

- 

Preventive or 

corrective 

replacement, 

CBM 

W
an

g
 e

t 
al

 (
2

0
2

2
) 

[2
4

] 

𝑘-out of- 𝑛 

Stochastic 

and 

Economic, 

Structural 

Wiener 

Processes, 

Brownian 

motion, 

inverse 

Gaussian 

Rate–rate 

Minimization of the 

long-run average 

cost rate 

The Monte 

Carlo 

simulation 

technique 

combined with 

an improved 

Particle Swarm 

Optimization 

(PSO)-based 

heuristic 

algorithm 

- 

CBM policy, 

Perfect 

observations 

without 

including 

measurement 

error 

O
ak

le
y

 e
t 

al
. 

(2
0
2

2
) 

[2
5

] 

The series-

parallel 

system 

combined 

Stochastic 

and 

Economic, 

Structural 

The workload 

at every time 

unit follows 

the truncated 

normal 

distribution; 

Gamma 

processes will 

be used to 

model the 

degradation 

of the 

components 

Degradation-rate 

Minimizes the 

overall cost of 

the system 

To model 

component 

failure times 

using a random 

degradation 

threshold, 

maintenance 

clustering is 

especially 

beneficial for 

systems with a 

strong degree of 

economic 

dependence. 

- CBN policy 

Z
h

o
u

 e
t 

al
. 

(2
0
1

6
) 

[2
6

] 

Parallel-

series 

Stochastic 

and 

economic 

structure 

The duration 

of both 

corrective and 

preventive 

maintenance 

follows the 

geometric 

distribution 

- 

To overcome the 

“curse of 

dimensionality” 

problem, the cost 

minimization 

The factored 

Markov 

decision 

process 

(FMDP), An 

improved 

approximate 

linear 

programming 

(ALP) 

algorithm 

 

The cost of 

preventive 

and 

corrective 

maintenance, 

Maintenance 

capacity 
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2.3 Mathematical models 

    The reviewed articles in the previous section have the 

mathematical models collected in Table 2. 

Table 2. Mathematical model of reviewing multi-component models 

Author Mathematical Model 

Zhang et al. 

(2016) [4] 

A stochastic process can describe every degradation 

 

 

Bian et al 

(2014) [5] 

The degradation signal of component i 

 

 
 

Shey et al. 

(2015) [6] 

 

The probability that type I shocks occur exactly k times during [0, t] 

 
A corrective replacement is carried out at the first type II shock. The probability of this event is given by 

 

 
 

Zhang et al. 

(2018) [7] 

The average long-run cost 

 

𝐶∞𝐼(𝑇) =
𝑐3−(𝑐3−𝑐2) ∑ 𝑟𝑛𝑝𝑛(𝑇)�̅�𝜎𝐿

(𝑇)+∑ (𝑛−1)𝑐1𝑟𝑛−1�̅� ∫ �̅�𝜎𝐿
(𝑡)𝑑𝑉𝑛(𝑎𝑡)

𝑇
0

∞
𝑛=1

∞
𝑛=0

∫ 𝐹𝑠𝐼(𝑡)𝑑𝑡
𝑇

0

+

∑ 𝑛∞
𝑛=0 𝑟𝑛𝑐1(∫ 𝑝𝑛(𝑡)𝑑

𝑇
0 𝐺𝜎𝐿

(𝑡)+𝑝𝑛(𝑇)�̅�𝜎𝐿
(𝑇))

∫ 𝐹𝑠𝐼(𝑡)𝑑𝑡
𝑇

0
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Author Mathematical Model 

Dinh et al. 

(2020) [8] 

The degradation process of component i 

 

 

Bakir et al. 

(2021) [9] 

Degradation model for component k in turbine i 

 

 
The underlying base degradation function for component k of turbine i 

 

 

Niu et al. 

