
IJRRS 
International Journal of Reliability, Risk 

and Safety: Theory and Application 
 

Online ISSN:  2676-3346 

 
 

Vol. 7/ Issue 1/ 2024/ pp. 19-29 

DOI: 10.22034/IJRRS.2024.7.1.3 

Received: 08 November 2023, Revised: 24 January 2024, Accepted: 04 February 2024 

Available online at: https://www.ijrrs.com  

 
                             Original Research Article 

 

 

How to cite this article:  
A. Kohansal, “m-Component Reliability Model in Bayesian Inference on Modified Weibull Distribution,” International Journal of Reliability, Risk and 

Safety: Theory and Application, vol. 7, no. 1, pp. 19-29, 2024, doi: 10.22034/IJRRS.2024.7.1.3 

 
COPYRIGHTS 

©2024 by the authors. Published by Aerospace Research Institute. This article is an open access article distributed under the terms 

and conditions of  the Creative Commons Attribution 4.0 International (CC BY 4.0) 

𝒎-Component Reliability Model in Bayesian 

Inference on Modified Weibull Distribution 

Akram Kohansal1*  

1-Department of Statistics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran 

* kohansal@sci.ikiu.ac.ir 

Abstract  

In order to produce more flexible models in the reliability theory field, the Bayesian inference of 𝑚-component reliability model with 

the non-identical-component strengths for modified Weibull distribution under the progressive censoring scheme is considered. One 

of the key benefits is the generality of this model, so it includes some cases studied previously, such as multi-component stress-strength 

model with one and two non-identical-component and stress-strength models. In addition, the study of progressive censored data 

discussed in this paper is critical in many practical situations. The problem is considered in three cases: when the two common 

parameters for strengths and stress variables are unknown, known, and general. In each case, the approximation methods, such as the 

MCMC and Lindley’s approximation, are used to consider the m-component stress-strength parameter. The Monte Carlo simulation 

study compares the performance of different methods—finally, a demonstration of how the proposed model may be utilized to analyse 

real data sets.  

Keywords: Multi-component stress-strength reliability; Lindley’s approximation; MCMC method; Progressive censoring scheme;  

Nomenclature & Units 

AL Average lengths 

CP Coverage percentages 

𝐹(𝑥) Cumulative distribution function (CDF) 

GPA Grade point average 

ℎ(𝑥) Hazard rate function (HRF) 

HPD Highest posterior density 

𝐿 Likelihood function 

MCMC Markov Chain Monte Carlo 

MLE Maximum likelihood estimation 

𝑅𝑠,𝑘 𝑚-component reliability parameter 

MCSS 𝑚-component stress-strength 

MSE Mean squared error 

MWD Modified Weibull distribution 

𝑅𝑠,𝑘 Multi-component reliability parameter 

𝑛 Number of observed samples 

𝑘  Number of strength variable components 

𝑠 
Number of strength variable components 

exceeding stress variable 

𝑁 Total number of sample 

𝛽 Modified Weibull parameter 

𝛾 Modified Weibull parameter 

𝜆 Modified Weibull parameter 

𝑓(𝑥) Probability density function (PDF) 

 

P-P plot Probability-probability plot 

{𝑋1:𝑛:𝑁 , ⋯ , 𝑋𝑛:𝑛:𝑁} Progressive censored sample 

{𝑅1, ⋯ , 𝑅𝑛} Progressive censoring scheme 

𝑅 = 𝑃(𝑋 > 𝑌) Reliability parameter 

𝑋 Strength variable 

𝑌 Stress variable 

WPP Weibull probability plot 

1. Introduction 

This paper studies the Bayesian inference of an MCSS 

parameter with non-identical-component strengths for the 

MWD under a progressive censoring scheme. This model 

is so general because some cases can be derived from 

there. The 𝑚-component reliability parameter can be 

converted to a multi-component with one and two non-

identical-component cases or the stress-strength 

parameter in special cases. Besides, the progressive 

censoring scheme can be converted to a type-II censoring 

scheme and complete data case. Also, the MWD can be 

converted to Weibull distribution, type-I extreme value 

distribution, Rayleigh distribution, and exponential 

distribution. Accordingly, about 24 cases are studied 

automatically. Several basic research studies have been 
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carried out in this field. Regarding the stress-strength 

model, the progressive censoring in exponential 

distribution is discussed in [1]. The model was also 

analyzed in several other studies, including [2] (Weibull 

distribution), [3] (power Lindley distribution), and [4] 

(MWD). Regarding the multi-component reliability 

model with one strength variable, the Kumaraswamy 

distribution in progressive censoring data is considered in 

[5]. The model was also analyzed in several other studies, 

including [6] (unit Gompertz distribution), [7] (a general 

class of inverted exponentiated distribution), [8] (Topp-

Leone distribution), [9] (Log-normal distribution), [10] 

(unit Burr III distribution), and [11] (power Lindley 

distribution). Each of the papers above has unique 

properties and compensates for the objections and 

problems in previous research. The 𝑚-component 

reliability model and progressive censoring data are 

considered in [12] in the modified Weibull extension 

distribution. The modified Weibull extension distribution 

can be converted to Chen and Weibull distributions, and 

the MWD can be converted to Weibull, type-I extreme 

value, Rayleigh, and exponential distributions. Thus, we 

can manoeuvre on the purpose and motivation of the 

present work. 

The two most common censoring schemes are Type-

I and Type-II censoring schemes, which can be mixed to 

form a hybrid censoring scheme. The progressive 

censoring scheme was introduced since none of the above 

schemes allowed the removal of active units during the 

experiment. The scheme is discussed in detail using an 

excellent monograph [13]. A nonparametric estimation of 

the family of risk measures based on the progressive 

censoring scheme has recently been considered in [14]. 

Also, the statistical inference in the Burr type XII lifetime 

model based on progressive randomly censored data is 

studied in [15]. The progressive censoring scheme can be 

described as follows: Consider an experiment in which 𝑁 

units are placed on a life test. During the test, 𝑅1 units are 

randomly removed from the test at the time of the first 

failure, 𝑅2 units are randomly removed from the test at 

the time of the second failure, and so on. 𝑅𝑛 units are 

randomly removed from the test at the time of the 𝑛-th 

failure. In this scheme, the progressive sample is 

{𝑋1:𝑛:𝑁 , ⋯ , 𝑋𝑛:𝑛:𝑁}, and the progressive censoring scheme 

is {𝑅1, ⋯ , 𝑅𝑛}, such that 𝑅1 + ⋯+ 𝑅𝑛 + 𝑛 = 𝑁. In what 

follows, the progressive censored sample is expressed as 

{𝑋1, ⋯ , 𝑋𝑛}. The joint PDF of failure times 𝑋1 < ⋯ < 𝑋𝑛 

with a continuous PDF 𝑓(⋅) and CDF 𝐹(⋅) is given by:   

𝑓(𝑥1, ⋯ , 𝑥𝑛) ∝ ∏ 𝑓𝑛
𝑖=1 (𝑥𝑖)(1 − 𝐹(𝑥𝑖))

𝑅𝑖 ,  (1) 

Fig. 1 illustrates a schematic representation of the 

progressive censoring scheme. 

 

Figure 1. Schematic representation of progressive scheme 

The statistical inference of the reliability parameter 

𝑅 = 𝑃(𝑋 > 𝑌) has attracted the attention of researchers 

in reliability theory. Here, variables 𝑋 and 𝑌 denote 

strength and stress, respectively. The 𝑚-component 

reliability model with 𝒌 = (𝑘1, 𝑘2, … , 𝑘𝑚) components 

have recently been developed in [16] as:  

𝑅𝒔,𝒌 =

∑ …
𝑘1
𝑝1=𝑠1

∑ (∏ (
𝑘𝑖

𝑝𝑖
)𝑚

𝑖=1 )
𝑘𝑚
𝑝𝑚=𝑠𝑚 ∫ ∏ (𝑚

𝑖=1
∞

−∞
(1 −

𝐹𝑖  (𝑦))𝑝𝑖(𝐹𝑖  (𝑦))𝑘𝑖−𝑝𝑖)𝑑𝐹𝑌(𝑦),  

(2) 

where 𝑘𝑖 components are of 𝑖, 𝑖 = 1,… ,𝑚 type, and 

𝐹𝑖(⋅) is the CDF of the strengths of the 𝑖-th type 

components. Under this condition, it is assumed that all 

components are exposed to a common stress 𝑌 with 𝐹𝑌(⋅) 

CDF. Therefore, the system is reliable only if at least 𝒔 =
(𝑠1, … , 𝑠𝑚) of 𝒌 strength components exceed the stress. 

This model has recently been considered for the modified 

Weibull extension distribution in progressive censored 

data in [12], which has also been discussed in this paper 

for the MWD. The model is regarded as general because 

some cases can be derived from there: 

 𝒌 = (𝑘1, 𝑘2, 0,⋯ ,0) ⇒ 𝑅𝒔,𝒌 with two non-

identical-component cases 

 𝒌 = (𝑘, 0,⋯ ,0) ⇒ 𝑅𝑠,𝑘 case 

 𝒌 = (1,0, … ,0) ⇒ 𝑅 = 𝑃(𝑋 < 𝑌) case 

A new modification of the Weibull distribution is 

proposed in [17] by multiplying the Weibull distribution. 

