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Abstract 

Jaynes's information principle, i.e., maximum entropy principle (MEP), constrained by probability weighted moments (PWM), 

has been well established as an alternative method to directly estimate quantile functions (QF) from samples of a random 

variable. The existence, unbiasedness, and efficiency of the maximum entropy QFs have been illustrated in the literature. 

However, the issue of how many orders of PWMs is optimal for a given sample of data remains unsolved, and applications of 

the maximum entropy QFs to reliability analysis in civil engineering are still obscure. This paper serves four main purposes: (1) 

a new general formulation is developed for the PWM-based MEP without sample normalization; (2) the optimal order of PWMs 

in MEP is determined by another information principle, i.e., Akaike information criterion; (3) The feasibility of the proposed 

maximum entropy QFs is illustrated by two case studies in probabilistic modeling of the soil undrained shear strength and the 

flood frequency; (4) applications of the proposed maximum entropy QFs are substantiated in QF-based first order reliability 

analysis of a cantilever steel beam with uncorrelated random variables and with correlated random variables. The maximum 

entropy QFs are compared to common empirical probability distributions, such as normal and lognormal distributions, in 

reliability analysis to demonstrate the advantages and disadvantages of the method developed. 

Keywords: Quantile function; Maximum entropy principle; Probability weighted moments; Akaike information criterion; Reliability 

analysis; Correlated random variables.

1. Introduction 

Reliability and risk in engineering analysis, design, and 

planning have received worldwide acknowledgment [1]. 

Engineering parameters are commonly described by 

continuous random variables, and the randomness is 

represented by probability distributions such as 

probability density functions (PDF) and cumulative 

distribution functions (CDF). Sometimes, however, we 

need to know the value of the random variable 

corresponding to a given probability of occurrence of 

values smaller than the value, and this value is defined as 

quantile or fractile [2]. Probabilistic structural design was 

based on weighted fractiles [3]. A semi-probabilistic 

design method was also proposed by employing fractiles 

of distributions as a measure of structural reliability [4]. 

It was found that quantile-based optimization under 

uncertainties using adaptive kriging surrogate models can 

increase accuracy and efficiency [5]. A quantile-based 

sequential method using Kriging surrogate models was 

recently presented for reliability-based design 

optimization [6]. Another quantile-based reliability 

design method was proposed by Li et al. [7] and studied 

by He et al. [8]. A quantile-based approach was used for 

calibrating reliability-based partial factors [9]. A 

comprehensive monograph on statistical modeling with 

quantile functions (QF) was prepared by Gilchrist [10]. 

Quantile values can be calculated from QFs, which 

are inverse CDFs. Such quantiles often characterize the 

design values of loads and material properties specified 

by design codes [2,11]. It is often necessary to determine 

the quantiles of a random variable (for example, the 

strength of new or unknown material) from a sample of 

data [11,12].  

If a random variable has been characterized by a 

known probability distribution (PDF or CDF), then the 

quantile is simply the point value at which the distribution 

function attains the specified probability. However, direct 

estimation of quantiles from a sample of a random 

variable without having a PDF or CDF is a more 

challenging task [11-13]. Several methods are available 

for the estimate of the population quantile: the prediction 

method, the coverage method, and the Bayesian method. 
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The first two are mainly empirical in that both methods 

need sample mean, standard deviation, and/or skewness. 

The Bayes method requires previous experience with a 

random variable. Methods were formulated to determine 

fractile values from statistical data, which includes 

information about data size [14]. Schöbi and Sudret [15] 

proposed a PC-Kriging-based meta-modeling method to 

estimate quantiles. Adaptive kriging and importance 

sampling were recently used in an efficient estimation of 

extreme quantiles [16]. 

In most cases, quantile estimation involves 

empirically choosing a common probability distribution, 

such as normal or lognormal distribution, and then 

distribution parameters are evaluated by a statistical 

method, such as the method of moments or method of 

maximum likelihood. An alternative and attractive 

approach for the distribution fitting comes from Jaynes’ 

information principle, i.e., the maximum entropy 

principle (MEP), which provides an objective 

distribution-free probability distribution from observed 

data in terms of sample moments [17-19]. Probability-

weighted moments (PWMs) [20,21] are linear 

combinations of the observed sample values. By 

interpreting PWMs as moments of quantile function, 

Pandey [11] derived an analytical form of quantile 

function using the MEP. The existence, unbiasedness, 

and efficiency of the maximum entropy quantile 

functions from samples have been well established as an 

alternative method to estimate quantile functions (QF) 

from samples of a random variable [11,22]. Entropy has 

been extensively applied in hydrologic and hydraulic 

science and engineering [23,24], but little research has 

touched the PWM-based entropy [17,25,26].  