(2022) [10] 

The intrinsic degradation process of component i 

 

𝑋(𝑖𝑖)(𝑡) = 𝑋(𝑖𝑖)(0) + ∫ 𝜇𝑖(𝛾, 𝜃𝑖)𝑑𝛾
𝑡

0
+ 𝜎𝐵

(𝑖)
𝐵(𝑡),  

The drift term 

𝜇𝑖(𝑡, 𝜃𝑖) = 𝜆𝑖𝑟𝑡𝑟−1  

Özgür-

Ünlüakın et 

al. (2021) 

[11] 

The joint probabilities of the variables in a Dynamic Bayesian Network 

 

 

Zhang et al. 

(2022) [12] 

The degradation process of component 2 given that component 1 failure occurs once at 𝜃 
 

 

Nguyen et 

al. (2022) 

[13] 

The RUL of component 𝑖 
 

 

Li et al. 

(2022) [14] 

The deterioration stochastic process of component 𝑗 in subsystem 𝑖 can be modeled as follows. 

 

 
(Γ𝑛

𝑖𝑗
)𝑛∈Νare coupled by a copula function 𝐶 in such a way that 
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Author Mathematical Model 

Shi et al. 

(2016) [15] 

The CM history of component j in 𝐷𝑘 until 𝑡𝑖 

 
 

The RUL of component k 

 
 

The system’s initial RUL is modeled as a Weibull distribution. 

 

Zhang et al. 

(2020) [16] 

Based on the CPP (Compound Poisson Process) model, the degradation of component 𝑖 
 

𝑑𝑖(𝑡) = ∑ 𝑚𝑖,𝑗𝑡𝑖,𝑗≤𝑡 + ∑ 𝑚𝑠,𝑗𝑡𝑠,𝑗≤𝑡   

The PDF of the degradation increment from time 𝑡1 to 𝑡2 based on GP (Gamma Process) 

𝑓(𝑡2,𝑡1)(𝑢) = {

(𝑡2,𝑡1)𝑢(𝑡2,𝑡1)𝑒𝑢

(𝑡2,𝑡1)
          𝑖𝑓   𝑢 ≥ 0

0                         , 𝑖𝑓   𝑢 < 0
  

 

Shen et al 

(2018) [17] 

The accumulated degradation of component i just after the jth shock arrives. 

 

 

Martinod et 

al (2018) 

[18] 

The weighted average cost for the jth component in the periodic block-type actions is expressed as 

 
 

The weighted average cost for the jth component in the age-based policy actions are the following. 

 

Xu et al. 

(2018) [19] 

As to identify the optimal number of change points V*, the contrast function, which measures the quality of the number 

of segments, is given below: 

 
 

The total cost C cycle in association with repair and replacement for each regenerative cycle is: 

 
The average cost per unit of time 𝐶𝐴𝐶 is expressed as follows 
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Author Mathematical Model 

Nguyen et 

al (2017) 

[20] 

The total cost rate can be rewritten as 

 

 

 

Do et al. 

(2018) [21] 

The cost rate is generally defined as 

 

𝐶∞(∆𝑇, 𝑚𝑝
1 , 𝑚𝑜

2, 𝑚𝑝
2 , 𝑚𝑜

2) =
𝔼[𝐶𝑇𝑟𝑒(∆𝑇,𝑚𝑝

1 ,𝑚𝑜
2 ,𝑚𝑝

2 ,𝑚𝑜
2)]

𝔼[𝑇𝑟𝑒]
,  

 

𝐶𝑇𝑟𝑒(∆𝑇, 𝑚𝑝
1 , 𝑚𝑜

2, 𝑚𝑝
2 , 𝑚𝑜

2) =
∑ (𝐶𝑖𝑛𝑠

𝑘 +𝐶𝑚𝑎𝑖𝑛
𝑘 )𝑚

𝑘=1 +𝑇𝑑𝑜𝑤𝑛.𝑐𝑑

𝑚.∆𝑇
  

Shafiee et 

al. (2019) 

[22] 

The desirability index for alternative i, 𝐷𝑖, is defined as the following equation 

 
Where J is the index set for criterion j, 𝐾𝑗   is the index set of sub-criteria for criterion j, 𝐶𝑗 represents the relative 

importance of criterion j, 𝑀𝑘𝑗 is the relative importance of sub-criterion k of criterion j and 𝐴𝑖𝑘𝑗is the rating of 

alternative i on sub-criterion k of criterion j. 