Some of its properties are studied using MLE and WPP 

in [17]. The PDF, CDF, and HRF of the MWD are as 

follows: 

𝑓(𝑥) = 𝛽(𝛾 + 𝜆 𝑥)𝑥𝛾−1𝑒𝜆𝑥𝑒−𝛽 𝑥𝛾𝑒𝜆𝑥
, 𝑥 > 0,  (3) 

𝐹(𝑥) = 1 − 𝑒−𝛽 𝑥𝛾 𝑒𝜆𝑥
, 𝑥 > 0,  (4) 

ℎ(𝑥) = 𝛽(𝛾 + 𝜆𝑥)𝑥𝛾−1𝑒𝜆𝑥 , 𝑥 > 0,  (5) 

where 𝛽 > 0, 𝛾, 𝜆 ≥ 0, and at most one of 𝛾, 𝜆 is 

equal to zero. 

 The Weibull distribution is a special case for 

𝜆 = 0. 

 The type-I extreme value distribution is a 

special case for 𝛾 = 0. 

 The Rayleigh distribution is a special case for 

𝜆 = 0 and 𝛾 = 2. 

 The exponential distribution is a particular 

case for 𝜆 = 0 and 𝛾 = 1. 

The PDF of the MWD can be decreasing, unimodal, 

or decreasing, then unimodal-shaped. The HRF, on the 

other hand, can be increasing or bathtub-shaped. The 

𝑋1 𝑋2 𝑋𝑛 

𝑅1  𝑅2  𝑅𝑛  
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MWD can analyze many real-world datasets thanks to its 

flexibility. For example, the reliability of a reverse 

osmosis system in water treatment using the MWD has 

recently been evaluated in [18]. Fig. 2 displays some 

possible shapes of the PDF and the HRF for the MWD. 

This paper obtained the Bayesian inference of 𝑅𝒔,𝒌 based 

on the progressive censored sample, where 𝑋 and 𝑌 are 

two independent random variables from the MWD.  

 

 
(a) 

 
(b) 

Figure 2. The shape of hazard rate (a) and probability density 

(b) functions of MWD. (blue: 𝛼 = 2, 𝛾 = 1.5, 𝜆 = 0.2, green: 

𝛼 = 0.25, 𝛾 = 0.5, 𝜆 = 2, violet: 𝛼 = 0.1, 𝛾 = 3, 𝜆 = 2, red: 𝛼 =
1, 𝛾 = 0.5, 𝜆 = 1.) 

The remainder of this paper is structured as follows: 

In Section 2, the Bayesian inference of 𝑅𝒔,𝒌 is obtained 

for the unknown common 𝛾 and 𝜆 parameters using the 

MCMC method, and the HPD credible intervals are 

constructed for 𝑅𝒔,𝒌. In Section 3, the Bayesian inference 

of 𝑅𝒔,𝒌 is obtained for the known common 𝛾 and 𝜆 

parameters using the MCMC and Lindley’s 

approximation methods, and the HPD credible intervals 

are constructed for 𝑅𝒔,𝒌. In Section 4, the Bayesian 

inference of 𝑅𝒔,𝒌 is obtained for the general case. Section 

5 provides simulation and data analysis. Finally, Section 

6 presents the conclusions.  

2. Inference on 𝑹𝒔,𝒌 with Unknown 

Common 𝜸 and 𝝀 Parameters 

If 𝑋1 ∼ 𝑀𝑊𝐷(𝛽1, 𝛾, 𝜆), …, 𝑋𝑚 ∼ 𝑀𝑊𝐷(𝛽𝑚, 𝛾, 𝜆), and 

𝑌 ∼ 𝑀𝑊𝐷(𝛽, 𝛾, 𝜆) are independent random variables, 

then the MCSS parameter 𝑅𝒔,𝒌 can be obtained from Eqs. 

(3) and (4) as: 

𝑅𝒔,𝒌 = ∑ …
𝑘1
𝑝1=𝑠1

∑ (
𝑘1

𝑝1
)

𝑘𝑚
𝑝𝑚=𝑠𝑚

…(
𝑘𝑚

𝑝𝑚
)∫ 𝛽

∞

0
(𝛾 + 𝜆𝑦) ×

𝑦𝛾−1𝑒𝜆𝑦𝑒−𝑦𝛾𝑒𝜆𝑦(∑ 𝛽𝑙𝑝𝑙
𝑚
𝑙=1 +𝛽)

× ∏ (1 − 𝑒−𝛽𝑙𝑦
𝛾𝑒𝜆𝑦

)
𝑘𝑙−𝑝𝑙𝑚

𝑙=1 𝑑𝑦  

By putting: 𝑡 = 𝑦𝛾𝑒𝜆𝑦, we have 

= ∑ …

𝑘1

𝑝1=𝑠1

∑ (
𝑘1

𝑝1
)

𝑘𝑚

𝑝𝑚=𝑠𝑚

…(
𝑘𝑚

𝑝𝑚
)∫ 𝛽

∞

0

𝑡∑ 𝛽𝑙𝑝𝑙
𝑚
𝑙=1 +𝛽

× ∏(1 − 𝑡𝛽𝑙)
𝑘𝑙−𝑝𝑙

𝑚

𝑙=1

𝑑𝑡

= ∑ …

𝑘1

𝑝1=𝑠1

∑ ∑ …

𝑘1−𝑝1

𝑞1=0

𝑘𝑚

𝑝𝑚=𝑠𝑚

∑ (
𝑘1

𝑝1

)

𝑘𝑚−𝑝𝑚

𝑞𝑚=0

… (
𝑘𝑚

𝑝𝑚

)

× (
𝑘1 − 𝑝1

𝑞1

)… (
𝑘𝑚 − 𝑝𝑚

𝑞𝑚

) (−1)∑ 𝑞𝑙
𝑚
𝑙=1 𝛽

× ∫ 𝑡∑ 𝛽𝑙
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)+𝛽−1

1

0

𝑑𝑡

= ∑ …

𝑘1

𝑝1=𝑠1

∑ ∑ …

𝑘1−𝑝1

𝑞1=0

𝑘𝑚

𝑝𝑚=𝑠𝑚

∑ (
𝑘1

𝑝1

)

𝑘𝑚−𝑝𝑚

𝑞𝑚=0

… (
𝑘𝑚

𝑝𝑚

) 

(
𝑘1 − 𝑝1

𝑞1

)…(
𝑘𝑚 − 𝑝𝑚

𝑞𝑚

)
(−1)∑ 𝑞𝑙

𝑚
𝑙=1 𝛽

∑ 𝛽𝑙
𝑚
𝑙=1 (𝑝𝑙 + 𝑞𝑙) + 𝛽

. 

(6) 

The likelihood function can be constructed based on 

the following samples of the stress and strength variables: 

𝑌 = (
𝑌1

⋮
𝑌𝑛

) , 𝑋𝑙 = (

𝑋11
(𝑙) ⋯ 𝑋1𝑘𝑙

(𝑙)

⋮ ⋱ ⋮

𝑋𝑛1
(𝑙) ⋯ 𝑋𝑛𝑘𝑙

(𝑙)
) , 𝑙 = 1,… ,𝑚,  

where {𝑌1, … , 𝑌𝑛} is a progressively censored sample 

from 𝑀𝑊𝐷(𝛽, 𝛾, 𝜆) with the {𝑛, 𝑆1, … , 𝑆𝑛} censoring 

scheme. Besides, {𝑋𝑖1
(𝑙), … , 𝑋𝑖𝑘1

(𝑙) },  𝑖 = 1,… , 𝑛,  𝑙 =

1,… ,𝑚 are 𝑙 progressive censored samples from 

𝑀𝑊𝐷(𝛽𝑙 , 𝛾, 𝜆) with schemes {𝑘𝑙 , 𝑅1
(𝑙), … , 𝑅𝑘𝑙

(𝑙)}. The 

likelihood function of the parameters can be obtained as 

follows: 

𝐿(𝛽1, … , 𝜆𝑚, 𝛽, 𝛾, 𝜆|data) ∝

∏ (𝑛
𝑖=1 ∏ (𝑚

𝑙=1 ∏ 𝑓𝑙
𝑘𝑙
𝑗𝑙=1 (𝑥𝑖𝑗𝑙

(𝑙)) × (1 −

𝐹𝑙 (𝑥𝑖𝑗𝑙

(𝑙)))
𝑅𝑗

(𝑙)

))𝑓(𝑦𝑖)(1 − 𝐹(𝑦𝑖))
𝑆𝑖 .  

