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Abstract 

Due to the importance of the fundamental role of turnouts in network operations and their higher vulnerability than other assets, turnout 

condition monitoring is necessary for reliability-centered maintenance. Along with periodic visual inspections, real-time infrastructure 

condition detection can help introduce the structure's performance so that infrastructure maintenance is more reliable. A new approach 

for railway turnout pass-by condition detection is provided based on statistical process control (SPC) of damage-sensitive features 

(DSF) using switchblade lateral displacement (BLD) measurements.  BLD time series data is modeled using a neural network model 

to extract DSF. This approach is applied to 33 passenger trains. The results of the proposed approach are validated by analysis of BLD 

and switch rod force sensor outputs. This method can be applied in turnout short-term condition monitoring for condition detection, 

leading to preventive maintenance, proper track operation management, and increased reliability. 

Keywords: Blade displacement; Condition monitoring; Reliability centered maintenance; Railway turnout; Switch panel.

1. Introduction 

Turnouts are vital elements of the rail network as they are 

responsible for guiding rail traffic. Due to the certain 

geometry of rail and complicated interaction of train-

track in switch and crossing panels of turnout, these parts 

are very attractive in studies to prevent failure in railway 

systems. There are several studies to simulate the 

dynamics of the vehicle's passage over the crossing panel 

[1-3] and field measurements of the crossing panel [4-6] 

to investigate impacts induced in crossing by vehicle 

passing. A method to investigate the dynamic response of 

railway crossing based on acceleration and strain 

measurements was introduced in [4]. In another field 

study using nose rail acceleration measurements, impact 

acceleration was introduced as an indicator for evaluating 

crossing conditions [5]. Wheelset lateral displacements 

were measured in a study, and critical wheelsets were 

specified in switch and crossing panels by comparing 

measured displacements with frequency in switch and 

crossing panels [6].  

Unlike the crossing panel in the switch panel area, 

relatively little numerical fieldwork has been done in the 

technical literature. However, this area is also a sensitive 

and accident-prone area due to the complex interaction of 

wheels and rails and is of great importance in terms of 

maintenance. Wear of switch/stock rail, soft spots, and 

plastic deformations are common failures/defects in 

switch panels [7]. 

Some numerical studies in switch panels were 

presented in [8-9]. In [8], a numerical study investigated 

the effect of the vertical relative motion of stock/switch 

rails onwheel–rail contact mechanics. Different non-

Hertzian modeling approaches in wheel/rail contact 

problems were evaluated in [9]. From the numerical 

works, it can be found that the contact between the wheel 

and the rail is complex in the switch panel and is 

associated with the impacts caused by the wheel transfer 

from the stock rail to the blade rail. 

In the static state, the gap between the blade and the 

stock rail in the close position is a key parameter of the 

switch health, and in some standards, such as [10], certain 

limits have been set for this parameter. However, this 

parameter has not been limited in the dynamic state while 

the train passes from turnout. The blade vibration caused 

by the contact forces of the wheels occurs due to the 

placement of the blade on the switch base plate. 

Therefore, measuring the size and pattern of blade 

displacements can measure the turnout interaction 

response to vehicle passage. 
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This study uses Monitored BLDs to identify the 

condition of wheel/rail interactions in switch panels due 

to passing vehicles.  

The use of statistical process control (SPC) methods 

in vibration-based fault detection is a common method in 

literature review. Reference [11] uses a statistical process 

control framework to support structural health monitoring 

in a historic building. In that study, an Autoregressive 

(AR) model fitted to the time history of acceleration 

measured in a sound structure is used. Residual values 

(forecast and measurement difference) are damage-

sensitive (DSF) features. In [12], the AR Support Vector 

Machines (SVM) method is used instead of the AR linear 

model. In terms of control ability in nonlinear dynamics 

and the structure of the model, a nonlinear time series 

model is proposed. [13] It also proposes a technique 

based on the residual moving average regression model 

of exogenous inputs (ARMAX) to improve noise and 

damage detection power in different types of stimuli and 

realistic conditions in the shear structure. In most of the 

mentioned studies, the damage identification is 

supervised type due to the possibility of applying damage 

with different degrees. Because in most cases, like the 

turnout survey in this study, the data available is only 

from a sound structure, damage detection must perform 

in an unsupervised form. In this study, condition 

detection in an unsupervised method is conducted using 

the control chart method on residuals of Non-linear AR 

neural network (NN) prediction models. 

First, the data source used in this study is described. 

Then the method for modeling of time series is presented. 

The results of condition detection during train passages 

are presented in the fourth section, and validation of the 

detected trains has been done by statistical analysis of the 

data of different sensors. Figure 1 shows a diagram of the 

methodology of this study. 