Liu et al. 

(2021) [23] 

In a univariate gamma process, degradation at time t, Y (t), follows a Bivariate gamma distribution. 

 
 

 

Wang et al. 

(2022) [24] 

Degradation level of the unmaintained component 𝑗 modeled by a basic Wiener process 

 
The RUL of the 𝑗th component is governed by an IG distribution with the PDF as 

 

Oakley et 

al. (2022) 

[25] 

The degradation of Component 𝑖𝑗 at 𝑡𝑘 

 
𝑡𝑖𝑗

∗ is the time of the most recent replacement of Component 𝑖𝑗 
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Author Mathematical Model 

Zhou et al. 

(2016) [26] 

The conditional transition probability of the system is simplified as: 

 

 
Situation one: 

 
Situation two: 

 
Situation three: 

 
Situation four: 

 

3. Developing a new multi-component 

model  

This section considers a system with n identical 

components arranged in a series configuration. To 

illustrate this concept, we will use the example of a 

gearbox. A gearbox typically consists of multiple gears 

connected consecutively, each meshing with the 

preceding and succeeding gears. This configuration 

allows for the transmission of motion and torque from the 

input to the output gear(s).  

In a gearbox system, the failure or fault in one gear 

can potentially affect the adjacent gears within the gear 

train. When a gear fails or experiences a fault, such as a 

tooth breakage or chipping, it can lead to an imbalance in 

load distribution, increased friction, and abnormal wear 

patterns on the teeth of the neighboring gears. 

Consequently, the neighboring gears may experience 

higher loads than normal, accelerating wear, increasing 

stress levels, and potentially causing failures in their 

teeth. 

The transmission of faults or failures between gears 

in a gear train can occur through various mechanisms, and 

it is crucial to address these issues promptly to prevent 

further cascading failures. The failure of a gear in a gear 

train can result in downtime, costly repairs, and potential 

safety risks, particularly if the gear train is a critical 

component in an industrial or transportation application. 

Our research aims to predict the time of system 

failure before it occurs, allowing for timely actions to be 

taken. In the context of this study, we focus on a system 

with n=3 identical components, as illustrated in Figure 1. 

By considering the specific case of n=3 components, 

we aim to develop a predictive model for the system's 

remaining useful life (RUL). This model will enable us to 

estimate the time remaining until the system reaches 

failure, thereby providing an opportunity for proactive 

maintenance and mitigation measures. 

Our research seeks to enhance the understanding of 

gearbox systems and their failure dynamics, enabling 

more effective maintenance strategies and improved 

system reliability. 

 Now, let’s consider n=3 as in Figure 1. 

 

 

 
Figure 1. The assumed multi-component system, n=3 

1 

2 

3 

1 

2 

3 
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Now, let’s consider the degradation function as in 

the following: 

𝑥𝑘
(𝑖)

= 𝑥𝑘−1
(𝑖)

+ 𝜂(𝑖)∆𝑡𝑘−1 + 𝛼1𝑥𝑘
(𝑖−1)

+ 𝛼2𝑥𝑘
(𝑖+1)

+

𝛼3𝑥𝑘
(𝑖−1)

𝑥𝑘
(𝑖+1)

+ 𝑤𝑘−1
(𝑖)

           𝑖 = 1, … , 𝑛          
(2) 

In which: 

𝑤𝑘−1
(𝑖)

= 𝜎𝐵
2(𝑖)