(7) 

This section studies the Bayesian inference of 𝑅𝒔,𝒌 

under squared error loss functions where 𝛽𝑙 , … , 𝛽𝑚, 𝛽, 𝛾, 

and 𝜆 are independent random variables. Based on the 

observed censoring samples, the joint posterior density 

function is expressed as follows: 
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𝜋(𝛽1, … , 𝛽𝑚, 𝛽, 𝛾, 𝜆|data) ∝
𝐿(data|𝛽1, … , 𝜆𝑚, 𝛽, 𝛾, 𝜆) ××
(∏ 𝜋𝑚

𝑙=1 (𝛽𝑙))𝜋(𝛽)𝜋(𝛾)𝜋(𝜆),  
(8) 

where 

𝜋(𝛽𝑙) ∝ 𝛽𝑙
𝑎𝑙−1

𝑒−𝑏𝑙𝛽𝑙 ,   𝑎𝑙 , 𝑏𝑙 > 0,  

 𝑙 = 1, … ,𝑚, 
(9) 

𝜋(𝛽) ∝ 𝛽𝑎𝑚+1−1𝑒−𝑏𝑚+1𝛽 , 𝑎𝑚+1, 𝑏𝑚+1 > 0,  (10) 

𝜋(𝛾) ∝ 𝛾𝑐𝑚+1−1𝑒−𝑑𝑚+1𝛾,  𝑐𝑚+1, 𝑑𝑚+1 > 0,  (11) 

𝜋(𝜆) ∝ 𝜆𝑒𝑚+1−1𝑒−𝑓𝑚+1𝜆,   𝑒𝑚+1, 𝑓𝑚+1 > 0.  (12) 

From Eq. (8), since the Bayes estimate cannot be 

obtained in the closed form, it should be approximated 

using the MCMC method. Thus, the posterior PDFs of 

𝛽1, … , 𝛽𝑚, 𝛽, 𝛾, and 𝜆 can be derived from Eq. (8) as 

follows: 

𝛽𝑙|𝛾, 𝜆, data ∼ 𝛤(𝑛𝑘𝑙 + 𝑎𝑙 , 𝑏𝑙 +

∑ ∑ (𝑅𝑗
(𝑙) + 1)

𝑘𝑙
𝑗=1

𝑛
𝑖=1 × (𝑥𝑖𝑗

(𝑙))
𝛾
𝑒

𝜆𝑥𝑖𝑗
(𝑙)

),  𝑙 =

1,… ,𝑚,  

(13) 

 

𝛽|𝛾, 𝜆, data ∼ 𝛤(𝑛 + 𝑎𝑚+1, 𝑏𝑚+1 + ∑ (𝑆𝑖 +𝑛
𝑖=1

1) 𝑦𝑖
𝛾
𝑒𝜆𝑦𝑖),  

(14) 

 

𝜋(𝛾|𝛽1, … , 𝛽𝑚, 𝛽, 𝜆, data) ∝

∏ ∏ ∏ (
𝑘𝑙
𝑗=1

𝑚
𝑙=1

𝑛
𝑖=1 (𝑥𝑖𝑗

(𝑙))
𝛾
(𝛾 + 𝜆𝑥𝑖𝑗

(𝑙))) ×

∏ (𝑛
𝑖=1 𝑦𝑖

𝛾(𝛾 + 𝜆𝑦𝑖)) × 𝛾𝑐𝑚+1−1 ×

𝑒
−∑ ∑ ∑ 𝛽𝑙

𝑘𝑙
𝑗=1

𝑚
𝑙=1

𝑛
𝑖=1 (𝑅𝑗

(𝑙)
+1)(𝑥𝑖𝑗

(𝑙)
)
𝛾
𝑒
𝜆𝑥

𝑖𝑗
(𝑙)

×

𝑒−𝛽 ∑ (𝑆𝑖+1)𝑛
𝑖=1 𝑦𝑖

𝛾
𝑒𝜆𝑦𝑖

× 𝑒−𝑑𝑚+1𝛾,  

(15) 

 

𝜋(𝜆|𝛽1, … , 𝛽𝑚, 𝛽, 𝛾, data) ∝

∏ ∏ ∏ (𝛾 + 𝜆𝑥𝑖𝑗
(𝑙))

𝑘𝑙
𝑗=1

𝑚
𝑙=1

𝑛
𝑖=1 × ∏ (𝛾 +𝑛

𝑖=1

𝜆𝑦𝑖) × 𝑒
−∑ ∑ ∑ 𝛽𝑙

𝑘𝑙
𝑗=1

𝑚
𝑙=1

𝑛
𝑖=1 (𝑅𝑗

(𝑙)
+1)(𝑥𝑖𝑗

(𝑙)
)
𝛾
𝑒
𝜆𝑥

𝑖𝑗
(𝑙)

×

𝑒−𝛽 ∑ (𝑆𝑖+1)𝑛
𝑖=1 𝑦𝑖

𝛾
𝑒𝜆𝑦𝑖

×

𝜆𝑒𝑚+1−1𝑒
−𝜆(𝑓𝑚+1−∑ ∑ ∑ 𝑥𝑖𝑗

(𝑙)𝑘𝑙
𝑗=1

𝑚
𝑙=1

𝑛
𝑖=1 −∑ 𝑦𝑖

𝑛
𝑖=1 )

.  

(16) 

As shown, samples should be generated from the 

posterior PDFs of 𝛾 and 𝜆 using the Metropolis-Hastings 

method as they are unknown PDFs. For this purpose, the 

following Gibbs sampling algorithm is proposed: 

1. Start by selecting an initial value 

(𝛽1(0), … , 𝛽𝑚(0)  , 𝛽(0), 𝛾(0), 𝜆(0)). 

2. Set 𝑡 = 1. 

3. Generate value 𝛾(𝑡) from 

𝜋(𝛾|𝛽1(𝑡−1), … , 𝛽𝑚(𝑡−1), 𝛽(𝑡−1), 𝜆(𝑡−1),data) 

using the Metropolis-Hastings method, with 

𝑁(𝛾(𝑡−1), 1) as the proposal distribution. 

4. Generate value 𝜆(𝑡)  from 

𝜋(𝜆|𝛽1(𝑡−1), … , 𝛽𝑚(𝑡−1),  𝛽(𝑡−1), 𝛾(𝑡−1),data) 

using the Metropolis-Hastings method, with 

𝑁(𝜆(𝑡−1), 1) as the proposal distribution. 

5. m+4. Generate value 𝛽𝑙(𝑡)  from 𝛤(𝑛𝑘𝑙 +

𝑎𝑙 , 𝑏𝑙 + ∑ ∑ (
𝑘𝑙
𝑗=1

𝑛
𝑖=1 𝑅𝑗

(𝑙) +

1)(𝑥𝑖𝑗
(𝑙))

𝛾(𝑡−1)
𝑒

𝜆(𝑡−1)𝑥𝑖𝑗
(𝑙)

). 

m+5. Generate value 𝛽(𝑡) from 𝛤(𝑛 + 𝑎𝑚+1, 𝑏𝑚+1 +

∑ (𝑆𝑖 + 1)𝑛
𝑖=1 𝑦

𝑖

𝛾(𝑡−1)
𝑒𝜆(𝑡−1)𝑦𝑖). 

m+6. Evaluate 
𝑅(𝑡)𝒔,𝒌 =

∑ …
𝑘1
𝑝1=𝑠1

∑ ∑ …
𝑘1−𝑝1
𝑞1=0

𝑘𝑚
𝑝𝑚=𝑠𝑚

∑ (𝑘1
𝑝1

)
𝑘𝑚−𝑝𝑚
𝑞𝑚=0 …(𝑘𝑚

𝑝𝑚
)  

(17) 

× (𝑘1−𝑝1
𝑞1

)… (𝑘𝑚−𝑝𝑚
𝑞𝑚

) ×
(−1)∑ 𝑞𝑙

𝑚
𝑙=1 𝛽(𝑡)

∑ 𝛽𝑙(𝑡)
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)+𝛽(𝑡)

.  

m+7. Set 𝑡 = 𝑡 + 1. 

m+8. Repeat 𝑇 times, steps 3 - m+7. 

Therefore, the Bayes estimate of 𝑅𝒔,𝒌, under the 

squared error loss functions is: 

�̂�𝒔,𝒌
𝑀𝐵 =

1

𝑇
∑ 𝑅(𝑡)𝒔,𝒌

𝑇
𝑡=1 .  (18) 

Also, the 100(1 − 𝜂)% HPD credible interval of 

𝑅𝒔,𝒌 can be constructed using the method proposed in [19] 

as follows. Order 𝑅(1)𝒔,𝒌, … , 𝑅(𝑇)𝒔,𝒌 as 𝑅((1)𝒔,𝒌) < ⋯ <

𝑅((𝑇)𝒔,𝒌), and construct all 100(1 − 𝜂)% confidence 

intervals of 𝑅𝒔,𝒌 as (𝑅((1)𝒔,𝒌), 𝑅(([𝑇(1−𝜂)])𝒔,𝒌)), …, 

(𝑅(([𝑇𝜂])𝒔,𝒌), 𝑅(([𝑇])𝒔,𝒌)), where [𝑇] symbolizes the largest 

integer less than or equal to 𝑇. The HPD credible interval 

of 𝑅𝒔,𝒌 is the shortest-length confidence interval. 