Furthermore, the issue of how many orders of PWMs is 

optimal for a given sample of data remains unsolved, 

which prevents this promising technique from being 

widely used in civil engineering. More recently, we 

developed maximum entropy quantile functions from a 

sample of data based on fractional probability weighted 

moments and found applications in First Order Reliability 

Method, a widely used method in civil engineering [27]. 

This paper directly estimates quantile functions 

using two information principles and studies their 

applications in reliability analysis. Section 2 introduces 

PWMs and interprets PWMs as the moments of quantile 

functions. A more general formulation without sample 

normalization is developed in Section 3 for PWM-based 

Jaynes information principle, i.e., the MEP, which is 

different from our previous algorithms [25-27]; Section 3 

also determines the optimal order of PWMs in MEP by 

another information principle, i.e., Akaike information 

criterion (AIC); Section 4 gives illustrative case studies 

for the maximum entropy QF modeling in civil 

engineering; Section 5 substantiates the developed 

maximum entropy QFs in first-order reliability analysis.  

Conclusions are given in Section 6. 

2. Probability Weighted Moments 

2.1 Definition 

For a random variable 𝑋, the weighted probability 

moment is defined by [20]  

𝑀𝑟,𝑠,𝑡 = E[𝑋𝑟𝐹𝑠(1 − 𝐹)𝑡] = ∫ [𝑥(𝐹)]𝑟𝐹𝑠(1 −
1

0

𝐹)𝑡d𝐹, 𝐹 ≡ 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥), 
(1) 

where 𝑀𝑟,𝑠,𝑡 is the integral PWM with integral order 𝑟, 𝑠, 
and 𝑡. E[∙] is the mathematical expectation, 𝐹 is the 

probability of non-exceedance. Two types of PWM are 

particularly interesting due to their linear combination of 

the random variable, Type 1:   

𝛼𝑡 = 𝑀1,0,𝑡 = ∫ 𝑥(𝐹)(1 − 𝐹)𝑡d𝐹
1

0
= ∫ 𝑥(𝑞)𝑞𝑡d𝑞

1

0
  (2) 

and Type 2:     

𝛽𝑠 = 𝑀1,𝑠,0 = ∫ 𝑥(𝐹)𝐹𝑠d𝐹
1

0
, (3) 

where 𝑞 = 1 − 𝐹.  𝛼𝑡 and 𝛽𝑠 can be estimated from a 

sample of data by 𝑎𝑡 and 𝑏𝑠, respectively, 

𝛼𝑡 ≈ 𝑎𝑡 = 1

𝑛
∑ [(1 − 𝐹𝑖)

𝑠𝑥𝑖]
𝑛
𝑖=1 , 

𝛽𝑠 ≈ 𝑏𝑠 =
1

𝑛
∑ [(𝐹𝑖)

𝑠𝑥𝑖]
𝑛
𝑖=1 , 𝐹𝑖 =

𝑖−0.44

𝑛+0.12
, 

(4) 

where 𝑛 is the sample size, 𝑥𝑖 is the 𝑖-th sample element,   

𝐹𝑖 is a suitable plotting position formula (e.g., the 

Gringorten formula) [27,40]. For an ordered sample of 

data, 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛, Type 1 and Type 2 integral 

order PWMs can be unbiasedly estimated by [21,28], 

respectively, 

𝑎𝑡 =
1

𝑛
∑ [(

𝑛 − 𝑖
𝑡

) 𝑥𝑖]
𝑛
𝑖=1 (

𝑛 − 1
𝑡

)⁄ , 

𝑏𝑠 =
1

𝑛
∑ [(

𝑖 − 1
𝑠

) 𝑥𝑖]
𝑛
𝑖=1 (

𝑛 − 1
𝑠

)⁄ ,  (
𝑛
𝑟

) =

𝑛!

𝑟!(𝑛−𝑟)!
, 

(5) 

where 𝑠, 𝑡 = 0,1, ⋯ , (𝑛 − 1)  are non-negative integers. 

2.2 Moments of the quantile function 

Type 2 probability-weighted moment can be written as 

𝛽𝑠 = 𝑀1,𝑠,0 = ∫ 𝑥(𝐹)𝐹𝑠d𝐹
1

0
= 𝛽0 ∫ 𝐹𝑠d𝑇

1

0
,     (6) 

And 

d𝑇 =
𝑥(𝐹)d𝐹

∫ 𝑥(𝐹)d𝐹
1

0

,  𝛽0 = ∫ 𝑥(𝐹)d𝐹
1

0
,   (7) 

where QF, 𝑥(𝐹), is a monotonic and continuous function. 

On the other hand, the ordinary raw moment (or 

moment about the origin) can be given by 

𝐸[𝑋𝑠] = ∫ 𝑥𝑠𝑓(𝑥)d𝑥
𝑅

= ∫ [𝑥(𝑢)]𝑠d𝑢
1

0
, (8) 

And 

d𝑢 = d𝐹(𝑥) =
𝑓(𝑥)d𝑥

∫ 𝑓(𝑥)d𝑥
𝑅

,    ∫ 𝑓(𝑥)d𝑥
𝑅

= 1. (9) 

A similar functional form can be found between Eqs. 