𝐵(𝑡) ,        ∆𝑡𝑘−1 = 1 

𝜂(𝑖)= the Constant inherent degradation rate of each 

component  

𝑥𝑘
(𝑖)

= the degradation value of component i in at 𝑡𝑘 

𝛼1, 𝛼2, 𝛼3 = the Constant coefficients 
𝑥𝑘

(𝑖−1)
𝑥𝑘

(𝑖+1)
= the mutual effect of destroying the 

components (𝑖 − 1) and (𝑖 + 1) on component 𝑖 

𝑤𝑘−1
(𝑖)

 = the state transition noise of component i, 

𝑤𝑘−1
(𝑖)

~𝑁 (0, 𝜎𝐵
2(𝑖)

∆𝑡𝑘) 

𝜎𝐵
2(𝑖)

 = diffusion coefficients of component i 

𝐵(𝑡)= standard Brownian motion 

Figure 2 shows that each component, based on its 

position in the system, is influenced by other 

neighboring components. Components 1 and 2 are only 

affected by Component 2. However, Component 2 is 

influenced by both Component 1 and Component 3. 

Therefore, the mutual effect of these two components on 

Component 2 should be considered. The mutual effect 

is denoted as 𝑥𝑘
(1)

𝑥𝑘
(3)

. The model parameters include 𝜂, 

𝛼1 , 𝛼2 , 𝛼3 , 𝜎𝐵
2. These parameters can be estimated 

using the least square method.  

   

Figure 2. Degradation trajectories for components 1, 2, and 3 (left to right) for 100 units (smoothed curves presented) 

4. Numerical studies  

This section uses a simulated case study to demonstrate 

how our developed model work. Our case system has 

three components; a sensor is installed to monitor its 

degradation trajectory. Hence, we have three simulated 

degradation datasets. Each data set constitutes 100 

degradation trajectories that generally amount to 20631 

data points for each component. Figure 2 shows these 

degradation trajectories for components 1 to 3. 

Now, we estimate the parameters of the model using 

the least square method: 

→    ∆𝑥𝑘
(1) = 𝑥𝑘

(𝑖)
− 𝑥𝑘−1

(𝑖)
= 𝜂(𝑖)∆𝑡𝑘−1 + 𝛼1𝑥𝑘

(𝑖−1)
+

𝛼2𝑥𝑘
(𝑖+1)

+ 𝛼3𝑥𝑘
(𝑖−1)

𝑥𝑘
(𝑖+1)

+ 𝑤𝑘−1
(𝑖)

  
(3) 

The obtained models are: 

For Component 1: 

 ∆𝑥𝑘
(1) = 𝜂 + 𝛼𝑥𝑘

(2)
+𝑤𝑘−1

(1)
    →    ∆𝑥𝑘

(1) =  1.6827 −

0.035𝑥𝑘
(2)

+𝑤𝑘−1
(1)   

𝑤𝑘−1
(1)

~𝑁 (0, 𝜎𝐵
2(1)

∆𝑡𝑘)    ,  𝑤𝑘−1
(1)

~𝑁(0, 0.0202) 

For component 2: 

∆𝑥𝑘
(2) = 𝜂 + 𝛼1𝑥𝑘

(1)
+ 𝛼2𝑥𝑘

(3)
+ 𝛼3𝑥𝑘

(1)
𝑥𝑘

(3)
+ 𝑤𝑘−1

(2)
→  

∆𝑥𝑘
(2) = 91.7988 − 1.8533𝑥𝑘

(1)
− 0.1887𝑥𝑘

(3)
+

0.0039𝑥𝑘
(1)

𝑥𝑘
(3)

+ 𝑤𝑘−1
(2)   

𝑤𝑘−1
(2)

~𝑁 (0, 𝜎𝐵
2(2)

∆𝑡𝑘)   ,   𝑤𝑘−1
(2)

~𝑁(0, 0.024)  

For component 3: 