3. Inference on 𝑹𝒔,𝒌 with Known 

Common 𝜸 and 𝝀 Parameters 

This section obtains Bayesian estimation and the 

corresponding credible interval of 𝑅𝒔,𝒌 under the squared 

error loss function. Assuming that 𝛽1, … , 𝛽𝑚 and 𝛽 follow 

the independent gamma distributions as prior 

distributions, similar to Section 2, the posterior PDFs of 

the parameters are obtained as follows: 

𝛽𝑙|𝛾, 𝜆,data ∼ 𝛤(𝑛𝑘𝑙 + 𝑎𝑙 , 𝑏𝑙 +

∑ ∑ (𝑅𝑗
(𝑙) + 1) × (𝑥𝑖𝑗

(𝑙))
𝛾
𝑒

𝜆𝑥𝑖𝑗
(𝑙)

),  𝑙 =
𝑘𝑙
𝑗=1

𝑛
𝑖=1

1,… ,𝑚,  

(19) 

𝛽|𝛾, 𝜆,data ∼ 𝛤(𝑛 + 𝑎𝑚+1, 𝑏𝑚+1 + ∑ (𝑆𝑖 +𝑛
𝑖=1

1) 𝑦𝑖
𝛾
𝑒𝜆𝑦𝑖),  (20) 

Therefore, the Gibbs sampling algorithm can be 

implemented as follows: 

1. Start by selecting an initial value 

(𝛽1(0), … , 𝛽𝑚(0), 𝛽(0)) 

2. Set 𝑡 = 1. 

3. 3 - m+2. Generate value 𝛽𝑙(𝑡)  from 𝛤(𝑛𝑘𝑙 +

𝑎𝑙 , 𝑏𝑙 + ∑ ∑ (𝑅𝑗
(𝑙) +

𝑘𝑙
𝑗=1

𝑛
𝑖=1

1) (𝑥𝑖𝑗
(𝑙))

𝛾(𝑡−1)
𝑒

𝜆(𝑡−1)𝑥𝑖𝑗
(𝑙)

). 

m+3. Generate value 𝛽(𝑡)  from 𝛤(𝑛 +

𝑎𝑚+1, 𝑏𝑚+1 + ∑ (𝑆𝑖 + 1)𝑛
𝑖=1 𝑦

𝑖

𝛾(𝑡−1)
𝑒𝜆(𝑡−1)𝑦𝑖). 
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m+4. Evaluate 
𝑅(𝑡)𝒔,𝒌 =

∑ …
𝑘1
𝑝1=𝑠1

∑ ∑ …
𝑘1−𝑝1
𝑞1=0

𝑘𝑚
𝑝𝑚=𝑠𝑚

∑ (𝑘1
𝑝1

)
𝑘𝑚−𝑝𝑚
𝑞𝑚=0 …(𝑘𝑚

𝑝𝑚
) ×

(𝑘1−𝑝1
𝑞1

)… (𝑘𝑚−𝑝𝑚
𝑞𝑚

) ×
(−1)∑ 𝑞𝑙

𝑚
𝑙=1 𝛽(𝑡)

∑ 𝛽𝑙(𝑡)
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)+𝛽(𝑡)

.  

(21) 

m+5. Set 𝑡 = 𝑡 + 1. 

m+6. Repeat 𝑇 times, steps 3 - m+5. 

Therefore, the Bayes estimate of 𝑅𝒔,𝒌 under the 

squared error loss functions is: 

�̂�𝒔,𝒌
𝑀𝐵 =

1

𝑇
∑ 𝑅(𝑡)𝒔,𝒌

𝑇
𝑡=1 .  (22) 

Also, the 100(1 − 𝜂)% HPD credible interval of 

𝑅𝒔,𝒌 can be constructed using the method introduced in 

[19]. 

Lindley’s approximation [20] is one of the most 

important numerical methods to obtain the approximate 

Bayes estimation of a parameter. Bayesian estimation of 

𝑈(𝛩) can be derived under the squared error loss 

functions as: 

𝔼(𝑢(𝜃)|data) =
∫ 𝑢(𝜃)𝑒𝑄(𝜃)𝑑𝜃

∫ 𝑒𝑄(𝜃)𝑑𝜃
,  (23) 

where 𝑄(𝜃) = 𝜌(𝜃) + ℓ(𝜃), 𝜌(𝜃) and ℓ(𝜃) are the 

logarithms of the prior density 𝜃 and log-likelihood 

functions, respectively. Eq. (23) is approximated in [20] 

as follows:  

𝔼(𝑢(𝜃)|data) = 𝑢 +
1

2
∑ ∑ (𝑢𝑖,𝑗 +𝑗𝑖

2𝑢𝑖𝜌𝑗) 𝜎𝑖,𝑗 +
1

2
∑ ∑ ∑ ∑𝑝𝑘𝑗𝑖

ℓ𝑖,𝑗,𝑘 𝜎𝑖,𝑗𝜎𝑘,𝑝𝑢𝑝|𝜃=�̂� ,  
(24) 

where 𝜃 = (𝜃1, … , 𝜃𝑚), 𝑖, 𝑗, 𝑘, 𝑝 = 1,… ,𝑚, �̂� is the 

MLE of 𝜃, 𝑢 = 𝑢(𝜃), 𝑢𝑖 = ∂𝑢/ ∂𝜃𝑖, 𝑢𝑖,𝑗 = ∂2𝑢/

(∂𝜃𝑖 ∂𝜃𝑗), ℓ𝑖,𝑗,𝑘 = ∂3ℓ/(∂𝜃𝑖 ∂𝜃𝑗 ∂𝜃𝑘), 𝜌𝑗 = ∂𝜌/ ∂𝜃𝑗, and 

𝜎𝑖,𝑗 = (𝑖, 𝑗)th element in the inverse of the matrix [−ℓ𝑖,𝑗], 

all evaluated at the MLE of parameters. By rewriting Eq. 

(24) for 𝑚 + 1 parameters, we have: 

�̂�𝐿𝑖𝑛 = 𝑢 + (∑ 𝑢𝑖
𝑚+1
𝑖=1 𝑑𝑖 + 𝑑𝑚+2 + 𝑑𝑚+3) +

1

2
∑ 𝐴𝑖

𝑚+1
𝑖=1 (∑ 𝑢𝑗

𝑚+1
𝑗=1 𝜎𝑖,𝑗),  

(25) 

where 

𝑑𝑖 = ∑ 𝜌
𝑗

𝑚+1
𝑗=1 𝜎𝑖,𝑗,  𝑖 = 1, ⋯ , 𝑚 + 1,  (26) 

𝑑𝑚+2 = ∑ ∑ 𝑢𝑖,𝑗𝜎𝑖,𝑗 , 𝑖 < 𝑗,𝑚+1
𝑗=1

𝑚+1
𝑖=1     (27) 

𝑑𝑚+3 =
1

2
∑ 𝑢𝑖,𝑖

𝑚+1
𝑖=1 𝜎𝑖,𝑖 ,  (28) 

𝐴𝑖 = ∑ ∑ ℓ𝑗,𝑘,𝑖 × {
𝜎𝑗,𝑘 𝑗 = 𝑘,

2𝜎𝑗,𝑘 𝑗 < 𝑘,
𝑚+1
𝑘=1

𝑚+1
𝑗=1𝑗≤𝑘

  (29) 

For (𝜃1, ⋯ , 𝜃𝑚, 𝜃𝑚+1) ≡ (𝛽1, ⋯ , 𝛽𝑚, 𝛽) and 𝑢 ≡
 𝑢(𝛽1, ⋯ , 𝛽𝑚, 𝛽) = 𝑅𝒔,𝒌, we obtain: 

𝜌𝑙 =
𝑎𝑙−1

𝛽𝑙
− 𝑏𝑙 ,  𝑙 = 1,⋯ ,𝑚,  (30) 

𝜌𝑚+1 =
𝑎𝑚+1−1

𝛽
− 𝑏𝑚+1,  (31) 

ℓ𝑙,𝑙 = −
𝑛𝑘𝑙

𝛽𝑙
2 ,  𝑙 = 1,⋯ ,𝑚,   (32) 

ℓ𝑚+1,𝑚+1 = −
𝑛

𝛽2,  (33) 

ℓ𝑙,𝑘 = 0,  𝑙 = 1,⋯ ,𝑚 + 1, 𝑙 ≠ 𝑘.   
   

  (34) 

Using ℓ𝑖,𝑗 , 𝑖, 𝑗 = 1,⋯ ,𝑚 + 1, we can obtain 

𝜎𝑖,𝑗 , 𝑖, 𝑗 = 1,⋯ ,𝑚 + 1 and 

ℓ𝑙,𝑙,𝑙 =
2𝑛𝑘𝑙

𝛽𝑙
3 ,  𝑙 = 1,⋯ ,𝑚,  (35) 

ℓ𝑚+1,𝑚+1,𝑚+1 =
2𝑛

𝛽3,  (36) 

and other ℓ𝑖,𝑗,𝑘 = 0. Furthermore, 

𝑢𝑙 =

 ∑ ⋯
𝑘1
𝑝1=𝑠1

∑ ∑ ⋯
𝑘1−𝑝1
𝑞1=0

𝑘𝑚
𝑝𝑚=𝑠𝑚

∑ (𝑘1
𝑝1

)
𝑘𝑚−𝑝𝑚
𝑞𝑚=0 …(𝑘𝑚

𝑝𝑚
) ×

(𝑘1−𝑝1
𝑞1

)… (𝑘𝑚−𝑝𝑚
𝑞𝑚

) (−1)∑ 𝑞𝑙
𝑚
𝑙=1 ×

𝛽(𝑝𝑙+𝑞𝑙)

(∑ 𝛽𝑙
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)+𝛽)2

,  𝑙, 𝑘 = 1,⋯ ,𝑚,  

 

(37) 