(6) and (8), thus 𝛽𝑠/𝛽0 can be interpreted as the 𝑠-th 

moment of the quantile function, 𝑥(𝐹), 0 ≤ 𝐹 ≤ 1. 

3. Information Principles 

Two information principles are presented: (1) the 

maximum entropy principle constrained by PWMs; (2) 

the Akaike information criterion. The first principle is 
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used to generate a hierarchy of maximum entropy 

quantile functions from a sample of data, and the second 

principle will decide the optimal order of the maximum 

entropy quantile functions. 

3.1 Maximum entropy principle 

The entropy of a random variable 𝑋 can be defined in 

terms of QF by [27]  

𝐻[𝑥(𝐹)] = − ∫ [𝑥(𝐹) ln 𝑥(𝐹)]d𝐹
1

0
, (10) 

where 𝐻[𝑥(𝐹)] is the entropy, 𝑥(𝐹) is the quantile 

function, and 𝐹 is the probability of non-exceedance. The 

𝑥(𝐹) is a non-negative function for every 𝐹 in the interval 

[0,1] and is normalized to unity such that 

∫ 𝑥(𝐹)d𝐹
1

0
= 1,   (Normalization condition) (11) 

which indicates that 𝛽0 ≈ 𝑏0 = 1. The 𝑥(𝐹) is also 

satisfied constraints 

∫ 𝑥(𝐹)𝐹𝑠d𝐹
1

0
=𝛽𝑠 , 𝑠 = 1,2, ⋯ , 𝐾, (12) 

where 𝐾 is the highest order of PWM and 𝛽𝑠 is the 𝑠-th 

PWM. The 𝛽𝑠 is estimated by 𝑏𝑠 in Eq. (5) from a sample 

of data (𝛽𝑠 ≈ 𝑏𝑠). 

The maximum entropy principle (MEP) was created 

and rationalized by Jaynes [29], which states that "the 

minimally prejudiced assignment of probabilities is that 

which maximizes the entropy subject to the given 

information." To maximize the entropy in Eq. (10) under 

the constraints in Eqs. (11) and (12), the method of 

Lagrange multipliers is used, and the Lagrangian function 

𝐻 can be given by 

𝐻 = − ∫ [𝑥(𝐹) ln 𝑥(𝐹)]d𝐹
1

0
− (𝜂0 −

1) [∫ 𝑥(𝐹)d𝐹
1

0
− 1] − ∑ 𝜂𝑠 [ ∫ 𝑥(𝐹)𝐹𝑠d𝐹

1

0
−𝐾

𝑠=1

𝑏𝑠], 

(13) 

where 𝐻 is the Lagrangian and 𝜂𝑠 are the Lagrangian 

multipliers. (𝜂0 − 1) is used as the coefficient instead of 

𝜂0 for ease of calculation. The maximization of 𝐻 

demands 
𝜕𝐻̅

𝜕𝑥(𝐹)
= 0.  (14) 

Substitution of Eq. (13) into Eq. (14) yields  

𝑥(𝐹) ≈ 𝑥𝐾(𝐹) = exp[− ∑ 𝜂𝑠𝐹𝑠𝐾
𝑠=0 ], (15) 

where 𝜂𝑠 are Lagrangian multipliers and also the 

unknown parameters of the maximum entropy QF.  

Substitution of Eq. (15) into ln[𝑥(𝐹)] of Eq. (10) and 

consideration of Eq. (12) yield a sample estimate of 

𝐻[𝑥(𝐹)],   
𝐻̂[𝑥(𝐹)] = ∑ (𝜂𝑠𝑏𝑠)𝐾

𝑠=0 . (16) 

The Lagrangian multipliers are determined by a set 

of 𝐾 + 1 nonlinear equations with the sample mean 𝑏0 =
1, 

∫ 𝐹𝑠 exp[− ∑ 𝜂𝑖𝐹𝑖𝐾
𝑖=0 ] d𝐹

1

0
=𝑏𝑠, 𝑠 = 0,1, ⋯ , 𝐾. (17) 

 

This can be done through the robust nonlinear 

system solver “fsolve” in Matlab (the Gauss-Newton 

method with numerical gradient and Jacobian).  

If a sample mean is not unit from random variable 𝜒, 

then one can normalize the sample by the sample mean to 

satisfy Eq. (11):  

x =  χ/μ. (18) 

After obtaining Eq. (15), the maximum entropy QF 

is given by 

χK(F) = μ exp[− ∑ ηsFsK
s=0 ] = exp[− ∑ λsFsK

s=0 ],          (19) 

Where 

𝜆0 = − ln 𝜇 + 𝜂0, (20) 

and   

𝜆𝑠 = 𝜂𝑠 for 𝑠 = 1, 2, ⋯ , 𝐾. (21) 

The normalization condition is mainly designed for 

interpreting PWMs as moments of quantile function in 

Section 2.2. It also serves to remove the effect of 

dimension and prevent overflow and underflow in the 

calculation. 