∆𝑥𝑘
(3) = 𝜂 + 𝛼𝑥𝑘

(2)
+𝑤𝑘−1

(3)
    →    ∆𝑥𝑘

(3) =  −0.4892 +

0.0101𝑥𝑘
(2)

+𝑤𝑘−1
(3)   

𝑤𝑘−1
(3)

~𝑁 (0, 𝜎𝐵
2(3)

∆𝑡𝑘)    ,    𝑤𝑘−1
(3)

~𝑁(0, 0.1736)  

According to the developed model, the estimated 

remaining useful life (RUL) curves for all three 

components are shown in Table 3. In fact, Table 3 

consists of three columns, each assigned to one 

component. Starting from the left column, a degradation 

trajectory for Component 1 is shown in the first row using 

the data presented in Figure 2. Since Component 1 is 

influenced by Component 2, in the second row, a 

degradation trajectory for Component 2 is shown using 

the data presented in Figure 2 again. In the third row, the 

degradation trajectory of Component 1 is shown. Finally, 

in the fourth row, the estimated value of RUL for 

Component 1 is illustrated. The same process has been 

carried out for Component 2 and 3 in columns 2 and 3, 

respectively. Note that the second column, which 

corresponds to Component 2, is influenced by both 

Component 1 and Component 3. 
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Table 3. RUL for each component 

Component 1 Component 2 Component 3 

   

 
  

   

 

 

 

 

  
 

Figure 1 illustrates the system under consideration, 

which follows the reliability theory and is characterized 

as a series system. In a series system, the system fails if 

its components fail. Consequently, this system's predicted 

Remaining Useful Life (RUL) is determined by 

identifying the minimum RUL prediction among the three 

components, as presented in Table 3. 

The RUL predictions for the individual components 

are compared, and the minimum value among them is 

selected as the RUL prediction for the system. The 

obtained RUL values for the system are represented by 
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the blue dots in Figure 3. Additionally, the yellow dots 

depict a fitted line, representing the trend and pattern of 

the RUL values. 

The graphical representation in Figure 3 provides a 

visual representation of the RUL predictions for the 

system over time. The blue dots signify the RUL values 

for the system at different time points, while the yellow 

dots represent the fitted line, which approximates the 

overall trend in the RUL values. 

By examining the RUL predictions for the system 

and visualizing them in Figure 3, one can gain insights 

into the system's projected lifetime and components. This 

analysis helps understand the potential failure points and 

plan maintenance strategies accordingly. 

Overall, Figure 1 demonstrates the series system 

structure, while Figure 3 presents the RUL predictions 

and the fitted line, enabling a comprehensive 

understanding of the RUL estimation for the system. 

 

Figure 3. RUL of the system 

5. Conclusion 

This paper presents the development of a multi-

component degradation model that specifically focuses 

on identical components. The components in the system 

are interconnected in a series configuration, meaning that 

the failure of one component impacts the functioning of 

the others. The model considers this characteristic and 

incorporates it into the degradation modeling process. To 

account for the influence of environmental factors, the 

model utilizes Brownian motion, which allows for the 

integration of environmental effects on the degradation 

process. 

The model's unknown parameters are estimated 

using the least squares method, which helps optimize the 

model's accuracy. The overall RUL of the system is 

subsequently determined by estimating the Remaining 

Useful Life (RUL) of each component. 

A specific numerical example is presented to 

validate the developed model's effectiveness. The results 

demonstrate that the model effectively estimates the 

degradation process of each component. As a result, an 

acceptable estimation of the RUL for the entire system is 

achieved. 

In summary, this paper contributes to the field of 

PHM systems by introducing a multi-component 

degradation model with identical components, 

considering the interdependency among the components 

in a series configuration. Incorporating environmental 

factors using Brownian motion enhances the model's 

realism. By applying the model to a numerical example, 

it is demonstrated that the model effectively estimates the 

degradation process of each component and provides a 

reliable estimation of the overall RUL for the system. 
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