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Abstract  

This paper compares the traditional approach against reinforcement learning algorithms to find the optimal preventive maintenance 

policy for equipment composed of multi-non-identical components with different time-to-failure distributions. As an application, we 

used the data from military trucks, which consisted of multiple components with very different failure behavior, such as tires, 

transmissions, wheel rims, couplings, motors, brakes, steering wheels, and shifting gears. The literature proposes Four different 

strategies for preventive maintenance of these components. To find the optimal preventive manganocene policy, we used the traditional 

approach (renewal theory-based) and the conventional reinforcement learning algorithms and compared their performance. The main 

advantages of the latter approach are that, unlike the traditional approach, they are not required to estimate the model parameters (e.g., 

transition probabilities). Without any explicit mathematical formula, they converge to the optimal solution. Our results showed that the 

traditional approach works best when the component time-to-failure distributions are available. However, the reinforcement learning 

approach outperforms where no such information is available or the distributions are misspecified. 

Keyword: Opportunistic maintenance; Preventive maintenance; Markov decision process; Monte Carlo; Q-learning; Reinforcement 

learning 

1. Introduction 

In the recently released European Standards regarding 

maintenance, maintenance is defined as the combination 

of all technical, administrative, and managerial actions 

during the life cycle of an item intended to retain it in, or 

restore it to, a state in which it can perform the required 

function; see Marquez and Gupta [1]. Maintenance 

problems can be solved using traditional approaches and 

machine learning methods. In recent years, reinforcement 

learning (RL) algorithms have become very popular and 

widely used. RL is one of the newer machine learning 

approaches that has gained prominence in various fields 

of human life today. In general, RL is a technique that 

allows a decision-making (agent) to maximize his total 

reward by interacting with the environment. 

Ravichandiran [2] introduced the steps of a typical RL 

algorithm as follows: 

1. First, the agent interacts with the environment by 

performing an action 

2. The agent acts and moves from one state to another 

3. And then, the agent will receive a reward based on the 

action it performed 

4. Based on the reward, the agent will understand 

whether the action was good or bad 

5. If the action was good, if the agent received a positive 

reward, then the agent will prefer performing that 

action again. Otherwise, the agent will try performing 

another action, resulting in a positive reward. So it is 

a trial-and-error learning process. 

As mentioned earlier, RL algorithms are used a lot 

in most fields. Wang et al. [3] applied multi-agent RL to 

solve the maintenance problem for a flow line system 

consisting of two series machines with an intermediate 

finite buffer in between. Liang et al. [4]modeled the 

energy management problem by a Markov decision 

process and solved it using an Approximate Dynamic 

Programming (ADP)-based approach to match electricity 

supply and demand. Yousefi et al. [5] used an RL 

approach to develop a new dynamic maintenance policy 

https://www.ijrrs.com/article_176739.html
https://www.ijrrs.com/
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://orcid.org/0009-0002-7983-3226
https://www.orcid.org/0000-0001-9715-3086
https://www.orcid.org/0000-0003-1880-937X
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for multi-component systems with individually repairable 

components, where each component is at risk of two 

competing failure processes of degradation and random 

shocks. Adsule et al. [6] modeled the Condition-based 

maintenance (CBM) decision-making as a continuous 

semi-Markov decision process. They applied an RL 

algorithm to learn the optimal maintenance decisions and 

inspection schedules based on the current health state of 

the component.  

In this paper, we consider military trucks composed 

of multi-non-identical components. Trucks are systems 

that are used continuously, so the possibility of them 

breaking down on the road is very high, resulting in 

financial and life-threatening costs. Additionally, trucks 

are used in the military, so minimizing the downtime of 

any truck is essential.  It is important to obtain the optimal 

replacement times for each system component efficiently. 

Haleem and Yacout [7] and Barde et al. [8] tackled this 

problem before. They used the truck’s eight more 

important components in their analysis: tires, 

transmissions, wheel rims, couplings, motors, brakes, 

steering wheels, and shifting gears. We will use the same 

set of components here as well. Abdel Haleem and 

Yacout [7] used renewal theory to estimate the 

components’ replacement times.  Barde et al. [8] 

estimated replacement times by using Monte Carlo 

reinforcement learning (MCRL). We aimed to obtain the 

optimal maintenance policy by using the two existing 

approaches in the literature and employing a time 

difference (TD) learning approach, a more efficient RL 

algorithm than MCRL. We will evaluate the performance 

of all these approaches under two scenarios: when the true 

failure time distributions are available versus 

misspecified. 

In the next section, we will present the problem 

assumptions and existing maintenance strategies; In the 

Method section, we will present different algorithms. 

Finally, in the Results section, we will report the 

numerical results comparing the TD-based RL 

algorithm’s performance against the two other methods 

proposed in the literature. 

2. Motivation 

We consider equipment that contains multiple non-

identical components. Our purpose in this article is to find 

a policy that minimizes the total downtime of the 

equipment. The downtime is defined as the non-

productive time when the system is not operational due to 

a failure or a preventive action. Each equipment 

component has a different time-to-failure distribution 

modeled by a Weibull distribution with its shape and 

scale parameters. The strategies are based on the 

following assumptions: 

1. If we replace a component due to failure, it takes 

more time than if we replace a component 

preventively. 

2. If we replace a group of components or a whole 

system, it takes less time than if we replace each 

component separately. 

3. There are replacement opportunities at regular 

intervals. 

The assumptions mentioned above can be found in 

many military applications, where the equipment’s 

reliability is essential, downtime must be minimized, and 

cost considerations are less important; see Haleem and 

Yacout [7].  

Following Haleem and Yacout [7], the following 

four replacement strategies will be used and compared 

against one another: 

- Strategy I: Every component is replaced upon 

failure. It is corrective maintenance (baseline). 

- Strategy II: every component is replaced upon 

failure and at an individual fixed interval, 𝑇𝑖 , for 

component i. It is based on preventive maintenance. 

Haleem and Yacout [7] estimated 𝑇𝑖  by minimizing 

the  downtime per unit time, 𝐷𝑖 , for component i. 𝐷𝑖  
is calculated from the following expression:  

𝑎𝑟𝑔𝑚𝑖𝑛𝑇𝑖𝐷𝑖 =
𝑡𝑝𝑖𝑅(𝑇𝑖)+𝑡𝑓𝑖[1−𝑅(𝑇𝑖)]

(𝑇𝑖+𝑡𝑝𝑖)𝑅(𝑇𝑖)+[𝑡𝑓𝑖+𝐸(𝑡|𝑡≤𝑇𝑖)][1−𝑅(𝑇𝑖)]
, ∀𝑖   (1) 

Where 𝑡𝑝𝑖  is time to replace component i 

preventively, 𝑡𝑓𝑖  is time to replace component i upon 

failure, 𝑅(𝑇𝑖) is the reliability of component i at the time 

𝑇𝑖  and 𝐸[𝑡|𝑡 ≤ 𝑇𝑖] is the expected time to failure, given 

that it occurs before 𝑇𝑖 .  
- Strategy III: It is based on Strategy II, to which it 

is added a scheduled overhaul. In other words, as in 

Strategy II, every component is replaced at failure 

and replacement intervals 𝑇𝑖  for component I, the 

whole system is replaced at a known fixed time. 
- Strategy IV: It is a group-based maintenance 

strategy. Any component i that fails or reaches its 

replacement interval 𝑇𝑖 , the components of its group 

are also replaced with it. 

3. Markov Decision Process 

A Markov decision process (MDP) framework has the 

following key components: 

1. S: Set of states (s ∈ S) 

2. A: Set of actions (a ∈ A) 

3. P(st+1|st, at): Transition probabilities 

4. R(s, a): Reward function of doing action in the states. 

We use model-free RL for two reasons: the curse of 

dimensionality and the curse of modeling. The curse of 

dimensionality arises from the much longer 

computational time and much larger memory space 

needed as the state space of a problem becomes larger. 