If the Type-1 PWMs, 𝛼𝑘, are chosen as constraints 

of the entropy, the QF would be given as a function of the 

exceedance probability, 

𝜒𝐾(𝐹) = exp[− ∑ 𝜆𝑖(1 − 𝐹)𝑖𝐾
𝑖=0 ], (22) 

where 1 − 𝐹 is the probability of exceedance.  

Eq. (19) or (22) is the maximum entropy QF that is 

estimated from a sample of data. 

3.2 A general formulation of MEP without 

normalization 

A more general algorithm of MEP is presented, where the 

normalization condition is relaxed. The moment 

constraints in Eqs. (11) and (12) can be combined as  

∫ x(F)FsdF
1

0
=βs, s = 0,1,2, ⋯ , K, (23) 

where 𝛽𝑠 is the 𝑠-th PWM, and 𝐾 is the highest order of 

PWM. If only a sample of data is available, 𝛽𝑠 is 

estimated from 𝑏𝑠 in Eq. (5), i.e., 𝛽𝑠 ≈ 𝑏𝑠. To maximize 

the entropy 𝐻[𝑥(𝐹)] in Eq. (10), under the constraints in 

Eq. (23), the Lagrangian function 𝐻 is given by 

𝐻̅ = − ∫ [𝑥(𝐹) ln 𝑥(𝐹)]d𝐹
1

0
− 

∑ 𝜆𝑠 [ ∫ 𝑥(𝐹)𝐹𝑠d𝐹
1

0
− 𝑏𝑠]𝐾

𝑠=0 ,   
(24) 

where 𝜆𝑠 are unknown Lagrangian multipliers. The 

maximization of 𝐻 requires 
𝜕𝐻̅

𝜕𝑥(𝐹)
= 0.  (25) 

Substitution of Eq. (24) into Eq. (25) yields  

𝑥(𝐹) ≈ 𝑥𝐾(𝐹) = exp[−1 − ∑ 𝜆𝑠𝐹𝑠𝐾
𝑠=0 ].  (26) 

Substitution of Eq. (26) into ln[𝑥(𝐹)] of Eq. (10) and 

consideration of Eq. (23) yield an estimate of 𝐻[𝑥(𝐹)] 
from a sample of data,   

𝐻̂[𝑥(𝐹)] = 𝑏0 + ∑ (𝜆𝑠𝑏𝑠)𝐾
𝑠=0 . (27) 

The Lagrangian multipliers are determined by 

solving a set of nonlinear equations  

∫ 𝐹𝑠 exp[−1 − ∑ 𝜆𝑖𝐹𝑖𝐾
𝑖=0 ] d𝐹

1

0
=𝑏𝑠, 𝑠 = 0,1, ⋯ , 𝐾. (28) 

Similar to Eq. (17), this can be done through the 

robust nonlinear system solver “fsolve” in Matlab. 

Similar to Eq. (22), if the Type-1 PWMs are selected as 

constraints of the entropy, the QF is given by,  

𝑥𝐾(𝐹) = exp[−1 − ∑ 𝜆𝑖(1 − 𝐹)𝑖𝐾
𝑖=0 ],  (29) 

where 1 − 𝐹 is the probability of exceedance. Eq. (26) or 

(29) is the generalized maximum entropy QF that is 

derived from a sample of data without normalization.  
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3.3 Akaike information criterion 

Sections 3.1 and 3.2 derived a maximum entropy QF from 

a sample of data if several PWMs were given. This 

section will develop a method to determine the optimal 

order of the maximum entropy QF from a specific sample 

of data. The method is based on the Akaike information 

criterion (AIC), which is actually a means for model 

selection [30].  

Assume that 𝑥(𝐹) is the true but unknown QF for 

random variable 𝑋, 𝑥𝐾(𝐹) be the estimated QF based on 

𝐾 order PWM which is given in Eq. (19). The closeness 

between 𝑥(𝐹) and 𝑥𝐾(𝐹) can be determined by Kullback-

Leibler (KL) entropy, 

KL[𝑥(𝐹), 𝑥𝐾(𝐹)] = ∫ 𝑥(𝐹) ln
𝑥(𝐹)

𝑥𝐾(𝐹)
d𝐹

1

0
= 𝐶 −

𝐿(𝜆, 𝐾),     
(30) 

where   

𝐶 = ∫ 𝑥(𝐹) ln 𝑥(𝐹) d𝐹
1

0
, (31) 

𝐿(𝜆, 𝐾) = ∫ 𝑥(𝐹) ln 𝑥𝐾(𝐹) d𝐹
1

0
. (32) 

The KL entropy is a measure of the distance between 

the true QF and the estimated QF, such that the smaller 

KL[𝑥(𝐹), 𝑥𝐾(𝐹)], the closer of 𝑥𝐾(𝐹) to 𝑥(𝐹), and the 

higher quality of the fitted model 𝑥𝐾(𝐹). The extreme 

case is KL[𝑥(𝐹), 𝑥𝐾(𝐹)] = 0 if 𝑥𝐾(𝐹) = 𝑥(𝐹). 