𝑢𝑚+1 =

∑ ⋯
𝑘1
𝑝1=𝑠1

∑ ∑ ⋯
𝑘1−𝑝1
𝑞1=0

𝑘𝑚
𝑝𝑚=𝑠𝑚

∑ (𝑘1
𝑝1

)
𝑘𝑚−𝑝𝑚
𝑞𝑚=0 …(𝑘𝑚

𝑝𝑚
) ×

(𝑘1−𝑝1
𝑞1

)… (𝑘𝑚−𝑝𝑚
𝑞𝑚

) (−1)∑ 𝑞𝑙
𝑚
𝑙=1 ×

∑ 𝛽𝑙
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)

(∑ 𝛽𝑙
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)+𝛽)2

,  

 

(38) 

𝑢𝑙,𝑘 =

∑ ⋯
𝑘1
𝑝1=𝑠1

∑ ∑ ⋯
𝑘1−𝑝1
𝑞1=0

𝑘𝑚
𝑝𝑚=𝑠𝑚

∑ (𝑘1
𝑝1

)
𝑘𝑚−𝑝𝑚
𝑞𝑚=0 …(𝑘𝑚

𝑝𝑚
) ×

(𝑘1−𝑝1
𝑞1

)… (𝑘𝑚−𝑝𝑚
𝑞𝑚

) (−1)∑ 𝑞𝑙
𝑚
𝑙=1 ×

2𝛽(𝑝𝑙+𝑞𝑙)(𝑝𝑘+𝑞𝑘)

(∑ 𝛽𝑙
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)+𝛽)3

,   

𝑙, 𝑘 = 1,⋯ ,𝑚,  
 

(39) 

𝑢𝑚+1,𝑚+1 =

∑ ⋯
𝑘1
𝑝1=𝑠1

∑ ∑ ⋯
𝑘1−𝑝1
𝑞1=0

𝑘𝑚
𝑝𝑚=𝑠𝑚

∑ (𝑘1
𝑝1

)
𝑘𝑚−𝑝𝑚
𝑞𝑚=0 ×

…(𝑘𝑚
𝑝𝑚

) (𝑘1−𝑝1
𝑞1

) … (𝑘𝑚−𝑝𝑚
𝑞𝑚

) (−1)∑ 𝑞𝑙
𝑚
𝑙=1 +1 ×

2∑ 𝛽𝑙
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)

(∑ 𝛽𝑙
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)+𝛽)3

,  

 

(40) 

𝑢𝑙,𝑚+1 =

∑ ⋯
𝑘1
𝑝1=𝑠1

∑ ∑ ⋯
𝑘1−𝑝1
𝑞1=0

𝑘𝑚
𝑝𝑚=𝑠𝑚

∑ (𝑘1
𝑝1

)
𝑘𝑚−𝑝𝑚
𝑞𝑚=0 …(𝑘𝑚

𝑝𝑚
) ×

(𝑘1−𝑝1
𝑞1

)… (𝑘𝑚−𝑝𝑚
𝑞𝑚

) (−1)∑ 𝑞𝑙
𝑚
𝑙=1 +1 ×

(𝑝𝑙+𝑞𝑙)(∑ 𝛽𝑙
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)−𝛽)

(∑ 𝛽𝑙
𝑚
𝑙=1 (𝑝𝑙+𝑞𝑙)+𝛽)3

,   

𝑙 = 1,⋯ ,𝑚. 

(41) 

After obtaining the above values from Eq. (25), �̂�𝒔,𝒌
𝐿𝑖𝑛, 

Lindley’s estimation of 𝑅𝒔,𝒌 can be obtained. All 

parameters should be computed at (�̂�1, ⋯ , �̂�𝑚, �̂�), MLEs 

of (𝛽1, ⋯ , 𝛽𝑚, 𝛽). 

4. Inference on 𝑹𝒔,𝒌 in the General 

Case 

If 𝑋1 ∼ 𝑀𝑊𝐷(𝛽1, 𝛾1, 𝜆1), …, 𝑋𝑚 ∼ 𝑀𝑊𝐷(𝛽𝑚 , 𝛾𝑚, 𝜆𝑚) 

and 𝑌 ∼ 𝑀𝑊𝐷(𝛽, 𝛾, 𝜆) are independent random 

variables, then the MCSS parameter, 𝑅𝒔,𝒌, can be 

obtained from Eqs. (3) and (4) as: 
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𝑅𝒔,𝒌 = ∑ …
𝑘1
𝑝1=𝑠1

∑ (
𝑘1

𝑝1
)

𝑘𝑚
𝑝𝑚=𝑠𝑚

…(
𝑘𝑚

𝑝𝑚
) ×

∫ 𝛽(𝛾 +
∞

0

𝜆𝑦) 𝑦𝛾−1𝑒𝜆𝑦𝑒−𝛽𝑦𝛾𝑒𝜆𝑦
𝑒−(∑ 𝛽𝑙𝑝𝑙𝑦

𝛾𝑙𝑒𝜆𝑙𝑦𝑚
𝑙=1 ) ×

∏ (1 − 𝑒−𝛽𝑙𝑦
𝛾𝑙𝑒𝜆𝑙𝑦)

𝑘𝑙−𝑝𝑙𝑚
𝑙=1 𝑑𝑦.  

(42) 

In this section, the Bayesian inference of 𝑅𝒔,𝒌 is 

studied under the squared error loss functions, where 

𝛽1, … , 𝛽𝑚, 𝛽, 𝛾1, … , 𝛾𝑚, 𝛾, 𝜆1, … , 𝜆𝑚, and 𝜆 are 

independent gamma random variables: 

𝜋(𝛽𝑙) ∝ 𝛽𝑙
𝑎𝑙−1

𝑒−𝑏𝑙𝛽𝑙 , 𝑎𝑙 , 𝑏𝑙 > 0,   

𝑙 = 1,… ,𝑚,    
(43) 

𝜋(𝛽) ∝ 𝛽𝑎𝑚+1−1𝑒−𝑏𝑚+1𝛽 , 𝑎𝑚+1, 𝑏𝑚+1 > 0,  
𝑙 = 1,… ,𝑚,  

(44) 

𝜋(𝛾𝑙) ∝ 𝛾𝑐𝑙−1𝑒−𝑑𝑙𝛾 ,  𝑐𝑙 , 𝑑𝑙 > 0,  
 𝑙 = 1, … ,𝑚,   

(45) 

𝜋(𝛾) ∝ 𝛾𝑐𝑚+1−1𝑒−𝑑𝑚+1𝛾,  𝑐𝑚+1, 𝑑𝑚+1 > 0,  (46) 

𝜋(𝜆𝑙) ∝ 𝜆𝑙
𝑒𝑙−1

𝑒−𝑓𝑙𝜆𝑙,  𝑒𝑙 , 𝑓𝑙 > 0,  

 𝑙 = 1, … ,𝑚,   
(47) 

𝜋(𝜆) ∝ 𝜆𝑒𝑚+1−1𝑒−𝑓𝑚+1𝜆, 𝑒𝑚+1, 𝑓𝑚+1 > 0.  (48) 

Similar to Section 2, since the Bayes estimate of 𝑅𝒔,𝒌 

cannot be evaluated in the closed form, it should be 

approximated using the MCMC method. From the joint 

posterior density function, the posterior PDFs of 

𝛽1, … , 𝛽𝑚, 𝛽, 𝛾1, … , 𝛾𝑚, 𝛾, 𝜆1, … , 𝜆𝑚 and 𝜆 can be derived 

as follows:  

𝛽𝑙|𝛾, 𝜆,data ∼ 𝛤(𝑛𝑘𝑙 + 𝑎𝑙 , 𝑏𝑙 + ∑ ∑ (𝑅𝑗
(𝑙)

+
𝑘𝑙
𝑗=1

𝑛
𝑖=1

1) × (𝑥𝑖𝑗
(𝑙)

)
𝛾𝑙

𝑒𝜆𝑙𝑥𝑖𝑗
(𝑙)

),  𝑙 = 1,… ,𝑚,  

 

(49) 

𝛽|𝛾, 𝜆,data ∼ 𝛤(𝑛 + 𝑎𝑚+1, 𝑏𝑚+1 + ∑ (𝑆𝑖 +𝑛
𝑖=1

1) 𝑦𝑖
𝛾
𝑒𝜆𝑦𝑖),  

 

(50) 

𝜋(𝛾𝑙|𝛽𝑙 , 𝜆𝑙 ,data)

∝ ∏∏(

𝑘𝑙

𝑗=1

𝑛

𝑖=1

(𝑥𝑖𝑗
(𝑙)

)
𝛾𝑙

(𝛾𝑙 + 𝜆𝑙𝑥𝑖𝑗
(𝑙)

))

× 𝛾𝑙
𝑐𝑙−1

𝑒−𝑑𝑙𝛾𝑙 × 𝑒
− ∑ ∑ 𝛽𝑙

𝑘𝑙
𝑗=1

𝑛
𝑖=1 (𝑅𝑗

(𝑙)
+1)(𝑥𝑖𝑗

(𝑙)
)
𝛾𝑙

𝑒
𝜆𝑙𝑥𝑖𝑗

(𝑙)

, 

 𝑙 = 1,… ,𝑚, 
 

(51) 