The curse of modeling arises from the need to estimate 

the transition probabilities, which is often difficult, 

especially when the state space is large; see Powell [9]. 

We present MDP formulation (state, action, and reward 

function) for each preventive strategy (i.e., II, III, and IV).  

MDP formulation of strategy II: Let 𝐺𝑖 be the age 

of component i, 𝑓𝑖 = 1  denotes that component i is failed 

and 𝑓𝑖 = 0 denotes its normal status, so the state of the 

system at time t is the vector defined as follows: 

𝑠𝑡 = 𝐺1, … , 𝐺8, 𝑓1,…, 𝑓8.  
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Let 𝑎𝑖 = 1 means PM action and 𝑎𝑖 = 0 means “do 

nothing” action, then the action of the system at time t is:  

𝑎𝑡 = (𝑎1, … , 𝑎8).  (2) 

Based on Barde et al. [8] work, the reward function 

can be defined as follows:  
𝑅(𝑠𝑡, 𝑎𝑡) =

{
 
 

 
 

−𝛼𝑖 . 𝑡𝑝𝑖  ,                                     𝑖𝑓 𝑎𝑖 = 1

−𝛼𝑖 . Δ. ⌈
𝑡𝑓𝑖

Δ
⌉,                       𝑎𝑖 = 0 𝑎𝑛𝑑 𝑓𝑖 = 1
                                         

Δ ,                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  
(2) 

Where 𝛼𝑖 = 
∆

𝑡𝑝𝑖
  is a scale factor as they assumed 

that 𝑡𝑝𝑖  is scaled such that it has at least the same period 

than ∆ (see Barde et al. [8] for more information); ∆ is the 

time interval between two epochs and ⌈. ⌉ is the ceiling 

function.  

MDP formulation of strategy III: Let 𝐺𝑖 be the age 

of component i, 𝑓𝑖 = 1  denotes that component i is failed 

whereas 𝑓𝑖 = 0 denotes normal status and 𝑂 = 1 means 

to replace the whole system, whereas 𝑂 = 0 denotes that 

don’t replace the whole system; then, the state of the 

system at time t is the vector defined as follows: 
𝑠𝑡 = (𝐺1, … , 𝐺8, 𝑂, 𝑓1 , … , 𝑓8).  (3) 

The action on the system is defined as: 
𝑎𝑡 = (𝑎1, … , 𝑎8).  (4) 

The reward function is: 
𝑅(𝑠𝑡, 𝑎𝑡) =

 

{
 
 
 

 
 
 
−𝛼𝑖 . 𝑡𝑝𝑖 ,                           𝑖𝑓 𝑎𝑖 = 1 , 𝑂 = 0

−𝛼𝑖 . Δ. ⌈
𝑡𝑓𝑖

Δ
⌉ ,             𝑖𝑓 𝑎𝑖 = 0, 𝑂 = 0, 𝑓𝑖 = 1

−𝛼𝑖 . Δ. ⌈
𝛽.∑ 𝑡𝑝𝑖

8
𝑖=1

Δ
⌉ ,                         𝑖𝑓 𝑂 = 1

Δ,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(5) 

Where 𝛽 ∈ (0, 1) comes from the assumption that 

the time to replace the whole system is less than the sum 

of times to replace each component separately. 

MDP formulation of Strategy IV: states and 

actions in Strategy IV are the same as those in Strategy 

II, but the reward function is different due to group 

structure. The components are grouped as follows:  

(𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5) =
({1,3}, {3,8}, {3,5}, {7,6}, {4,2})  

(6) 

The groups are formed based on technical reasons, 

such as the difficulty or ease of reaching and changing a 

component when a neighboring component has failed.  

Then, the reward function is: 

𝑅(𝑠𝑡, 𝑎𝑡) =

{
 
 

 
 

−𝛼𝑖 . 𝛽. ∑ 𝑡𝑝𝑙𝑙∈𝜙𝑗 ,       𝑖𝑓 𝑎𝑘 = 1 𝑎𝑛𝑑 𝑘 ∈ 𝜙𝑗

−𝛼𝑖 . Δ. ⌈
𝛽.∑ 𝑡𝑓𝑙𝑙∈𝜙𝑗

Δ
⌉ ,    𝑖𝑓 𝑓𝑘 = 1,   𝛼𝑘 = 0, 𝑘 ∈ 𝜙𝑗

Δ,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(7) 

Where 𝛼𝑖 =
Δ

𝛽.Δ.∑ 𝑡𝑝𝑙𝑙∈𝜙𝑗

  and  𝛽 ∈  (0,1)   is defined 

similarly as in Strategy III. 

4. Reinforcement Learning 

Barde et al. [8] used the on-policy first-visit MCRL 

algorithm to find the optimal replacement time 𝑇𝑖  for each 

preventive strategy separately, whereas we will use a TD 

learning approach that is more efficient than MCRL. 

TD learning is a model-free approach that combines 

sampling and bootstrapping simultaneously. One of the 

advantages of TD over MCRL is that MCRL can only be 

used for episodic problems. In other words, MCRL learns 

from complete episodes only. Unlike MCRL, TD 

learning employs single steps to learn (be updated after 

every step) and does not need to wait until the end of an 

episode. Therefore, TD learning can be applied to both 

continuing and episodic problems. 

In this paper, for the military trucks problem, we will 

use a Q-learning (QL) algorithm, which is an off-policy 

TD control algorithm. QL is one of the most popular and 

efficient algorithms in RL. It is an off-policy RL 

algorithm because the QL function learns from actions 

not necessarily taken under the current agent policy. Like 

other RL algorithms, QL seeks to learn a policy that 

maximizes a pre-defined total reward in every state. The 

objective of the QL algorithm is to learn and estimate the 

optimal action-value function that defined as  
𝑄∗(𝑠𝑡 , 𝑎𝑡) =  max

𝜋
𝑄𝜋(𝑠𝑡, 𝑎𝑡),  (8) 

where  
𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1| 𝑠𝑡, 𝑎𝑡]

∞
𝑘=0   (9) 

QL directly approximates the optimal action-value 

function by taking the best action when bootstrapping: 
𝑄(𝑠_𝑡, 𝑎_𝑡 ) ← 𝑄(𝑠_𝑡, 𝑎_𝑡 ) +  𝛼[𝑅_(𝑡 + 1) +
𝛾   (𝑚𝑎𝑥)┬𝑎 〖𝑄(𝑠_(𝑡 + 1), 𝑎) − 𝑄(𝑠_𝑡, 𝑎_𝑡)], 〗  

 

(10) 

Where 𝛼 ∈ (0,1) is the learning rate that controls the 

importance of the old against learned value, 𝛾 ∈ (0,1) is 

the discount factor determines how much importance we 

give to future rewards compared to the immediate reward 

𝑅𝑡+1; see Sutton and Barto [10]. The algorithm’s steps are 

shown in Figure 1. 

 

Figure 1. Q-learning (off-policy TD control) 

One crucial RL element is the trade-off between 

exploitation and exploration. Exploration consists of the 

agent trying all the possible actions at least once to make 

better action selections in the future. In contrast, exploitation 

consists of the agent using its current knowledge to obtain 

the highest reward. To achieve this balance, we use an 𝜀-

greedy policy to take optimal actions. The 𝜀-greedy 
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approach selects the action with the highest estimated 

reward most of the time ((1 − 𝜀) × 100 % of the time). 

We chose 𝜀 so that in the initial episodes, the agent 

starts exploring and gathering information. As time 

passes and the mth agent collects more information about 

the environment, 𝜀 vanishes. Finally, when the agent 

acquired “enough knowledge”, it will solely take actions 

to maximize its reward (no exploration). Also, to ensure 

convergence to the optimal value, we chose 𝜀 as 𝜀𝑡 = 
1

𝑡
 

for the 𝑡𝑡ℎ episode where both assumptions of ∑ 𝜀𝑡
2 <∞

𝑡=0

∞ and ∑ 𝜀𝑡 = ∞
∞
𝑡=0  are hold; see Tsitsiklis [11]. 