Consequently, the selection of parameters in 𝑥𝐾(𝐹) 

should minimize the KL entropy, 

min
𝑘

{ min
𝜆0,⋯,𝜆𝐾

{KL[𝑥(𝐹), 𝑥𝐾(𝐹)]}}. (33) 

The term 𝐶 in Eq. (31) does not depend on 𝑥𝐾(𝐹), 

so when the KL entropy is minimized with respect to 𝐾 

and 𝜆,  𝐶 can be taken as a constant. The term 𝐿(𝜆, 𝐾) in 

Eq. (30) can be regarded as the expectation of ln 𝑥𝐾(𝐹), 

thus a natural estimate 𝐿̂(𝜆, 𝐾) of 𝐿(𝜆, 𝐾) can be obtained 

from the probability of non-exceedance 𝐹𝑖, corresponding 

to the sample element 𝑥𝑖(𝑖 = 1,2, ⋯ , 𝑛)  

𝐿̂(𝜆, 𝐾) =
1

𝑛
∑ [𝑥𝑖 ln 𝑥𝐾(𝐹𝑖|𝜆, 𝐾)]𝑛

𝑖=1 , (34) 

KL̂(𝜆, 𝐾) = 𝐶 − 𝐿̂(𝜆, 𝐾), (35) 

where 𝑥𝐾(𝐹𝑖) is written as 𝑥𝐾(𝐹𝑖|𝜆, 𝐾) to emphasize that 

the model features parameters 𝜆 and 𝐾. KL̂(𝜆, 𝐾) is a 

sample estimate of the KL entropy.  Eq. (33) is then recast 

as  
 

min
𝜆,𝐾

{KL̂(𝜆, 𝐾)} = 𝐶 + min
𝜆,𝐾

{−𝐿̂(𝜆, 𝐾)} = 𝐶 +

min
𝜆,𝐾

{−
1

𝑛
∑ [𝑥𝑖 ln 𝑥𝐾(𝐹𝑖|𝜆, 𝐾)]𝑛

𝑖=1 }.  
(36) 

If 𝐾 is given, the minimization of  KL̂(𝜆, 𝐾) will 

result in the best choice of 𝜆, which is equivalent to the 

system of nonlinear equations in Eq. (17) and the 

transformation in Eqs. (20) and (21) [31]. The term 

𝐿̂(𝜆, 𝐾) is the log-likelihood function. Hence the 

parameters (𝜆 and 𝐾) which minimize the KL entropy 

estimate KL̂(𝜆, 𝐾) are maximum likelihood estimates. It 

should be noted that for a finite sample size 𝑛, the 

maximum likelihood estimates are often biased estimates 

of the true parameters. Akaike [32] proposed an unbiased 

estimate of 𝐿̂(𝜆, 𝐾), which was later named as Akaike 

information criterion (AIC) [33]. One of the AIC 

unbiased estimates of −𝐿̂(𝜆, 𝐾) is given by  
 

Γ̂(𝜆, 𝐾) = −𝐿̂(𝜆, 𝐾) +
𝐾

𝑛
, (37) 

where Γ̂(𝜆, 𝐾), called differential entropy, are the 

unbiased estimates of −𝐿̂(𝜆, 𝐾). By substituting Eq. (19) 

into the term ln 𝑥𝐾(𝐹𝑖|𝜆, 𝐾) of Eq. (34) and considering 

Eq. (16), Eq. (37) can be expanded as    
 

Γ̂(𝜆, 𝐾) = ∑ 𝜆𝑠 {
1

𝑛
∑ [𝑥𝑖(𝐹𝑖)𝑠]𝑛

𝑖=1 }𝐾
𝑠=0 +

𝐾

𝑁
=

∑ (𝜆𝑠𝑏𝑠)𝐾
𝑠=0 +

𝐾

𝑁
= 𝐻̂[𝑥(𝐹)] +

𝐾

𝑁
, 

(38) 

where 𝑏𝑠 is the sample estimate of the type 2 PWM 𝛽𝑠 in 

Eq. (4).  

Given a sample of data and a specific order of 𝐾, the 

maximum entropy QF (with parameters 𝜆) can be 

obtained by using the algorithm in Section 3.1. By 

increasing a model of sufficiently high order 𝐾, one can 

make the quantity KL[𝑥(𝐹), 𝑥𝐾(𝐹)] in Eq. (30) as small 

as that one wants. This is because the more PWMs are 

used, the more information the MEP can extract from the 

sample of data. It is theoretically possible to approximate 

any QF 𝑥(𝐹) using 𝑥𝐾(𝐹) with an arbitrary degree of 

accuracy which depends on the order 𝐾. In other words, 

the function −𝐿̂(𝜆, 𝐾) decreases as a function of 𝐾, 

approaching zero asymptotically.  