 

Figure 1. Diagram of research methodology 

2. Data source 

2.1 Field measurement 

Generally, a turnout is formed from a switch panel, a 

closure panel, and a crossing panel (figure 2(a)). In a case 

study, the entrance turnout in the mainline of one station 

was instrumented, and the turnout was monitored [14, 

15]. The turnout is a 1:9 left-hand turn out with a 60E1 

full rail section type.   

Figure 2(a) illustrates the location of train detection 

sensors, including the axle counter (Trigger) sensor, 

Weigh In Motion (WIM) sensor to detect train properties, 

and switchblade lateral displacement (BLD) sensor in the 

turnout plan view. Figure 2(b) shows the hardware part of 

the turnout monitoring system. Data were measured in the 

mainline and the facing direction of the turnout. The 

measurement sampling frequencies of the sensors are 10 

kHz. Measurements include signals from consecutive 

passage of 33 trainsets passenger trains in two months. 

(a)  

(b)  

Figure 2. Instrumentation of turnout, (a) General layout of 

turnout and sensors configuration, (b) The hardware of the 

turnout monitoring system 

2.2 Data Processing 

In the first step, passing train characteristics are 

determined by processing the axle counter sensor and 

WIM sensor data. Dynamic axle load and train 

configuration from raw data could be detected according 

to Figure 3(a).  

Trainsets have more uniform specifications [16], 

including axial load and speed, number, and axle 

distance, and therefore, they have more comparative 

conditions to check for fault detection. Therefore, these 

train passages were selected from numerous vehicle data. 

To reduce the volume of data to introduce to the 

forecasting AR model, signal preprocessing, reducing 

sample frequency from 10 kHz to 100 Hz, was performed 

in BLD data.  

The measured data from WIM sensors for a train-set 

passage (train No. 20) with 5 self-traction units (20 axle 

passage) at 116 km/h speed are shown in Figure 3(b). To 

uniformize all data series, the middle part of the trains, 

including the passage of four P.Bogies, has been included 

in the continuation of the study (figure 3 b). 
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(a)  
 

(b)  

Figure 3. Train specification detection, (a) Train configuration 

detection by WIM sensor outputs, (b) First to 4th P.Bogies 

effects on BLD measurement data 

Based on the time of train passage from turnout, 

trains were classified, and six groups of trains were 

detected (G1 to G6). Thirty-three train sets were selected 

for applying the methodology. 

The statistical specifications of the studied trains containing 

estimated train axle load, speed, and BLD are presented in 

Figure 4 (a, b, and c), respectively. 
 

(a)   (b)   

(c)   

Figure 4. The statistical specifications of the studied trains 

containing (a) Train axle load, (b) Speed, and (c) BLD 

2.3 Time series prediction method 

Predictive models are used to identify systems when 

dynamic models are created from physical systems. 

These dynamic models are important for analyzing, 

simulating, monitoring, and controlling various systems 

[17]. In this study, the time series forecasting model is 

applied to identify train passings with potential failures. 

2.4 Nonlinear Auto Regressive Neural 

network (NAR-NN) 

Dynamic Neural Networks (DNN), which include delay 

lines, are used for nonlinear filtering and prediction. 

These networks perform well in predicting time history. 

The view of the desired network is shown in Figure 5. 

 
Figure 5. Structure of a nonlinear autoregressive neural 

network 

Future values of time history y (t) are estimated from 

the previous values of the series. This form of nonlinear 

autoregressive prediction, or NAR, can be written as 

follows: 
𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑑)) (1) 

Based on equation 1, in NAR prediction, the future 

values y (t) of a time series are predicted only from d past 

values/or delays of that series. 
The trial and error method has been used to create 

the optimal neural network structure. According to many 

similar studies, a hidden layer for NN with a sufficient 

number of neurons provides a comprehensive estimator. 

Levenberg–Marquardt, a powerful learning algorithm, 

was used here. 

The Log-Sigmoid Transfer Function and Linear 

Transfer Function were selected for the hidden and output 

layers. The optimal network structure was selected by 

minimizing the error. The learning pause is set until the 

error reaches an acceptable level or the predetermined 

number of epochs.  