If the learning rate (𝛼) is set to zero, the action-value 

function is not updated, and therefore, there will be no learning 

for the agent. If one chooses the learning rate to be near to one, 

the learning process will be very quick; Therefore, we update 

the learning rate after each episode as follows: 

𝛼(𝑡) = max(0.1, min(1, 1 − log(
𝑡+1

𝛾
)))  (11) 

Where 𝛾 is a problem-specific decay parameter that 

must be chosen by trial and error. 

5. Results 

Scenario 1: True failure time distributions 

are available 

It is assumed that each component's failure probability is 

independent from others, the algorithm searches for the optimal 

action-value function for each component, and 𝑇𝑖  that 

corresponds to the age where the value of the action ‘replace 

preventively’ is higher than that of the action ‘do nothing.’  

Let 𝑃(𝑡, 𝜆𝑖 , 𝑘𝑖) be the probability density function of 

Weibull, 𝜆𝑖 the scale parameter, and 𝑘𝑖 the shape 

parameter of the distribution for the 𝑖𝑡ℎ component. Table 

1 reports the component-specific Weibull distribution 

parameters as well as 𝑡𝑝𝑖  and 𝑡𝑓𝑖. 
The interval between every two decision epochs is 

assumed to be 5 hours. This value is chosen because the 

probability that two components will fail during this 

interval is approximately zero. We used a similar 

simulation setting as the one proposed by Barde et al. [8] 

to estimate each approach downtime for each strategy. A 

comparison of the performance of each strategy is 

performed between the traditional method, the MRCL, 

and the QL approaches. 

In strategy II, the agent learns the optimal 

maintenance policy to interact with the environment in 

~400 episode by applying MCRL. In contrast, the agent 

learns the optimal policy in interacting with the 

environment in ~200 episodes by applying the QL 

algorithm. Table 2 demonstrates the optimal replacement 

time for strategy II (in weeks) using the three mentioned 

approaches. As can be seen, there is a slight difference 

between the optimal replacement times in all three 

approaches; however, the optimal replacement times of 

the MC algorithm seem to be slightly higher than those of 

the other two approaches. 

Table 1. Components failure time distribution 

 Tire Transmission Wheel Coupling Motor brake Steering Gears 

mean 14.06 5.903 4.218 8.332 2.039 23.32 4.868 12.13 

𝝀𝒊 (scale) 14.076 5.934 4.248 8.373 2.046 23.41 4.93 12.148 

𝒌𝒊 (shape) 378.17 108.917 79.65 115.829 170.756 143.747 43.953 278.507 

𝒕𝒑𝒊 0.0024 0.032 0.0037 0.0051 0.0074 0.0042 0.0026 0.0052 

𝒕𝒇𝒊 0.012 0.039 0.015 0.036 0.03 0.021 0.018 0.021 

Table 2. Optimal replacement times (in weeks) for Strategy II 

Component 

Name 
Traditional Q-learning MCRL 

Tire 13.809 13.780 13.988 

Transmission 5.770 5.804 8.860 

Wheel 3.964 3.928 4.137 

Coupling 7.917 7.827 8.125 

Motor 1.970 2.024 2.024 

Brake 22.381 22.292 22.798 

Steering 4.339 4.226 4.643 

Gears 11.875 11.875 11.905 

Table 3 and Figure 2 illustrate a performance 

comparison among the three approaches in Strategy II. It 

can be seen that the traditional method has a total 

downtime of 7.454 weeks with 16 failed components and 

867 preventive replaced components due to preventive 

actions. Those numbers are 7.574 weeks, 25 failed 

components, 860 preventive replaced components for the 

QL algorithm and 8.129 weeks, 68 failed components, 

and 806 preventive replaced components for the MC 

algorithm. The QL approach outperformed the MC 

approach; its performance seems similar to the traditional 

approach, with the traditional approach having a slightly 

lower system downtime and the number of failed 

components. 

Table 3. System downtime (in weeks), number of failed and 

replaced components of each approach for Strategy II 

 Traditional Q-learning MCRL 

System downtime 7.454 7.574 8.129 

number of the failed 

component 
16 25 68 

Number of 

prevention action 
867 860 806 

https://en.wikipedia.org/wiki/Scale_parameter
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Figure 2. System downtime (in weeks) of different approaches 

for Strategy II 

In Strategy III, the agent finds the optimal policy in 

interacting with the environment in ~400 and ~250 

episodes with MC and QL algorithms, respectively. Table 

4 reports the optimal replacement times of each 

component by using different approaches in Strategy III. 

Table 4. Optimal replacement times (in weeks) for Strategy III 

Component 

Name 
Traditional Q-learning MCRL 

Tire 13.809 13.810 13.839 

Transmission 5.770 5.804 5.923 

Wheel 3.964 3.988 4.137 

Coupling 7.917 7.738 8.185 

Motor 1.970 2.024 2.024 

Brake 22.381 22.530 23.036 

Steering 4.339 4.137 4.643 

Gears 11.875 11.964 12.054 

Table 5 shows the total system downtime of the three 

approaches in Strategy III. The traditional approach 

achieves the lowest downtime of 7.657 weeks at a 

scheduled overhaul of 21 weeks, with 9 failed 

components and 956 preventive replaced components due 

to preventive action; The QL algorithm achieves the 

lowest downtime of 7.763 weeks at a scheduled overhaul 

of 21 weeks, with 12 and 985 failed and preventive 

replaced components; Finally, the MC algorithm 

achieves the lowest downtime of 8.985 weeks at a 

scheduled overhaul of 15 weeks, with 120 and 912 failed 

and preventive replaced components. In Strategy III, the 

traditional method has the lowest overall downtime 

compared to the other two approaches. The difference 

between the average downtime of QL and that of the 

traditional approach was less than one day (~18 hours). 

However, such difference between the MC and the 

traditional approaches was as high as one week. 

Table 5. System downtime (in weeks) obtained by different 

approaches for Strategy III with different overhaul times 

Schedule 

overhaul 

System downtime 

Traditional Q-learning MCRL 

3 10.987 11.054 11.121 

6 10.159 10.334 11.223 

9 8.515 8.898 9.821 

12 8.673 8.635 9.638 

15 7.934 8.040 8.985 

18 8.273 8.457 9.731 

21 7.657 7.763 9.339 

24 8.230 8.160 9.561 

27 7.731 7.909 9.553 

30 7.903 7.981 9.505 

 

Table 6, Table 7, and Figure 3 illustrates similar 

comparison results among the three approaches for 

Strategy IV. The agent finds the optimal policy in 

interacting with the environment in ~1000 and ~200 

episodes in MC and QL algorithms. Table 6 reports the 

optimal replacement times for different components 

using Strategy IV's three approaches. The replacement 

times estimated using the RL algorithms are much lower 

than those obtained through the traditional approach. The 

reduction in replacement times is due to the group 

structure in this strategy. Components with a lower mean 

failure time dominate the overall replacement time of 

their fellow components. It can be seen in Table 7 that the 

traditional approach has a total downtime of 8.375 weeks 

with 27 failed components and 1237 preventive replaced 

components due to preventive action. The overall system 

downtime was 9.117 weeks (39 failed and 1348 

preventive replaced components) and 10.815 weeks (84 

failed and 1618 preventive replaced components) for the 

QL and MC algorithms. In Strategy IV, the traditional 

approach has the lowest downtime and number of failed 

components. It has fewer preventive replacements than 

the other two approaches (which will lead to lower 

maintenance costs). 