𝜋(𝛾|𝛽, 𝜆,data) ∝ ∏ (𝑛
𝑖=1 𝑦𝑖

𝛾(𝛾 + 𝜆𝑦𝑖)) ×

𝑒−𝛽 ∑ (𝑆𝑖+1)𝑛
𝑖=1 𝑦𝑖

𝛾
𝑒𝜆𝑦𝑖𝛾𝑐𝑚+1−1𝑒−𝑑𝑚+1𝛾 ,  

 

(52) 

𝜋(𝜆𝑙|𝛽𝑙 , 𝛾𝑙 ,data) ∝ ∏ ∏ (𝛾𝑙 + 𝜆𝑙𝑥𝑖𝑗
(𝑙)

)
𝑘𝑙
𝑗=1

𝑛
𝑖=1 ×

𝑒
− ∑ ∑ 𝛽𝑙

𝑘𝑙
𝑗=1

𝑛
𝑖=1 (𝑅𝑗

(𝑙)
+1)(𝑥𝑖𝑗

(𝑙)
)
𝛾𝑙

𝑒
𝜆𝑙𝑥𝑖𝑗

(𝑙)

𝜆𝑒𝑙−1

×

𝑒
−𝜆𝑙(𝑓𝑙−∑ ∑ 𝑥𝑖𝑗

(𝑙)𝑘𝑙
𝑗=1

𝑛
𝑖=1 )

,  𝑙 = 1,… ,𝑚,  
 

(53) 

𝜋(𝜆|𝛽, 𝛾,data) ∝ ∏ (𝛾 +𝑛
𝑖=1

𝜆𝑦𝑖) 𝑒−𝛽 ∑ (𝑆𝑖+1)𝑛
𝑖=1 𝑦𝑖

𝛾
𝑒𝜆𝑦𝑖 × 𝜆𝑒𝑚+1−1𝑒−𝜆(𝑓𝑚+1−∑ 𝑦𝑖

𝑛
𝑖=1 ),  

(54) 

As shown, samples should be generated from the 

posterior PDFs of 𝛾𝑙 and 𝜆𝑙, 𝑙 = 1,… ,𝑚, 𝛾, and 𝜆 using 

the Metropolis-Hastings method as they are unknown 

PDFs. To this aim, the following Gibbs sampling 

algorithm is proposed: 

1. Start by selecting an initial value 

( (𝛽1(0), … , 𝛽𝑚(0) 

, 𝛽(0), 𝛾1(0), … , 𝛾𝑚(0), 𝛾(0), 𝜆1(0), … , 𝜆𝑚(0), 𝜆(0)). 

2. Set 𝑡 = 1. 

3. m+2. Generate value 𝛾𝑙(𝑡)  from  𝜋(𝛾𝑙|𝛽𝑙(𝑡−1), 

𝜆𝑙(𝑡−1),data)  using the Metropolis-Hastings 

method, with 𝑁(𝛾𝑙(𝑡−1), 1)  as the proposal 

distribution. 

m+3. Generate value 𝛾(𝑡) from 𝜋(𝛾|𝛽(𝑡−1), 

𝜆(𝑡−1),data) using the Metropolis-Hastings method, with 

𝑁(𝛾(𝑡−1), 1) as the proposal distribution. 

m+4 - 2m+3. Generate value 𝜆𝑙(𝑡) from 𝜋(𝜆𝑙|𝛽𝑙(𝑡−1), 

𝛾𝑙(𝑡−1),data) using the Metropolis-Hastings method, with 

𝑁(𝜆𝑙(𝑡−1), 1) as the proposal distribution. 

2m+4. Generate value 𝜆(𝑡) from 𝜋(𝜆|𝛽(𝑡−1), 

𝛾(𝑡−1),data) using the Metropolis-Hastings method, with 

𝑁(𝜆(𝑡−1), 1) as the proposal distribution. 

2m+5 - 3m+4. Generate value 𝛽𝑙(𝑡) from 𝛤(𝑛𝑘𝑙 +

𝑎𝑙 , 𝑏𝑙 + ∑ ∑ (𝑅𝑗
(𝑙) + 1)

𝑘𝑙
𝑗=1

𝑛
𝑖=1 (𝑥𝑖𝑗

(𝑙))
𝛾𝑙(𝑡−1)

𝑒
𝜆𝑙(𝑡−1)𝑥𝑖𝑗

(𝑙)

). 

3m+5. Generate value 𝛽(𝑡) from 𝛤(𝑛 +

𝑎𝑚+1, 𝑏𝑚+1 + ∑ (𝑆𝑖 + 1)𝑛
𝑖=1 𝑦

𝑖

𝛾(𝑡−1)
𝑒𝜆(𝑡−1)𝑦𝑖). 

3m+6. Evaluate 

𝑅(𝑡)𝒔,𝒌

= ∑ …

𝑘1

𝑝1=𝑠1

∑ (
𝑘1

𝑝1
)

𝑘𝑚

𝑝𝑚=𝑠𝑚

…(
𝑘𝑚

𝑝𝑚
)

× ∫ 𝛽(𝑡)

∞

0

(𝛾(𝑡)

+ 𝜆(𝑡)𝑦)𝑦𝛾(𝑡)−1𝑒𝜆(𝑡)𝑦𝑒−𝛽(𝑡)𝑦
𝛾(𝑡)𝑒

𝜆(𝑡)𝑦

× 𝑒−(∑ 𝛽𝑙(𝑡)𝑝𝑙(𝑡)𝑦
𝛾𝑙(𝑡)𝑒

𝜆𝑙(𝑡)𝑦𝑚
𝑙=1 )

× ∏ (1 − 𝑒−𝛽𝑙(𝑡)𝑦
𝛾𝑙(𝑡)𝑒

𝜆𝑙(𝑡)𝑦

)
𝑘𝑙−𝑝𝑙

𝑚

𝑙=1

𝑑𝑦. 

(55) 

3m+7. Set 𝑡 = 𝑡 + 1. 

3m+8. Repeat 𝑇 times, steps 3 - 3m+7. 

Therefore, the Bayes estimate of 𝑅𝒔,𝒌 under the 

squared error loss functions is: 

�̂�𝒔,𝒌
𝑀𝐵 =

1

𝑇
∑ 𝑅(𝑡)𝒔,𝒌

𝑇
𝑡=1 .  (56) 

Also, the 100(1 − 𝜂)% HPD credible interval of 

𝑅𝒔,𝒌 can be constructed using the method proposed in 

[19]. 
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5. Simulation Study and Data Analysis 

5.1 Numerical Experiment and Discussion 

This section compares different estimates using the 
Monte Carlo simulation. Point estimates are also 
compared with MSEs, and interval estimates are 
compared with AL and CP. Simulation studies were 
implemented using different censoring schemes, 
parameter values, and hyperparameters. The results are 
obtained based on 2000 repetitions, and the number of 
repetitions in the Gibbs sampling algorithm is 𝑇 = 3000. 
Also, the significance level is set to 0.95 to obtain the 
HPD credible intervals. It is supposed that the simulated 
system has two strength components. Table 1 lists the 
censoring schemes used to get the results. 

Three cases are considered. First, assuming the 
common parameters 𝛾  and 𝜆  are unknown, 
(𝛽1, 𝛽2, 𝛽3, 𝛽, 𝛾, 𝜆) = (0.9,1.5,1,1.5,3)  is used to obtain 
the simulation results. Also, two priors, namely Prior 1: 
𝑎𝑙 = 𝑏𝑙 = 𝑐4 = 𝑑4 = 𝑒4 = 𝑓4 = 0, 𝑙 = 1, …,4 and Prior 
2: 𝑎𝑙 = 𝑐4 = 𝑒4 = 0.3,  𝑏𝑙 = 𝑑4 = 𝑓4 = 0.5,  𝑙 = 1, …,4 

are employed to compare the Bayes estimates of 𝑅𝒔,𝒌 

from Eq. (18). The simulation results are provided in 
Table 2. Second, assuming the common parameters 𝛾 and 
𝜆 are known, (𝛽1, 𝛽2, 𝛽3, 𝛽, 𝛾, 𝜆) = (1.5,2,1,1,2) is used 
to obtain the simulation results. Also, two priors, namely 
Prior 3: 𝑎𝑙 = 𝑏𝑙 = 𝑐4 = 𝑑4 = 𝑒4 = 𝑓4 = 0,  𝑙 = 1,… ,4 
and Prior 4: 𝑎𝑙 = 𝑐4 = 𝑒4 = 0.4,  𝑏𝑙 = 𝑑4 = 𝑓4 =
0.8,  𝑙 = 1 , …, 4  are employed to compare the Bayes 

estimates of 𝑅𝒔,𝒌 . In this case, simulation results are 

obtained using Eqs. (22) and (25), which are provided in 
Table 3.  