Potential inputs for autoregressive neural network 

models from one to three previous data (Y(t-1), Y(t-2), 

Y(t-3)) checked out. The selection of the optimal 

structure is based on the training process on the first 50% 

and the test error on the second 50% of one of the passing 

train BLD data (train No. 50). A commonly used train and 

test data ratio is 80:20. Other ratios such as 70:30, 60:40, 

and even 50:50 are also used in practice [18]. In this 

study, according to the number of over 400 data in a data 

series, 50% of the data were found to be sufficient for 

training. Similarly, by changing the characteristics of the 

neural network model (number of neurons and changing 

inputs), the model performance results were extracted, 

which are presented in Figure (6). Performances of 

models were evaluated by mean square error. According 

to Figure (6), the neural network with 5 neurons and 3 

previous inputs (three delays) is the superior option. 
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Figure 6. Effect of the number of neurons and delays on the 

performance of the NAR-NN model 

3. Results and discussion 

3.1 Control chart results 

Based on Shewhart's theory, all processes, although in a 

healthy state, are detected with a certain amount of 

change if measured with a sufficiently accurate 

instrument. When this variability is limited to random 

changes, the process is called static control. Also, if the 

variability of the process is affected by a specific factor 

such as incorrect machine settings, incorrect operation, 

insufficient raw materials, worn machine components, 

etc., in this case, the process will be out of static control. 

These determinants of change usually have a detrimental 

effect on product quality, so it is important to have 

systematic techniques for identifying these important 

deviations from statistical control as soon as they occur. 

Control charts are primarily used for this purpose. Control 

Charts can distinguish certain (determinable) factors from 

random changes. Therefore, this method can be used to 

troubleshoot to identify the cause of out-of-control 

conditions [19, 20].  

In this study, a control chart has been used for 

individual measurements. Each sample is considered an 

observation, and the moving range (MR) of two 

consecutive samples (sample size, n=2) is used to 

estimate process variability. MR, Up Control Limit 
(UCL), and Low control limit (LCL) is estimated from 

equation 2 using residuals (x) values of prediction 

models. 
𝑀𝑅_𝑖 = |𝑥_𝑖 − 𝑥_(𝑖 − 1) |  
𝑈𝐶𝐿 = 𝐷4𝑀𝑅̅̅̅̅̅  

𝐿𝐶𝐿 = 𝐷3𝑀𝑅̅̅̅̅̅  

(2) 

MR̅̅̅̅̅  is the average of MR, and the values of D3 and 

D4 per sample size are available in reference books. More 

detailed information about the statistical theory of 

equations can be found in the reference [20]. Given that, 

in this case, each data is correlated with the previous data, 

the presence of a trend in the MR chart does not 

necessarily indicate an error. 

Before calculating the control limits, it must first be 

determined from which train these limits will be 

calculated. The representative train should generate the 

lowest vibration levels to make it easier to identify 

irregularly passing trains. For this purpose, the maximum 

values of blade vibration caused by trains have been re-

evaluated. Train number 464, with the lowest maximum 

BLD, was selected as the base train to calculate the 

statistical control limits. Figure (7-a) shows the blade 

vibration caused by the passage of this train. The 

prediction results of the NN model and the residual values 

for train No. 464 are shown in Figure (7-b). 

(a)

 
(b)

 
Figure 7. (a) Forecast and (b) Residual Values - Train No. 464 

 Here is an example of the results for the range of 

residual values of trains group 6 in Figure 8. As shown in 

Figure 8, trains 680 and 646 have values beyond the 

statistical control limit in the second and first P. Bogie, 

respectively. 

 
Figure 8. Results of R-chart analysis of trains group 6 

Box plot analysis was performed on the OOC points 

to identify critical trains, and the results are shown 

separately by the location of the bogie pairs in Figure 9. 

The allowable number of OOCs is considered equal to the 

outlier limit in the total case of OOCs. According to the 

results, trains 646, 680, and 268 are the worst cases in the 

first, second, and fourth P. Bogie, respectively. The 

highest number of OOCs was identified on train number 

680. The cases of trains detected in the previous are 

summarized in Table (1). 

 
Figure 9. Box plot analysis of OOC cases for identification of 

worst train passages 
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Table 1. Trains detected by the proposed method   

Total 4th P. Bogies 2nd P. Bogies 1st P. Bogies 

680 268 680 646 
646 - 426 - 
268 - - - 

The detected trains as potentially defective train 

passages are validated by examining the values of the 

BLD sensor and other instrumented sensors in the 

turnout. 

3.2 Validation of train condition detection 

results 

The results have been validated by reviewing and 

comparing the outputs of two sensors, including BLD and 

switch rod force (SRF). 

a) BLD sensor 

For comparison, the displacement of the blade of train 

No. 50 as a normal passage is compared with the data 

obtained from the passage of train No. 680. As can be 

seen, the sensor recorded small values of about 0.1 to 0.2 

mm in the middle areas between the passages of the 

P.Bogies (figure 10a). However, the displacement of the 

blade due to the passage of train No. 680 shows the values 

of intense vibration after the passage of the first and 

fourth P.Bogies, which can reach up to 1 mm (figure 10b). 