Table 6. Optimal replacement times (in weeks) for Strategy IV 

Component 

Name 
Traditional Q-learning MCRL 

Tire 13.809 4.167 4.226 

Transmission 5.770 5.804 5.893 

Wheel 3.964 2.024 1.994 

Coupling 7.917 5.832 5.893 

Motor 1.970 2.024 1.994 

Brake 22.381 4.375 4.643 

Steering 4.339 4.375 4.643 

Gears 11.875 4.167 4.167 
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Table 7. System downtime (in weeks), number of failed and 

replaced components of each approach for Strategy IV 

 Traditional Q-learning MCRL 

System 

downtime 
8.375 9.117 10.815 

number of 

failed 

components 

27 39 84 

Number of 

prevention 

action 

1237 1348 1618 

 

 

Figure 3. System downtime (in weeks) for Strategy IV 

According to Table 8, Table 9, and Table 10, Strategy I is 

the worst strategy as it has the longest downtime. This 

shows the clear advantage of preventive strategies over 

corrective maintenance strategies. Overall, the most 

efficient strategy among these proposed strategies is 

Strategy II. 

Table 11 reports the average execution time for each 

approach and strategy to obtain the optimal policy. As 

seen, the traditional approach was the most time-efficient 

(less than a second). After the traditional approach, the 

QL algorithm was about twice faster than the on-policy 

first visit MC algorithm. As expected, the more complex 

a strategy is, the more time requires to obtain its optimal 

policy. 
Table 8. Evaluation of traditional approach for different 

strategies 

 
Strategy 

I 

Strategy 

II 

Strategy 

III 

Strategy 

IV 

System 

downtime 
21.366 7.454 7.657 8.375 

number of 

failed 

components 

842 16 9 27 

Number of 

prevention 

action 

0 867 956 1237 

Table 9. Evaluation of QL algorithm for different strategies 

 
Strategy 

II 

Strategy 

III 

Strategy 

IV 

System downtime 7.574 7.762 9.117 

number of failed 

components 
25 12 39 

Number of prevention 

action 
860 985 1348 

Table 10. Evaluation of MC algorithm for different strategies 

 Strategy II Strategy III Strategy IV 

System 

downtime 
8.129 8.985 10.815 

number of 

failed 

components 

68 120 84 

Number of 

prevention 

action 

806 912 1618 

Table 11.Execution time to converge to the optimal policy by 

different approaches in different strategies 

 Strategy II Strategy III Strategy IV 

Traditional < 1 sec < 1 sec < 1 sec 

QL 2 min 2 min 22 min 

MC 4 min 3 min 53 min 

Scenario 2: Misspecified failure time 

distributions are available 

The results reported in Scenario 1 are under the 

assumption of knowing the environment and, therefore, 

the true failure time distribution of different components 

was available. However, under a more realistic scenario, 

the true failure time distribution of the components may 

not be available. 

In this section, we evaluate the performance of the 

three approaches under the components' misspecified 

failure time distribution. More specifically, we assumed 

the components' true distribution of failure time remains 

Weibull with the same parameters reported in Table 1. 

However, a misspecified Weibull distribution (either its 

shape or scale parameter is overestimated by different 

degrees) is assumed for each component while finding the 

optimal policy by each approach. 

The RL free-model algorithms require no 

environmental assumptions, and the agent interacts with 

the environment directly (data-driven). That is, the 

misspecified failure time distribution will not impact 

them.  

Table 12 reports the optimal replacement times 

obtained through "Eq. (1)" by assuming an overestimated 

Weibull shape parameter. As shown in Figure 4, Figure 

5, and Figure 6, the misspecification of the Weibull shape 

parameter does not seem to have a large impact on the 

estimated optimal replacement time of the components by 

the traditional approach. When using the optimal 

replacement time of the traditional approach, the 

estimated system downtime seemed to be impacted 

differently in different strategies. Specifically, the 

traditional system downtime in Strategy II and III was 

slightly impacted (increased by 1.5-3 days) only when the 

shape parameter was overestimated by at least 20%. 
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Table 12.Optimal replacement times with minor changes in 

the Weibull shape parameters. 

Component Name 
Shape 

(real) 

Shape 

+10% 

Shape 

+20% 

Shape 

+30% 

Shape 

+40% 

Shape 

+50% 

Tire 13.81 13.85 13.86 13.88 13.89 13.90 

Transmission 5.77 8.78 5.79 5.80 5.80 5.81 

Wheel 3.96 3.99 4.01 4.02 4.03 4.04 

Coupling 7.92 7.95 7.98 8 8.02 8.04 

Motor 1.97 1.98 1.99 1.99 1.99 1.99 

Brake 22.38 22.47 22.54 22.60 22.67 22.68 

Steering 4.34 4.39 4.42 4.45 4.48 4.50 

Gears 11.88 11.89 11.90 11.92 11.94 11.95 

Figure 7, Figure 8 and Figure 9 illustrate system 

downtime obtained by the traditional approach compared 

to RL algorithms. As the figures show, the Weibull scale 

parameter overestimation from 2% to 5% increased the 

system downtime by 1 to 8 weeks in different strategies. 

Moreover, Table 13 shows how minor changes in the 

Weibull scale parameter affect the optimal replacement 

times obtained through "Eq. (1)". 

Table 13.Optimal replacement times with minor changed in 

the Weibull scale parameter. 

 

 

  

Figure 4. System downtime of different approaches under minor changes in the Weibull shape parameters for Strategy II 

 

   

Figure 5. System downtime of different approaches under minor changes in the Weibull shape parameters for Strategy III 

Component 

Name 

Scale 

(real) 

Scale 

+1% 

Scale 

+2% 

Scale 

+3% 

Scale 

+4% 

Tire 13.81 13.96 14.11 14.23 14.38 

Transmission 5.77 5.83 5.89 5.92 6 

Wheel 3.96 3.99 4.05 4.08 4.12 

Coupling 7.92 7.98 8.07 8.16 8.21 

Motor 1.97 1.99 2.01 2.03 2.05 

Brake 22.38 22.62 22.86 23.07 23.27 

Steering 4.34 4.39 4..43 4.49 4.51 

Gears 11.88 11.99 12.11 12.20 12.34 
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Figure 6. System downtime of different approaches under minor changes in the Weibull shape parameters for Strategy IV 

 

Figure 7. System downtime of different approaches under minor changes in the Weibull scale parameters for Strategy II 

  

Figure 8. System downtime of different approaches under minor changes in the Weibull scale parameters for Strategy III 
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Figure 9. System downtime of different approaches under minor changes in the Weibull scale parameters for Strategy IV 

c

6. Discussion 

In this work, we employed three traditional (renewal 

theory) approaches, MCRL and TDRL, to find the 

optimal preventive maintenance policy for equipment 

composed of multi-non-identical components. Three 

preventive maintenance strategies, along with a 

corrective maintenance strategy (as baseline), were 

studied. Our results confirmed that preventive 

maintenance strategies perform better than the corrective 

maintenance policy, as expected, for our system. More 

importantly, our results showed that the traditional 

approach (renewal theory) is sensitive to the 

misspecification of the components’ failure time 

distribution. More specifically, under the assumption of 

the components Weibull distributed failure times, the 

optimal policy and, consequently, the performance of the 

traditional approach seem to be impacted only slightly by 

misspecifying the shape parameters up to 50% (downtime 

increased by < 3 days). However, even minor 

misspecification in the scale parameter (up to 5%) can 

lead to a huge increase in the system downtime following 

the traditional approach optimal policy by up to 8 weeks. 

On the other hand, since the model-free RL algorithms 

are data-driven with no requirements of prior assumption 

on the environment distribution (e.g., failure time 

distributions), they can be minimally impacted by such 

misspecifications. 