Table 1. Different censoring schemes 

(𝑘𝑙 , 𝐾𝑙)  C.S (𝑛, 𝑁)  C.S 

 𝑅1 (0,0,0,0,5)  𝑆1 (0,0,0,0,5) 

(5,10) 𝑅2 (5,0,0,0) (5,10) 𝑆2 (5,0,0,0) 

 𝑅3 (1,1,1,1,1)  𝑆3 (1,1,1,1,1) 

 𝑅4 (0∗9, 10)  𝑆4 (0∗9, 10) 

(10,20) 𝑅5 (10,0∗9) (10,20) 𝑆5 (10,0∗9) 

 𝑅6 (1∗10)  𝑆6 (1∗10) 

 

Table 2. Simulation results when common parameters γ and λ are unknown 

  MCMC 

(𝑘1, 𝑘2, 𝑘3, 𝑛, 𝑠1, 𝑠2, 𝑠3) C.S Prior 1 Prior 2 

  MSE AL CP MSE AL CP 

 (𝑅1, 𝑅1, 𝑅1, 𝑆1) 0.0521 0.4925 0.937 0.0435 0.4625 0.942 

(5,5,5,5,2,2,2) (𝑅2, 𝑅2, 𝑅2, 𝑆2) 0.0513 0.4815 0.938 0.0430 0.4651 0.943 

 (𝑅3, 𝑅3, 𝑅3, 𝑆3) 0.0510 0.4971 0.939 0.0428 0.4681 0.944 

 (𝑅1, 𝑅1, 𝑅1, 𝑆4) 0.0415 0.4025 0.943 0.0389 0.3625 0.947 

(5,5,5,10,2,2,2) (𝑅2, 𝑅2, 𝑅2, 𝑆5) 0.0410 0.4053 0.944 0.0380 0.3641 0.948 

 (𝑅3, 𝑅3, 𝑅3, 𝑆6) 0.0423 0.4081 0.943 0.0375 0.3610 0.946 

 (𝑅4, 𝑅4, 𝑅4, 𝑆1) 0.0410 0.4112 0.944 0.0374 0.3636 0.948 

(10,10,10,5,2,2,2) (𝑅5, 𝑅5, 𝑅5, 𝑆2) 0.0408 0.4151 0.942 0.0370 0.3719 0.946 

 (𝑅6, 𝑅6, 𝑅6, 𝑆3) 0.0415 0.4167 0.943 0.0367 0.3610 0.947 

 (𝑅4, 𝑅4, 𝑅4, 𝑆4) 0.0354 0.3562 0.948 0.0305 0.3025 0.952 

(10,10,10,10,2,2,2) (𝑅5, 𝑅5, 𝑅5, 𝑆5) 0.0360 0.3526 0.949 0.0309 0.3074 0.951 

 (𝑅6, 𝑅6, 𝑅6, 𝑆6) 0.0349 0.3574 0.948 0.0307 0.3030 0.950 

 (𝑅1, 𝑅1, 𝑅1, 𝑆1) 0.0510 0.5017 0.939 0.0455 0.4671 0.942 

(5,5,5,5,4,4,4) (𝑅2, 𝑅2, 𝑅2, 𝑆2) 0.0515 0.5061 0.938 0.0448 0.4788 0.940 

 (𝑅3, 𝑅3, 𝑅3, 𝑆3) 0.0518 0.5032 0.938 0.0469 0.4623 0.943 

 (𝑅1, 𝑅1, 𝑅1, 𝑆4) 0.0423 0.4152 0.944 0.0401 0.3777 0.949 

(5,5,5,10,4,4,4) (𝑅2, 𝑅2, 𝑅2, 𝑆5) 0.0420 0.4185 0.942 0.0399 0.3721 0.947 

 (𝑅3, 𝑅3, 𝑅3, 𝑆6) 0.0410 0.4116 0.944 0.0409 0.3613 0.946 

 (𝑅4, 𝑅4, 𝑅4, 𝑆1) 0.0415 0.4184 0.943 0.0389 0.3514 0.946 

(10,10,10,5, 4,4,4) (𝑅5, 𝑅5, 𝑅5, 𝑆2) 0.0413 0.4167 0.944 0.0380 0.3520 0.947 

 (𝑅6, 𝑅6, 𝑅6, 𝑆3) 0.0419 0.4225 0.944 0.0371 0.3535 0.948 

 (𝑅4, 𝑅4, 𝑅4, 𝑆4) 0.0348 0.3471 0.948 0.0300 0.3125 0.950 

(10,10,10,10, 4,4,4) (𝑅5, 𝑅5, 𝑅5, 𝑆5) 0.0340 0.3625 0.949 0.0308 0.3085 0.951 

 (𝑅6, 𝑅6, 𝑅6, 𝑆6) 0.0352 0.3495 0.948 0.0310 0.3040 0.952 
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Table 3. Simulation results when common parameters 𝛾 and 𝜆 are known 