 

(a)  

(b)  
Figure 10. Comparison of BLD measurement (a) Blade 

vibration due to the passage of train No. 50 as a normal 

passage (b) Blade vibration caused by passing train No. 680 

To compare all the trains, after synchronizing the 

blade displacement signals, values were plotted for all 

eight vibration zones caused by the train passing in Figure 

11, and maximum values were identified. These eight 

areas include the passage of 4 P.Bogies (1, 3, 5, 7 areas in 

Figure 11) and 4 middle zones (M-zones containing 2, 4, 

6, 8 in Figure 11) for a train-set with 5 self-traction 

wagons. 
 

 
Figure 11. Blade vibration due to the passage of all trains 

The eight areas mentioned are evaluated, and trains 

that match the trains detected by the statistical control 

method are shown in Figure 12 (a, b, and c) for the first, 

second, and fourth M-zones, respectively. Finally, train 

No. 680, 646, 426, and 628 were detected by this method. 

 

 
Figure 12. Blade vibration during the passage of all trains (a) 

First M-zone (b) Second M-zone (c) Fourth M-zone 

b) Switch rod force sensor 

Another signal that was examined to validate the 

detection results of irregularly passing trains is the switch 

rod force. To show the effect of passing each wheel on 

the position of the switch rod, trigger signals, and the 

switch rod force signals were aligned. In figure (13), the 

effect of each wheel's impact on the switch rod's force and 

fluctuations after passing the pair of bogies is well 

known. Figure (14) shows the effect of passing the bogies 

of all trains on the switch rod force. 

(a) 

(b) 

(c) 
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Figure 13. Aligned signals of trigger and force of the switch rod 

 
Figure 14. Effect of passing the bogies of all trains on the 

force of the switch rod 
Here, three statistical parameters have been used for 

more efficient comparison between trains, including 

standard deviation, mean and minimum to maximum. 

Figure 15 (a, b, and c) shows the statistical parameters for 

the passage of the trains' first, second and fourth 

P.Bogies, respectively. 

(a) 

 

 

(b) 

 

(c) 
 

 

Figure 15. SRF Statistical parameters for the passage of (a) 

First P.Bogie (b) Second P.Bogie (c) Fourth P.Bogie 

 
In summary, five trains detected by statistical 

sensors output investigation of the SRF. Table 2 shows 

results that confirm the control chart method by the 

statistical analysis of the sensors. The location of 

irregularities/defects is also included in the investigation. 

Therefore, trains, including 680, 646, 426, and 268, were 

detected by statistical evaluation of sensor values, which 

confirms the control charts method using the NN method. 

Table 2. Trains detected by two methods of control chart and 

sensors output investigation 

Location on the train 
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 4th 

P.Bogies 

2nd 

P.Bogies 

1st 

P.Bogies 

268 426-680 646-680 BLD 
NAR-
NN 

NA 

680-268 426-680 646-680 BLD NA Max 

268 680 680 SRF NA 
Min to 

Max 

Due to the results in all cases, the trains identified by 

the statistical control method are compatible with 

statistically examining the output of the sensors. 

4. Conclusion 

This study used switchblade lateral displacement data to 

monitor the vibration and wheel shocks caused by 

irregular and potentially defective train passing. Using 

the neural network method, the time history of blade 

displacements has been modeled. BLD time series data is 

modeled using a neural network model to extract DSF. 

Statistical method (Control Charts) has been used to 

identify the number and location of OOC cases. 

According to the results of this study, trains with 

destructive passage through the switch panel were 

identified. For the purpose of validation, the results were 

compared with two parallel methods, including statistical 

analysis of blade displacements and the switch rod force. 

In all cases, reviewing the results of the sensors confirmed 

the results obtained using the NN method. However, 

statistical maximum values alone cannot identify the 

desired trains. The main difference in blade vibration 

caused by the detected trains was the free vibration in the 

middle zone of the pair bogies crossing, which does not 

necessarily occur in trains with maximum blade 

vibration. 

Along with periodic visual inspections, real-time 

infrastructure condition detection can help introduce the 

structure's performance so that maintenance is more 

reliable. The importance of this study is in presenting a 

new solution for identifying irregularly passing trains in 

the unsupervised method in railway switches. Applying 

this method, based on switch structure monitoring data, 

can improve and optimize the operation of different 

rolling stocks and thus reduce vehicle and line 

maintenance costs. The results can also be used in 

preventive maintenance to prevent the spread of 

breakdowns and injuries.  
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