Different RL algorithms, however, can potentially 

perform very differently. Under the assumptions of our 

study, the QL algorithm outperformed the MC algorithm 

dramatically. Given the quick progress in developing RL 

algorithms nowadays, a natural next step to our work 

might be evaluating different RL algorithms for different 

systems with different assumptions. 
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Abstract  

This paper compares the traditional approach against reinforcement learning algorithms to find the optimal preventive maintenance 

policy for equipment composed of multi-non-identical components with different time-to-failure distributions. As an application, we 

used the data from military trucks, which consisted of multiple components with very different failure behavior, such as tires, 

transmissions, wheel rims, couplings, motors, brakes, steering wheels, and shifting gears. The literature proposes Four different 

strategies for preventive maintenance of these components. To find the optimal preventive manganocene policy, we used the traditional 

approach (renewal theory-based) and the conventional reinforcement learning algorithms and compared their performance. The main 

advantages of the latter approach are that, unlike the traditional approach, they are not required to estimate the model parameters (e.g., 

transition probabilities). Without any explicit mathematical formula, they converge to the optimal solution. Our results showed that the 

traditional approach works best when the component time-to-failure distributions are available. However, the reinforcement learning 

approach outperforms where no such information is available or the distributions are misspecified. 

Keyword: Opportunistic maintenance; Preventive maintenance; Markov decision process; Monte Carlo; Q-learning; Reinforcement 

learning 

1. Introduction 

In the recently released European Standards regarding 

maintenance, maintenance is defined as the combination 

of all technical, administrative, and managerial actions 

during the life cycle of an item intended to retain it in, or 

restore it to, a state in which it can perform the required 

function; see Marquez and Gupta [1]. Maintenance 

problems can be solved using traditional approaches and 

machine learning methods. In recent years, reinforcement 

learning (RL) algorithms have become very popular and 

widely used. RL is one of the newer machine learning 

approaches that has gained prominence in various fields 

of human life today. In general, RL is a technique that 

allows a decision-making (agent) to maximize his total 

reward by interacting with the environment. 

Ravichandiran [2] introduced the steps of a typical RL 

algorithm as follows: 

1. First, the agent interacts with the environment by 

performing an action 

2. The agent acts and moves from one state to another 

3. And then, the agent will receive a reward based on the 

action it performed 

4. Based on the reward, the agent will understand 

whether the action was good or bad 

5. If the action was good, if the agent received a positive 

reward, then the agent will prefer performing that 

action again. Otherwise, the agent will try performing 

another action, resulting in a positive reward. So it is 

a trial-and-error learning process. 

As mentioned earlier, RL algorithms are used a lot 

in most fields. Wang et al. [3] applied multi-agent RL to 

solve the maintenance problem for a flow line system 

consisting of two series machines with an intermediate 

finite buffer in between. Liang et al. [4]modeled the 

energy management problem by a Markov decision 

process and solved it using an Approximate Dynamic 

Programming (ADP)-based approach to match electricity 

supply and demand. Yousefi et al. [5] used an RL 

approach to develop a new dynamic maintenance policy 

https://www.ijrrs.com/article_176739.html
https://www.ijrrs.com/
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://orcid.org/0009-0002-7983-3226
https://www.orcid.org/0000-0001-9715-3086
https://www.orcid.org/0000-0003-1880-937X
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for multi-component systems with individually repairable 

components, where each component is at risk of two 

competing failure processes of degradation and random 

shocks. Adsule et al. [6] modeled the Condition-based 

maintenance (CBM) decision-making as a continuous 

semi-Markov decision process. They applied an RL 

algorithm to learn the optimal maintenance decisions and 

inspection schedules based on the current health state of 

the component.  

In this paper, we consider military trucks composed 

of multi-non-identical components. Trucks are systems 

that are used continuously, so the possibility of them 

breaking down on the road is very high, resulting in 

financial and life-threatening costs. Additionally, trucks 

are used in the military, so minimizing the downtime of 

any truck is essential.  It is important to obtain the optimal 

replacement times for each system component efficiently. 

Haleem and Yacout [7] and Barde et al. [8] tackled this 

problem before. They used the truck’s eight more 

important components in their analysis: tires, 

transmissions, wheel rims, couplings, motors, brakes, 

steering wheels, and shifting gears. We will use the same 

set of components here as well. Abdel Haleem and 

Yacout [7] used renewal theory to estimate the 

components’ replacement times.  Barde et al. [8] 

estimated replacement times by using Monte Carlo 

reinforcement learning (MCRL). We aimed to obtain the 

optimal maintenance policy by using the two existing 

approaches in the literature and employing a time 

difference (TD) learning approach, a more efficient RL 

algorithm than MCRL. We will evaluate the performance 

of all these approaches under two scenarios: when the true 

failure time distributions are available versus 

misspecified. 

In the next section, we will present the problem 

assumptions and existing maintenance strategies; In the 

Method section, we will present different algorithms. 

Finally, in the Results section, we will report the 

numerical results comparing the TD-based RL 

algorithm’s performance against the two other methods 

proposed in the literature. 

2. Motivation 

We consider equipment that contains multiple non-

identical components. Our purpose in this article is to find 

a policy that minimizes the total downtime of the 

equipment. The downtime is defined as the non-

productive time when the system is not operational due to 

a failure or a preventive action. Each equipment 

component has a different time-to-failure distribution 

modeled by a Weibull distribution with its shape and 

scale parameters. The strategies are based on the 

following assumptions: 

1. If we replace a component due to failure, it takes 

more time than if we replace a component 

preventively. 

2. If we replace a group of components or a whole 

system, it takes less time than if we replace each 

component separately. 

3. There are replacement opportunities at regular 

intervals. 

The assumptions mentioned above can be found in 

many military applications, where the equipment’s 

reliability is essential, downtime must be minimized, and 

cost considerations are less important; see Haleem and 

Yacout [7].  

Following Haleem and Yacout [7], the following 

four replacement strategies will be used and compared 

against one another: 

- Strategy I: Every component is replaced upon 

failure. It is corrective maintenance (baseline). 

- Strategy II: every component is replaced upon 

failure and at an individual fixed interval, 𝑇𝑖 , for 

component i. It is based on preventive maintenance. 

Haleem and Yacout [7] estimated 𝑇𝑖  by minimizing 

the  downtime per unit time, 𝐷𝑖 , for component i. 𝐷𝑖  
is calculated from the following expression:  

𝑎𝑟𝑔𝑚𝑖𝑛𝑇𝑖𝐷𝑖 =
𝑡𝑝𝑖𝑅(𝑇𝑖)+𝑡𝑓𝑖[1−𝑅(𝑇𝑖)]

(𝑇𝑖+𝑡𝑝𝑖)𝑅(𝑇𝑖)+[𝑡𝑓𝑖+𝐸(𝑡|𝑡≤𝑇𝑖)][1−𝑅(𝑇𝑖)]
, ∀𝑖   (1) 

Where 𝑡𝑝𝑖  is time to replace component i 

preventively, 𝑡𝑓𝑖  is time to replace component i upon 

failure, 𝑅(𝑇𝑖) is the reliability of component i at the time 

𝑇𝑖  and 𝐸[𝑡|𝑡 ≤ 𝑇𝑖] is the expected time to failure, given 

that it occurs before 𝑇𝑖 .  
- Strategy III: It is based on Strategy II, to which it 

is added a scheduled overhaul. In other words, as in 

Strategy II, every component is replaced at failure 

and replacement intervals 𝑇𝑖  for component I, the 

whole system is replaced at a known fixed time. 
- Strategy IV: It is a group-based maintenance 

strategy. Any component i that fails or reaches its 

replacement interval 𝑇𝑖 , the components of its group 

are also replaced with it. 

3. Markov Decision Process 

A Markov decision process (MDP) framework has the 

following key components: 

1. S: Set of states (s ∈ S) 

2. A: Set of actions (a ∈ A) 

3. P(st+1|st, at): Transition probabilities 

4. R(s, a): Reward function of doing action in the states. 

We use model-free RL for two reasons: the curse of 

dimensionality and the curse of modeling. The curse of 

dimensionality arises from the much longer 

computational time and much larger memory space 

needed as the state space of a problem becomes larger. 