For a constant of 𝑛, the term  
𝐾

𝑛
  in Eq. (38) increases 

as a function of 𝐾. Consequently, the differential entropy 

Γ̂(𝜆, 𝐾) must have a minimum for a certain 𝐾 value. That 

is to say; for a series of 𝐾, there does exist a number 𝐾 to 

minimize the differential entropy Γ̂(𝜆, 𝐾) in Eq. (38), 

which in turn minimizes the term KL̂(𝜆, 𝐾) in Eq. (36). 

This 𝐾 is the optimal order of the maximum entropy QF.  

The term 
𝐾

𝑛
 in AIC can be interpreted as a penalty 

term that prevents us from establishing too elaborate 

models which cannot be justified by the given sample of 

data. When only a sample of data is available, the MEP 

and the AIC are combined to determine the optimal order 

of PWMs being used in the estimation of a QF, thus 

preventing us from using either too sophisticated models 

(models with too many alterable parameters to properly 

contain the sample information) or too simple models 

(models with too little adjustable parameters to fully 

accommodate the sample information).   

The existing optimal order in model selection 

acknowledged the fact that the information contained in a 

sample of data shouldn’t produce a too complicated 

model, which may have redundant parameters, and 

shouldn’t generate a too simple model in which too little 

information is used. AIC has been successfully used in 

the determination of maximum entropy distribution 

constrained by ordinary moments [34] and fractional 

moments [18, 35]. The present paper is to determine the 

optimal order of PWMs in MEP. 
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4. Case Studies 

Two case studies from civil engineering are given; one is 

soil undrained shear strength in the Nipigon River 

landslide area, and the other is flood frequency analysis 

for the Grand River in Ontario, Canada. 

4.1 Soil undrained shear strength 

On April 23, 1990, a large landslide occurred on the east 

bank of the Nipigon River in the District of Thunder Bay 

in Northwestern Ontario, Canada (Fig. 1, adapted from 

[36]). The landslide involved approximately 300,000m3 

of soil and extended almost 350m inshore with a 

maximum width of approximately 290m. Soil from the 

landslide was pushed into the Nipigon River 300m 

upstream and downstream and formed several islands in 

the river. These islands redirected the river current and 

caused subsequent erosion on the west bank of the 

Nipigon River opposite the slide area. This likely caused 

several landslides to occur further south one month after 

the landslide. Since then, people have started to pay 

attention to the landslides of various scales frequently 

occurring in this area due to adverse landscape geology 

and soil properties of the upper silty sand layer. 

 

 

Figure 1. Location of Nipigon River landslide. 

In order to investigate the mechanism of the 

landslides, soil properties are needed in undrained 

conditions because short-term slope stability requires the 

undrained shear strength of the soil. In the case of field 

investigation, the vane shear test (VST) is the most 

frequently adopted method to obtain the undrained shear 

strength of soil [37]. A complete outline of the vane shear 

test is provided by Walker [38]. The field test procedure 

followed the standards of ASTM D2573-08 [39]. The 

VST testing was carried out by graduate students (NS 

Kanwar, S Singh, and D Joshi) under the supervision of 

Dr. J Deng from Lakehead University, and the measured 

undrained shear strengths are listed in Table 1. Even if 

great care was taken and the strict standard was followed 

to keep the conditions of testing as homogeneous as 

possible, the values exhibit an intrinsic variability that 

cannot be ignored in slope stability analysis. The soil 

undrained shear strength is actually a random variable, 

and a probabilistic approach to treatment is appropriate. 

Maximum entropy QFs are used to characterize this soil's 

undrained shear strength. 

Based on the sample in Table 1, ten-order sample 

PWMs can be calculated by using Eq. (5), the results of 

which are listed in Table 2. The third column is the 

normalized PWM by the sample mean (51.68471074 

kPa). Eight digits to the right of the decimal point are kept 

to increase the calculation accuracy. The maximum 

entropy QFs can be obtained from the algorithm in 

Section 3.1 for the PWM order 𝐾 from 1 to 10, of which 

the parameters are listed in Table 3. The differential 

entropy Γ̂(𝜆, 𝐾) in Table 3 indicates that the minimum 

value occurs at 𝐾 = 5, so in accordance with the AIC in 

Section 3.3, the maximum entropy QF with 𝐾 = 5 is the 

unbiased and optimal model from the soil sample in Table 

1, the analytical function of which is given by 
𝑥𝐾(𝐹) = exp(2.737607 + 7.917811𝐹 −
33.2429746𝐹2 + 77.56007𝐹3 −
83.5084853𝐹4 + 33.31704𝐹5). 