  MCMC Lindley 

(𝑘1, 𝑘2, 𝑘3, 𝑛, 𝑠1, 𝑠2, 𝑠3) C.S Prior 3 Prior 4 Prior 3 Prior 4 

  MSE AL CP MSE AL CP MSE MSE 

 (𝑅1, 𝑅1, 𝑅1, 𝑆1) 0.0452 0.4725 0.937 0.0354 0.4570 0.942 0.0485 0.0436 

(5,5,5,5,2,2,2) (𝑅2, 𝑅2, 𝑅2, 𝑆2) 0.0446 0.4731 0.938 0.0345 0.4532 0.942 0.0480 0.0439 

 (𝑅3, 𝑅3, 𝑅3, 𝑆3) 0.0459 0.4763 0.939 0.0340 0.4528 0.943 0.0496 0.0430 

 (𝑅1, 𝑅1, 𝑅1, 𝑆4) 0.0347 0.3855 0.940 0.0251 0.3526 0.947 0.0398 0.0325 

(5,5,5,10,2,2,2) (𝑅2, 𝑅2, 𝑅2, 𝑆5) 0.0352 0.3896 0.941 0.0259 0.3544 0.948 0.0390 0.0320 

 (𝑅3, 𝑅3, 𝑅3, 𝑆6) 0.0340 0.3824 0.940 0.0240 0.3595 0.947 0.0400 0.0329 

 (𝑅4, 𝑅4, 𝑅4, 𝑆1) 0.0340 0.3842 0.942 0.0246 0.3580 0.949 0.0402 0.0330 

(10,10,10,5,2,2,2) (𝑅5, 𝑅5, 𝑅5, 𝑆2) 0.0358 0.3985 0.940 0.0249 0.3560 0.949 0.0389 0.0328 

 (𝑅6, 𝑅6, 𝑅6, 𝑆3) 0.0350 0.3888 0.941 0.0256 0.3463 0.948 0.0389 0.0321 

 (𝑅4, 𝑅4, 𝑅4, 𝑆4) 0.0256 0.2645 0.948 0.0201 0.2050 0.950 0.0352 0.0245 

(10,10,10,10,2,2,2) (𝑅5, 𝑅5, 𝑅5, 𝑆5) 0.0251 0.2633 0.949 0.0209 0.2036 0.951 0.0356 0.0240 

 (𝑅6, 𝑅6, 𝑅6, 𝑆6) 0.0260 0.2674 0.947 0.0200 0.2085 0.951 0.0349 0.0244 

 (𝑅1, 𝑅1, 𝑅1, 𝑆1) 0.0450 0.4730 0.938 0.0360 0.4566 0.940 0.0495 0.0436 

(5,5,5,5,4,4,4) (𝑅2, 𝑅2, 𝑅2, 𝑆2) 0.0458 0.4749 0.939 0.0352 0.4585 0.943 0.0489 0.0438 

 (𝑅3, 𝑅3, 𝑅3, 𝑆3) 0.0462 0.4785 0.937 0.0349 0.4533 0.941 0.0496 0.0433 

 (𝑅1, 𝑅1, 𝑅1, 𝑆4) 0.0364 0.3896 0.942 0.0240 0.3582 0.948 0.0400 0.0330 

(5,5,5,10,4,4,4) (𝑅2, 𝑅2, 𝑅2, 𝑆5) 0.0360 0.3845 0.943 0.0253 0.3564 0.947 0.0395 0.0334 

 (𝑅3, 𝑅3, 𝑅3, 𝑆6) 0.0357 0.3878 0.944 0.0261 0.3594 0.947 0.0396 0.0338 

 (𝑅4, 𝑅4, 𝑅4, 𝑆1) 0.0349 0.3823 0.942 0.0243 0.3436 0.948 0.0399 0.0329 

(10,10,10,5, 4,4,4) (𝑅5, 𝑅5, 𝑅5, 𝑆2) 0.0340 0.3865 0.944 0.0260 0.3568 0.947 0.0397 0.0327 

 (𝑅6, 𝑅6, 𝑅6, 𝑆3) 0.0351 0.3799 0.943 0.0253 0.3463 0.948 0.0402 0.0331 

 (𝑅4, 𝑅4, 𝑅4, 𝑆4) 0.0250 0.2685 0.948 0.0208 0.2049 0.952 0.0350 0.0240 

(10,10,10,10, 4,4,4) (𝑅5, 𝑅5, 𝑅5, 𝑆5) 0.0264 0.2631 0.947 0.0203 0.2066 0.951 0.0355 0.0247 

 (𝑅6, 𝑅6, 𝑅6, 𝑆6) 0.0260 0.2627 0.948 0.0207 0.2022 0.952 0.0359 0.0249 

Table 4. Simulation results in general case 

  MCMC 

(𝑘1, 𝑘2, 𝑘3, 𝑛, 𝑠1, 𝑠2, 𝑠3) C.S Prior 5 Prior 6 

  MSE AL CP MSE AL CP 

 (𝑅1, 𝑅1, 𝑅1, 𝑆1) 0.0573 0.5326 0.937 0.0485 0.5031 0.942 

(5,5,5,5,2,2,2) (𝑅2, 𝑅2, 𝑅2, 𝑆2) 0.0586 0.5312 0.938 0.0480 0.5074 0.943 

 (𝑅3, 𝑅3, 𝑅3, 𝑆3) 0.0579 0.5347 0.939 0.0488 0.5066 0.944 

 (𝑅1, 𝑅1, 𝑅1, 𝑆4) 0.0467 0.4250 0.940 0.0375 0.3845 0.948 

(5,5,5,10,2,2,2) (𝑅2, 𝑅2, 𝑅2, 𝑆5) 0.0469 0.4263 0.942 0.0379 0.3866 0.947 

 (𝑅3, 𝑅3, 𝑅3, 𝑆6) 0.0460 0.4227 0.942 0.0370 0.3825 0.947 

 (𝑅4, 𝑅4, 𝑅4, 𝑆1) 0.0469 0.4219 0.942 0.0368 0.3856 0.947 

(10,10,10,5,2,2,2) (𝑅5, 𝑅5, 𝑅5, 𝑆2) 0.0472 0.4237 0.940 0.0379 0.3844 0.948 

 (𝑅6, 𝑅6, 𝑅6, 𝑆3) 0.0463 0.4230 0.944 0.0364 0.3829 0.946 

 (𝑅4, 𝑅4, 𝑅4, 𝑆4) 0.0407 0.3152 0.948 0.0289 0.2633 0.950 

(10,10,10,10,2,2,2) (𝑅5, 𝑅5, 𝑅5, 𝑆5) 0.0400 0.3166 0.949 0.0280 0.2641 0.951 

 (𝑅6, 𝑅6, 𝑅6, 𝑆6) 0.0403 0.3147 0.948 0.0283 0.2677 0.952 

 (𝑅1, 𝑅1, 𝑅1, 𝑆1) 0.0570 0.5319 0.938 0.0489 0.5044 0.944 

(5,5,5,5,4,4,4) (𝑅2, 𝑅2, 𝑅2, 𝑆2) 0.0579 0.5340 0.938 0.0486 0.5050 0.943 

 (𝑅3, 𝑅3, 𝑅3, 𝑆3) 0.0586 0.5362 0.939 0.0483 0.5033 0.942 

 (𝑅1, 𝑅1, 𝑅1, 𝑆4) 0.0475 0.4296 0.942 0.0374 0.3820 0.946 

(5,5,5,10,4,4,4) (𝑅2, 𝑅2, 𝑅2, 𝑆5) 0.0470 0.4267 0.944 0.0377 0.3799 0.947 

 (𝑅3, 𝑅3, 𝑅3, 𝑆6) 0.0460 0.4318 0.943 0.0366 0.3866 0.948 

 (𝑅4, 𝑅4, 𝑅4, 𝑆1) 0.0479 0.4317 0.940 0.0369 0.3905 0.949 

(10,10,10,5, 4,4,4) (𝑅5, 𝑅5, 𝑅5, 𝑆2) 0.0468 0.4268 0.940 0.0364 0.3822 0.948 

 (𝑅6, 𝑅6, 𝑅6, 𝑆3) 0.0473 0.4222 0.943 0.0364 0.3910 0.948 

 (𝑅4, 𝑅4, 𝑅4, 𝑆4) 0.0402 0.3188 0.946 0.0280 0.2799 0.951 

(10,10,10,10, 4,4,4) (𝑅5, 𝑅5, 𝑅5, 𝑆5) 0.0408 0.3167 0.947 0.0281 0.2764 0.952 

 (𝑅6, 𝑅6, 𝑅6, 𝑆6) 0.0410 0.3200 0.947 0.0286 0.2602 0.952 



Third, (𝛽1, 𝛽2, 𝛽3, 𝛽, 𝛾1, 𝛾2, 𝛾, 𝜆1, 𝜆2, 𝜆) = (1, 
2,0.5,1,2,1.5,2,1.5,1) is used to obtain the simulation 

results. Also, two priors, namely Prior 5: 𝑎𝑙 = 𝑏𝑙 = 𝑐𝑙 =
𝑑𝑙 = 𝑒𝑙 = 𝑓𝑙 = 0,  𝑙 = 1,… ,4 and Prior 6: 𝑎𝑙 = 𝑐𝑙 = 𝑒𝑙 =

0.25,  𝑏𝑙 = 𝑑𝑙 = 𝑓𝑙 = 0.45,  𝑙 =1, …,4 are used to 

compare the Bayes estimates of 𝑅𝒔,𝒌 from Eq. (56), which 

are provided in Table 4. 

Tables 2-4 show that the informative priors (priors 

2, 4, and 6) perform best for the MSE values. Also, in the 

second case, the Bayes estimates obtained by the MCMC 

method serve better than the ones obtained by Lindley’s 

approximation. It can also be observed that among the 

intervals, HPD intervals based on informative priors 

(priors 2, 4, and 6) performed best for the AL and CP 

values. 

Furthermore, the following general results can be 

obtained from Tables 2-4: 

 For fixed 𝒔 and 𝒌, MSEs and ALs decrease, and 

CPs increase by increasing 𝑛. 

 For fixed 𝒔 and 𝑛, MSEs and ALs decrease, and 

CPs increase by increasing 𝒌. 

The two items above may occur because the number 

of failures increases by increasing 𝑛, and consequently, 

more information is gathered, thereby improving the 

performance of estimates. 

5.2 Real Data Analysis 

This section analyzes a real dataset for illustrative aims. 

The data demonstrates strength measured in GPA for 

single carbon fibers. Single-fiber tensile tests were 

conducted at gauge lengths of 50 mm, 10 mm, and 1 mm, 

as found in [21]. This data type has recently been 

investigated in [22] as a stress-strength model for a two-

parameter Rayleigh distribution. Suppose a system is 

composed of two different single-fiber gauge lengths 

such that the single fiber of 1 and 10 mm gauge lengths 

are considered strength, and that of 50 mm gauge length 

is the system’s stress. Let 𝑋1, 𝑋2, and 𝑌 denote the single 

fiber with gauge lengths of 1 mm, 10 mm, and 50 mm, 

respectively. Thus, the 𝑋1, 𝑋2, and 𝑌 observations can be 

considered as follows: 
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2.39
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The data was normalized on a 0-1 scale to simplify 

calculations, which seemingly did not affect statistical 

inference. First, the MWD was fitted on three datasets 

separately, yielding the following results. For 𝑋1, 
(𝛽, 𝛾, 𝜆) = (0.0032,1.2614,7.5423) and p-value =
0.4565. For 𝑋2, (𝛽, 𝛾, 𝜆) =(5.2900𝑒 − 04, 1.1672, 

9.1953) and p-value= 0.1999. For 𝑌, (𝛽, 𝛾, 𝜆) =
(4.0904𝑒 − 04,1.1033,9.3842) and p-value = 0.9819. 

From the p-values, it can be concluded that the MWD 

gave suitable fits for 𝑋1, 𝑋2, and 𝑌 datasets. The estimated 

parameters for different datasets show that they can be 

analyzed simply by considering the general case. Fig. 3 

provides the empirical distribution functions and P-P 

plots for the three datasets above. 

 

 

 
Figure 3. Empirical distribution function (left) and the PP-

plot (right) for 𝑋1 (first row), for 𝑋2 (middle row), and for 

𝑌 (third row) 

For complete data set, putting 𝒔 = (3,3) and 𝒌 =

(5,5) with non-informative priors yields �̂�𝒔,𝒌
𝑀𝐵 and the 

corresponding95% HPD interval by 0.2813 and 
(0.1325,0.5062), respectively. Accordingly, two 

different progressive censoring schemes can be generated 

as follows: 
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Scheme 1: 𝑅{(1)} = 𝑅{(2)} = [0,0,1,0], 𝑆 =
[1,1,1,0,0,0,0], (𝒌 = (4,4), 𝒔 = (2,2)). 

Scheme 2: 𝑅{(1)} = 𝑅{(2)} = [0,1,1], 𝑆 = [2,1,1,1,0], 
(𝒌 = (3,3), 𝒔 = (1,1)). 

For Scheme 1 with non-informative priors, �̂�𝒔,𝒌
𝑀𝐵 and 

the corresponding 95% HPD interval are obtained by 

0.3051 and (0.1536,0.5791), respectively. For Scheme 

2 with non-informative priors, �̂�𝒔,𝒌
𝑀𝐵 and the 

corresponding 95% HPD interval are obtained by 0.5012 

and (0.2035,0.8129), respectively. As we expected, a 

comparison between point and interval estimates 

indicates that Scheme 1 performs better than Scheme 2. 

6. Conclusion 

This paper considered the statistical inference of the 

MWD for an MCSS system with 𝑚non-identical 

component strengths in combination with a progressive 

censoring scheme. Bayesian point and interval estimates 

were considered when the standard parameters were 

unknown, known, and general. As 𝑅𝒔,𝒌 and progressive 

censoring schemes could be converted to some cases, the 

problem solved in this paper is general.  

Different estimates were compared using Monte 

Carlo simulations. The simulation results suggested that 

informative priors outperformed non-informative priors 

in point and interval estimates in Bayesian inference. 

Bayes estimates obtained by the MCMC method were 

superior to those obtained using Lindley’s approximation. 

Besides, more information was gathered, and the 

accuracy of estimates increased by increasing the number 

of failures. 
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