The curse of modeling arises from the need to estimate 

the transition probabilities, which is often difficult, 

especially when the state space is large; see Powell [9]. 

We present MDP formulation (state, action, and reward 

function) for each preventive strategy (i.e., II, III, and IV).  

MDP formulation of strategy II: Let 𝐺𝑖 be the age 

of component i, 𝑓𝑖 = 1  denotes that component i is failed 

and 𝑓𝑖 = 0 denotes its normal status, so the state of the 

system at time t is the vector defined as follows: 

𝑠𝑡 = 𝐺1, … , 𝐺8, 𝑓1,…, 𝑓8.  
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Let 𝑎𝑖 = 1 means PM action and 𝑎𝑖 = 0 means “do 

nothing” action, then the action of the system at time t is:  

𝑎𝑡 = (𝑎1, … , 𝑎8).  (2) 

Based on Barde et al. [8] work, the reward function 

can be defined as follows:  
𝑅(𝑠𝑡, 𝑎𝑡) =

{
 
 

 
 

−𝛼𝑖 . 𝑡𝑝𝑖  ,                                     𝑖𝑓 𝑎𝑖 = 1

−𝛼𝑖 . Δ. ⌈
𝑡𝑓𝑖

Δ
⌉,                       𝑎𝑖 = 0 𝑎𝑛𝑑 𝑓𝑖 = 1
                                         

Δ ,                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  
(2) 

Where 𝛼𝑖 = 
∆

𝑡𝑝𝑖
  is a scale factor as they assumed 

that 𝑡𝑝𝑖  is scaled such that it has at least the same period 

than ∆ (see Barde et al. [8] for more information); ∆ is the 

time interval between two epochs and ⌈. ⌉ is the ceiling 

function.  

MDP formulation of strategy III: Let 𝐺𝑖 be the age 

of component i, 𝑓𝑖 = 1  denotes that component i is failed 

whereas 𝑓𝑖 = 0 denotes normal status and 𝑂 = 1 means 

to replace the whole system, whereas 𝑂 = 0 denotes that 

don’t replace the whole system; then, the state of the 

system at time t is the vector defined as follows: 
𝑠𝑡 = (𝐺1, … , 𝐺8, 𝑂, 𝑓1 , … , 𝑓8).  (3) 

The action on the system is defined as: 
𝑎𝑡 = (𝑎1, … , 𝑎8).  (4) 

The reward function is: 
𝑅(𝑠𝑡, 𝑎𝑡) =

 

{
 
 
 

 
 
 
−𝛼𝑖 . 𝑡𝑝𝑖 ,                           𝑖𝑓 𝑎𝑖 = 1 , 𝑂 = 0

−𝛼𝑖 . Δ. ⌈
𝑡𝑓𝑖

Δ
⌉ ,             𝑖𝑓 𝑎𝑖 = 0, 𝑂 = 0, 𝑓𝑖 = 1

−𝛼𝑖 . Δ. ⌈
𝛽.∑ 𝑡𝑝𝑖

8
𝑖=1

Δ
⌉ ,                         𝑖𝑓 𝑂 = 1

Δ,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(5) 

Where 𝛽 ∈ (0, 1) comes from the assumption that 

the time to replace the whole system is less than the sum 

of times to replace each component separately. 

MDP formulation of Strategy IV: states and 

actions in Strategy IV are the same as those in Strategy 

II, but the reward function is different due to group 

structure. The components are grouped as follows:  

(𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5) =
({1,3}, {3,8}, {3,5}, {7,6}, {4,2})  

(6) 

The groups are formed based on technical reasons, 

such as the difficulty or ease of reaching and changing a 

component when a neighboring component has failed.  

Then, the reward function is: 

𝑅(𝑠𝑡, 𝑎𝑡) =

{
 
 

 
 

−𝛼𝑖 . 𝛽. ∑ 𝑡𝑝𝑙𝑙∈𝜙𝑗 ,       𝑖𝑓 𝑎𝑘 = 1 𝑎𝑛𝑑 𝑘 ∈ 𝜙𝑗

−𝛼𝑖 . Δ. ⌈
𝛽.∑ 𝑡𝑓𝑙𝑙∈𝜙𝑗

Δ
⌉ ,    𝑖𝑓 𝑓𝑘 = 1,   𝛼𝑘 = 0, 𝑘 ∈ 𝜙𝑗

Δ,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(7) 

Where 𝛼𝑖 =
Δ

𝛽.Δ.∑ 𝑡𝑝𝑙𝑙∈𝜙𝑗

  and  𝛽 ∈  (0,1)   is defined 

similarly as in Strategy III. 

4. Reinforcement Learning 

Barde et al. [8] used the on-policy first-visit MCRL 

algorithm to find the optimal replacement time 𝑇𝑖  for each 

preventive strategy separately, whereas we will use a TD 

learning approach that is more efficient than MCRL. 

TD learning is a model-free approach that combines 

sampling and bootstrapping simultaneously. One of the 

advantages of TD over MCRL is that MCRL can only be 

used for episodic problems. In other words, MCRL learns 

from complete episodes only. Unlike MCRL, TD 

learning employs single steps to learn (be updated after 

every step) and does not need to wait until the end of an 

episode. Therefore, TD learning can be applied to both 

continuing and episodic problems. 

In this paper, for the military trucks problem, we will 

use a Q-learning (QL) algorithm, which is an off-policy 

TD control algorithm. QL is one of the most popular and 

efficient algorithms in RL. It is an off-policy RL 

algorithm because the QL function learns from actions 

not necessarily taken under the current agent policy. Like 

other RL algorithms, QL seeks to learn a policy that 

maximizes a pre-defined total reward in every state. The 

objective of the QL algorithm is to learn and estimate the 

optimal action-value function that defined as  
𝑄∗(𝑠𝑡 , 𝑎𝑡) =  max

𝜋
𝑄𝜋(𝑠𝑡, 𝑎𝑡),  (8) 

where  
𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1| 𝑠𝑡, 𝑎𝑡]

∞
𝑘=0   (9) 

QL directly approximates the optimal action-value 

function by taking the best action when bootstrapping: 
𝑄(𝑠_𝑡, 𝑎_𝑡 ) ← 𝑄(𝑠_𝑡, 𝑎_𝑡 ) +  𝛼[𝑅_(𝑡 + 1) +
𝛾   (𝑚𝑎𝑥)┬𝑎 〖𝑄(𝑠_(𝑡 + 1), 𝑎) − 𝑄(𝑠_𝑡, 𝑎_𝑡)], 〗  

 

(10) 

Where 𝛼 ∈ (0,1) is the learning rate that controls the 

importance of the old against learned value, 𝛾 ∈ (0,1) is 

the discount factor determines how much importance we 

give to future rewards compared to the immediate reward 

𝑅𝑡+1; see Sutton and Barto [10]. The algorithm’s steps are 

shown in Figure 1. 

 

Figure 1. Q-learning (off-policy TD control) 

One crucial RL element is the trade-off between 

exploitation and exploration. Exploration consists of the 

agent trying all the possible actions at least once to make 

better action selections in the future. In contrast, exploitation 

consists of the agent using its current knowledge to obtain 

the highest reward. To achieve this balance, we use an 𝜀-

greedy policy to take optimal actions. The 𝜀-greedy 
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approach selects the action with the highest estimated 

reward most of the time ((1 − 𝜀) × 100 % of the time). 

We chose 𝜀 so that in the initial episodes, the agent 

starts exploring and gathering information. As time 

passes and the mth agent collects more information about 

the environment, 𝜀 vanishes. Finally, when the agent 

acquired “enough knowledge”, it will solely take actions 

to maximize its reward (no exploration). Also, to ensure 

convergence to the optimal value, we chose 𝜀 as 𝜀𝑡 = 
1

𝑡
 

for the 𝑡𝑡ℎ episode where both assumptions of ∑ 𝜀𝑡
2 <∞

𝑡=0

∞ and ∑ 𝜀𝑡 = ∞
∞
𝑡=0  are hold; see Tsitsiklis [11]. 