(39) 

Table 1. Measured undrained shear strength (kPa) (𝑛 =121) 

60.80 56.05 52.25 41.80 80.75 38.95 18.05 23.75 
32.30 61.75 56.05 52.25 42.75 81.70 39.90 18.05 
25.65 33.25 61.70 57.00 52.25 44.65 84.55 39.90 
19.00 26.60 33.25 62.70 57.00 52.25 44.65 85.50 
39.90 19.00 26.60 33.25 63.65 57.00 53.20 45.60 
87.40 39.90 19.00 27.55 33.25 64.60 57.00 53.20 
46.55 95.00 39.90 20.90 28.50 33.25 64.60 57.95 
54.15 47.50 95.00 39.90 20.90 29.45 33.25 64.60 
57.95 54.15 49.40 95.00 40.85 22.80 29.45 33.25 
64.60 57.95 55.10 49.40 96.90 40.85 22.80 30.40 
34.20 65.55 58.90 55.10 51.30 104.5 41.80 23.75 
32.30 35.15 68.40 68.40 68.40 71.25 71.25 74.10 
77.90 77.90 80.75 65.55 66.50 66.50 66.50 66.50 
67.45 67.45 68.40 68.40 68.40 35.15 36.10 37.05 
37.05 38.00 38.00 38.00 38.00 38.00 38.00 104.50 

114.00        

Table 2.  Sample PWMs for soil undrained shear strength  

PWM Order PWM Normalized PWM 

𝐾=1 51.68471074 1.0 

𝐾=2 31.78724862 0.61502228 

𝐾=3 23.39131381 0.45257705 

𝐾=4 18.65441261 0.36092709 

𝐾=5 15.58642715 0.30156746 

𝐾=6 13.42819194 0.25980975 

𝐾=7 11.82289047 0.22875025 

𝐾=8 10.57950802 0.20469318 

𝐾=9 9.58623690 0.18547529 

𝐾=10 8.77319651 0.16974452 

The corresponding QF curve for 𝐾 = 5  is shown in 

Fig. 2, superposed by QFs with 𝐾 = 1, 𝐾 = 10, and the 

empirical quantiles of the sample based on the Gringorten 

plotting position formula [40]. Inspection of the curves in 

Fig. 2 shows that the difference between the optimal five-

order model and the 10-order model is very small, so 

there seems to be no justification for the complication of 

adopting a 10-order model with 11 coefficients. It is also 

evident that the QF with 𝐾 = 1 does not fit the sample as 

well as the optimal model. Therefore, it is reasonable to 

choose the model with 𝐾 = 5  as the optimal QF. One can 
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draw the same conclusion from Fig. 3, where the quantile 

value is expressed as a semi-log plot of the probability of 

exceedance (POE). The probability of exceedance is cut 

at the quantile of 10−3 [22]. The model with 𝐾 = 1 

evidently underestimates the distribution tail region. This 

is because accurate modeling and extrapolation of the tail 

are not rational if only limited information is involved.  

 

 

Figure 2.  Maximum entropy quantile functions of soil 

undrained shear strength. 

Table 3. Parameters of maximum entropy quantile functions 

(moment order 𝐾=1−10) 

 𝐾=1  𝐾=2 𝐾=3 𝐾=4 𝐾=5 

𝜆0   −3.1485742 4.79282214 −2.872965 −2.940865 −2.737607 

𝜆1  −1.4264077 −0.032497 −3.916489 −2.782127 −7.917811 

𝜆2    8.6442E−6 5.29956191 0.68083212 33.2429746 

𝜆3     −3.170614 3.54722833 −77.56007 

𝜆4      −3.197236 83.5084853 

𝜆5       −33.31704 

Γ̂(𝜆, 𝐾) −4.162 −4.161 −4.235 −4.233 −4.261 
(minimum) 

 𝐾=6  𝐾=7 𝐾=8 𝐾=9 𝐾=10 

𝜆0   −2.7239104 −2.807432 −2.855384 −2.753099 −3.945162 

𝜆1  −8.3984161 −4.398103 −2.575307 −7.463430 −4.16645 

𝜆2   37.5870965 −11.56287 −36.71253 32.2787573 −5.815689 

𝜆3   −93.761831 161.616299 326.477491 −110.4325 68.1260732 

𝜆4   112.324229 −554.8126 −1133.799 329.519011 30.3032168 

𝜆5   −57.635068 864.251273 2016.4031 −756.0733 −1063.242 

𝜆6   7.83238654 −635.6442 −1936.525 1043.36223 2986.67449 

𝜆7   178.616313 954.814281 −729.4156 −3719.649 

𝜆8     −189.9773 187.763121 2234.45903 

𝜆9      8.47675453 −528.4069 

𝜆10      −0.194222 

Γ̂(𝜆, 𝐾) −4.253 −4.249 −4.243 −4.231 −4.242 

A comparison of maximum entropy QFs for orders 

1 to 5 is given in Fig. 4, which shows that with an increase 

in the PWM order, better QFs have been obtained. This 

observation is also consolidated in Fig. 5, where the 

quantile value is plotted versus a semi-log POE. The 

conclusion is somewhat obvious: the more PWM is 

employed, the more information is incorporated into 

MEP, which will then result in a better QF. 