If the learning rate (𝛼) is set to zero, the action-value 

function is not updated, and therefore, there will be no learning 

for the agent. If one chooses the learning rate to be near to one, 

the learning process will be very quick; Therefore, we update 

the learning rate after each episode as follows: 

𝛼(𝑡) = max(0.1, min(1, 1 − log(
𝑡+1

𝛾
)))  (11) 

Where 𝛾 is a problem-specific decay parameter that 

must be chosen by trial and error. 

5. Results 

Scenario 1: True failure time distributions 

are available 

It is assumed that each component's failure probability is 

independent from others, the algorithm searches for the optimal 

action-value function for each component, and 𝑇𝑖  that 

corresponds to the age where the value of the action ‘replace 

preventively’ is higher than that of the action ‘do nothing.’  

Let 𝑃(𝑡, 𝜆𝑖 , 𝑘𝑖) be the probability density function of 

Weibull, 𝜆𝑖 the scale parameter, and 𝑘𝑖 the shape 

parameter of the distribution for the 𝑖𝑡ℎ component. Table 

1 reports the component-specific Weibull distribution 

parameters as well as 𝑡𝑝𝑖  and 𝑡𝑓𝑖. 
The interval between every two decision epochs is 

assumed to be 5 hours. This value is chosen because the 

probability that two components will fail during this 

interval is approximately zero. We used a similar 

simulation setting as the one proposed by Barde et al. [8] 

to estimate each approach downtime for each strategy. A 

comparison of the performance of each strategy is 

performed between the traditional method, the MRCL, 

and the QL approaches. 

In strategy II, the agent learns the optimal 

maintenance policy to interact with the environment in 

~400 episode by applying MCRL. In contrast, the agent 

learns the optimal policy in interacting with the 

environment in ~200 episodes by applying the QL 

algorithm. Table 2 demonstrates the optimal replacement 

time for strategy II (in weeks) using the three mentioned 

approaches. As can be seen, there is a slight difference 

between the optimal replacement times in all three 

approaches; however, the optimal replacement times of 

the MC algorithm seem to be slightly higher than those of 

the other two approaches. 

Table 1. Components failure time distribution 

 Tire Transmission Wheel Coupling Motor brake Steering Gears 

mean 14.06 5.903 4.218 8.332 2.039 23.32 4.868 12.13 

𝝀𝒊 (scale) 14.076 5.934 4.248 8.373 2.046 23.41 4.93 12.148 

𝒌𝒊 (shape) 378.17 108.917 79.65 115.829 170.756 143.747 43.953 278.507 

𝒕𝒑𝒊 0.0024 0.032 0.0037 0.0051 0.0074 0.0042 0.0026 0.0052 

𝒕𝒇𝒊 0.012 0.039 0.015 0.036 0.03 0.021 0.018 0.021 

Table 2. Optimal replacement times (in weeks) for Strategy II 

Component 

Name 
Traditional Q-learning MCRL 

Tire 13.809 13.780 13.988 

Transmission 5.770 5.804 8.860 

Wheel 3.964 3.928 4.137 

Coupling 7.917 7.827 8.125 

Motor 1.970 2.024 2.024 

Brake 22.381 22.292 22.798 

Steering 4.339 4.226 4.643 

Gears 11.875 11.875 11.905 

Table 3 and Figure 2 illustrate a performance 

comparison among the three approaches in Strategy II. It 

can be seen that the traditional method has a total 

downtime of 7.454 weeks with 16 failed components and 

867 preventive replaced components due to preventive 

actions. Those numbers are 7.574 weeks, 25 failed 

components, 860 preventive replaced components for the 

QL algorithm and 8.129 weeks, 68 failed components, 

and 806 preventive replaced components for the MC 

algorithm. The QL approach outperformed the MC 

approach; its performance seems similar to the traditional 

approach, with the traditional approach having a slightly 

lower system downtime and the number of failed 

components. 

Table 3. System downtime (in weeks), number of failed and 

replaced components of each approach for Strategy II 

 Traditional Q-learning MCRL 

System downtime 7.454 7.574 8.129 

number of the failed 

component 
16 25 68 

Number of 

prevention action 
867 860 806 

https://en.wikipedia.org/wiki/Scale_parameter
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Figure 2. System downtime (in weeks) of different approaches 

for Strategy II 

In Strategy III, the agent finds the optimal policy in 

interacting with the environment in ~400 and ~250 

episodes with MC and QL algorithms, respectively. Table 

4 reports the optimal replacement times of each 

component by using different approaches in Strategy III. 

Table 4. Optimal replacement times (in weeks) for Strategy III 

Component 

Name 
Traditional Q-learning MCRL 

Tire 13.809 13.810 13.839 

Transmission 5.770 5.804 5.923 

Wheel 3.964 3.988 4.137 

Coupling 7.917 7.738 8.185 

Motor 1.970 2.024 2.024 

Brake 22.381 22.530 23.036 

Steering 4.339 4.137 4.643 

Gears 11.875 11.964 12.054 

Table 5 shows the total system downtime of the three 

approaches in Strategy III. The traditional approach 

achieves the lowest downtime of 7.657 weeks at a 

scheduled overhaul of 21 weeks, with 9 failed 

components and 956 preventive replaced components due 

to preventive action; The QL algorithm achieves the 

lowest downtime of 7.763 weeks at a scheduled overhaul 

of 21 weeks, with 12 and 985 failed and preventive 

replaced components; Finally, the MC algorithm 

achieves the lowest downtime of 8.985 weeks at a 

scheduled overhaul of 15 weeks, with 120 and 912 failed 

and preventive replaced components. In Strategy III, the 

traditional method has the lowest overall downtime 

compared to the other two approaches. The difference 

between the average downtime of QL and that of the 

traditional approach was less than one day (~18 hours). 

However, such difference between the MC and the 

traditional approaches was as high as one week. 

Table 5. System downtime (in weeks) obtained by different 

approaches for Strategy III with different overhaul times 

Schedule 

overhaul 

System downtime 

Traditional Q-learning MCRL 

3 10.987 11.054 11.121 

6 10.159 10.334 11.223 

9 8.515 8.898 9.821 

12 8.673 8.635 9.638 

15 7.934 8.040 8.985 

18 8.273 8.457 9.731 

21 7.657 7.763 9.339 

24 8.230 8.160 9.561 

27 7.731 7.909 9.553 

30 7.903 7.981 9.505 

 

Table 6, Table 7, and Figure 3 illustrates similar 

comparison results among the three approaches for 

Strategy IV. The agent finds the optimal policy in 

interacting with the environment in ~1000 and ~200 

episodes in MC and QL algorithms. Table 6 reports the 

optimal replacement times for different components 

using Strategy IV's three approaches. The replacement 

times estimated using the RL algorithms are much lower 

than those obtained through the traditional approach. The 

reduction in replacement times is due to the group 

structure in this strategy. Components with a lower mean 

failure time dominate the overall replacement time of 

their fellow components. It can be seen in Table 7 that the 

traditional approach has a total downtime of 8.375 weeks 

with 27 failed components and 1237 preventive replaced 

components due to preventive action. The overall system 

downtime was 9.117 weeks (39 failed and 1348 

preventive replaced components) and 10.815 weeks (84 

failed and 1618 preventive replaced components) for the 

QL and MC algorithms. In Strategy IV, the traditional 

approach has the lowest downtime and number of failed 

components. It has fewer preventive replacements than 

the other two approaches (which will lead to lower 

maintenance costs). 

Table 6. Optimal replacement times (in weeks) for Strategy IV 

Component 

Name 
Traditional Q-learning MCRL 

Tire 13.809 4.167 4.226 

Transmission 5.770 5.804 5.893 

Wheel 3.964 2.024 1.994 

Coupling 7.917 5.832 5.893 

Motor 1.970 2.024 1.994 

Brake 22.381 4.375 4.643 

Steering 4.339 4.375 4.643 

Gears 11.875 4.167 4.167 
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Table 7. System downtime (in weeks), number of failed and 

replaced components of each approach for Strategy IV 

 Traditional Q-learning MCRL 

System 

downtime 
8.375 9.117 10.815 

number of 

failed 

components 

27 39 84 

Number of 

prevention 

action 

1237 1348 1618 

 

 

Figure 3. System downtime (in weeks) for Strategy IV 

According to Table 8, Table 9, and Table 10, Strategy I is 

the worst strategy as it has the longest downtime. This 

shows the clear advantage of preventive strategies over 

corrective maintenance strategies. Overall, the most 

efficient strategy among these proposed strategies is 

Strategy II. 

Table 11 reports the average execution time for each 

approach and strategy to obtain the optimal policy. As 

seen, the traditional approach was the most time-efficient 

(less than a second). After the traditional approach, the 

QL algorithm was about twice faster than the on-policy 

first visit MC algorithm. As expected, the more complex 

a strategy is, the more time requires to obtain its optimal 

policy. 
Table 8. Evaluation of traditional approach for different 

strategies 

 
Strategy 

I 

Strategy 

II 

Strategy 

III 

Strategy 

IV 

System 

downtime 
21.366 7.454 7.657 8.375 

number of 

failed 

components 

842 16 9 27 

Number of 

prevention 

action 

0 867 956 1237 

Table 9. Evaluation of QL algorithm for different strategies 

 
Strategy 

II 

Strategy 

III 

Strategy 

IV 

System downtime 7.574 7.762 9.117 

number of failed 

components 
25 12 39 

Number of prevention 

action 
860 985 1348 

Table 10. Evaluation of MC algorithm for different strategies 

 Strategy II Strategy III Strategy IV 

System 

downtime 
8.129 8.985 10.815 

number of 

failed 

components 

68 120 84 

Number of 

prevention 

action 

806 912 1618 

Table 11.Execution time to converge to the optimal policy by 

different approaches in different strategies 

 Strategy II Strategy III Strategy IV 

Traditional < 1 sec < 1 sec < 1 sec 

QL 2 min 2 min 22 min 

MC 4 min 3 min 53 min 

Scenario 2: Misspecified failure time 

distributions are available 

The results reported in Scenario 1 are under the 

assumption of knowing the environment and, therefore, 

the true failure time distribution of different components 

was available. However, under a more realistic scenario, 

the true failure time distribution of the components may 

not be available. 

In this section, we evaluate the performance of the 

three approaches under the components' misspecified 

failure time distribution. More specifically, we assumed 

the components' true distribution of failure time remains 

Weibull with the same parameters reported in Table 1. 

However, a misspecified Weibull distribution (either its 

shape or scale parameter is overestimated by different 

degrees) is assumed for each component while finding the 

optimal policy by each approach. 

The RL free-model algorithms require no 

environmental assumptions, and the agent interacts with 

the environment directly (data-driven). That is, the 

misspecified failure time distribution will not impact 

them.  

Table 12 reports the optimal replacement times 

obtained through "Eq. (1)" by assuming an overestimated 

Weibull shape parameter. As shown in Figure 4, Figure 

5, and Figure 6, the misspecification of the Weibull shape 

parameter does not seem to have a large impact on the 

estimated optimal replacement time of the components by 

the traditional approach. When using the optimal 

replacement time of the traditional approach, the 

estimated system downtime seemed to be impacted 

differently in different strategies. Specifically, the 

traditional system downtime in Strategy II and III was 

slightly impacted (increased by 1.5-3 days) only when the 

shape parameter was overestimated by at least 20%. 
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Table 12.Optimal replacement times with minor changes in 

the Weibull shape parameters. 

Component Name 
Shape 

(real) 

Shape 

+10% 

Shape 

+20% 

Shape 

+30% 

Shape 

+40% 

Shape 

+50% 

Tire 13.81 13.85 13.86 13.88 13.89 13.90 

Transmission 5.77 8.78 5.79 5.80 5.80 5.81 

Wheel 3.96 3.99 4.01 4.02 4.03 4.04 

Coupling 7.92 7.95 7.98 8 8.02 8.04 

Motor 1.97 1.98 1.99 1.99 1.99 1.99 

Brake 22.38 22.47 22.54 22.60 22.67 22.68 

Steering 4.34 4.39 4.42 4.45 4.48 4.50 

Gears 11.88 11.89 11.90 11.92 11.94 11.95 

Figure 7, Figure 8 and Figure 9 illustrate system 

downtime obtained by the traditional approach compared 

to RL algorithms. As the figures show, the Weibull scale 

parameter overestimation from 2% to 5% increased the 

system downtime by 1 to 8 weeks in different strategies. 

Moreover, Table 13 shows how minor changes in the 

Weibull scale parameter affect the optimal replacement 

times obtained through "Eq. (1)". 

Table 13.Optimal replacement times with minor changed in 

the Weibull scale parameter. 

 

 

  

Figure 4. System downtime of different approaches under minor changes in the Weibull shape parameters for Strategy II 

 

   

Figure 5. System downtime of different approaches under minor changes in the Weibull shape parameters for Strategy III 

Component 

Name 

Scale 

(real) 

Scale 

+1% 

Scale 

+2% 

Scale 

+3% 

Scale 

+4% 

Tire 13.81 13.96 14.11 14.23 14.38 

Transmission 5.77 5.83 5.89 5.92 6 

Wheel 3.96 3.99 4.05 4.08 4.12 

Coupling 7.92 7.98 8.07 8.16 8.21 

Motor 1.97 1.99 2.01 2.03 2.05 

Brake 22.38 22.62 22.86 23.07 23.27 

Steering 4.34 4.39 4..43 4.49 4.51 

Gears 11.88 11.99 12.11 12.20 12.34 
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Figure 6. System downtime of different approaches under minor changes in the Weibull shape parameters for Strategy IV 

 

Figure 7. System downtime of different approaches under minor changes in the Weibull scale parameters for Strategy II 

  

Figure 8. System downtime of different approaches under minor changes in the Weibull scale parameters for Strategy III 
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Figure 9. System downtime of different approaches under minor changes in the Weibull scale parameters for Strategy IV 

c

6. Discussion 

In this work, we employed three traditional (renewal 

theory) approaches, MCRL and TDRL, to find the 

optimal preventive maintenance policy for equipment 

composed of multi-non-identical components. Three 

preventive maintenance strategies, along with a 

corrective maintenance strategy (as baseline), were 

studied. Our results confirmed that preventive 

maintenance strategies perform better than the corrective 

maintenance policy, as expected, for our system. More 

importantly, our results showed that the traditional 

approach (renewal theory) is sensitive to the 

misspecification of the components’ failure time 

distribution. More specifically, under the assumption of 

the components Weibull distributed failure times, the 

optimal policy and, consequently, the performance of the 

traditional approach seem to be impacted only slightly by 

misspecifying the shape parameters up to 50% (downtime 

increased by < 3 days). However, even minor 

misspecification in the scale parameter (up to 5%) can 

lead to a huge increase in the system downtime following 

the traditional approach optimal policy by up to 8 weeks. 

On the other hand, since the model-free RL algorithms 

are data-driven with no requirements of prior assumption 

on the environment distribution (e.g., failure time 

distributions), they can be minimally impacted by such 

misspecifications. 

Different RL algorithms, however, can potentially 

perform very differently. Under the assumptions of our 

study, the QL algorithm outperformed the MC algorithm 

dramatically. Given the quick progress in developing RL 

algorithms nowadays, a natural next step to our work 

might be evaluating different RL algorithms for different 

systems with different assumptions. 
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