To further demonstrate the accuracy of the optimal 

maximum entropy QF, normal and lognormal 

distributions, the most commonly used probability 

functions in engineering [1], are assumed to fit the soil 

property by the method of moments. The PDFs of normal 

and lognormal distributions are given by, respectively, 

 

𝑓1(𝑥) =
1

𝜎√2𝜋
exp [−

1

2
(

𝑥−𝜇

𝜎
)

2
] =

1

21.1043√2𝜋
exp [−

1

2
(

𝑥−51.6847

21.1043
)

2
], 

(40) 

𝑓2(𝑥) =
1

𝜁 𝑥√2𝜋
exp [−

1

2
(

ln 𝑥−𝜅

𝜁
)

2
] =

1

0.4298 𝑥√2𝜋
exp [−

1

2
(

ln 𝑥−3.8582

0.4298
)

2
], 

(41) 

where 𝑋 is the undrained shear strength, taking as a 

random variable.   

Fig. 6 compares the maximum entropy, normal and 

lognormal QFs, accompanied by a semi-log plot of POE 

in Fig. 7. The normal distribution somewhat 

underestimates the sample tail region, while the 

lognormal distribution overestimates the sample tail 

region. The normal distribution is unacceptable for soil 

undrained shear strength due to its negative values of 

support. By contrast, the optimal maximum entropy QF 

lies between lognormal and normal QFs, which appears a 

better fit for the soil sample data. 

 

 

Figure 3. Semi-log plot of maximum entropy QF 

approximation of the sample tail region. 
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Figure 4.  Comparison of maximum entropy quantile 

functions of soil undrained shear strength.  

 

Figure 5. Semi-log plot of maximum entropy QF 

approximation of the sample tail region.    

 

Figure 6.  Comparison of three quantile functions.    

 

Figure 7. Semi-log plot of three quantile functions. 

4.2 Flood frequency analysis 

Three common data sets are usually used in flood 

frequency analysis: (1) peaks over a threshold (POT) 

model, (2) annual maximum series model, and (3) time 

series model. The time series flood model is described 

best by a stochastic process in continuous time. The POT 

model is devalued by the involvement of dependent 

observations. The annual maximum model is statistically 

more efficient than the POT model when 𝜍 is small (𝜍 <
1.65), where 𝜍 is the mean number of peaks per year 

included in the POT series [40]. The historical annual 

maximum daily discharge data of the Grand River in 

Ontario, Canada, is taken as an example [41], which is 

listed in Table 4. The Grand River watershed spans a 

length of 290km and covers an area of 6965 km2. It is the 

largest of the watersheds in Southwestern Ontario that 

drain into Lake Erie, which is shown in Fig. 8 (adapted 

from Fig. 2 [42]).  

Table 4. Annual maximum daily discharge of the Grand River, 

Ontario, Canada (m3/s) 

331 841 379 490 855 253 323 476 

680 561.5 558 351 530 173 501 719 

653.5 1040 311 445 493 439 1070 351.5 

428 685 430 657 127 697 459 527 

759.5 470 425 402 374 524 179 367 

538 343 382 657.5 478 498 561 357 

264 248 456 654 1140 487 244 473 

600 292 228 636 411 388 654.5 345 

564 583 575 396 733 759 725 112 

433        
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Figure 8. The Grand River, Southwestern Ontario, Canada. 

Theoretically, the algorithm in Section 3.1, being 

used in Section 4.1, is equivalent to the one in Section 3.2, 

which is used in this section. Based on the sample in 

Table 4, ten-order sample PWMs can be calculated by 

using Eq. (5). From these sample PWMs, the maximum 

entropy QFs can be obtained by solving Eq. (28). The 

corresponding differential entropy of Eq. (38) versus 

PWM order is plotted in Fig. 9, which shows the optimal 

order of quantile function is 𝐾 = 7. So the optimal 

quantile function is  

𝑥(𝐹) = exp(4.41357 + 22.92339𝐹 −

166.00783𝐹2 + 676.15183𝐹3 − 1566.7939𝐹4 +

2053.42095𝐹5 − 1412.42386𝐹6 +

395.52942𝐹7).  

(42) 

 

Figure 9.  Differential entropy versus order of quantile 

function. 

Fig. 10 shows that the maximum entropy QF with 

𝐾 = 7 is quite similar to that with 𝐾 = 5, the functional 

form of which is 
𝑥(𝐹) = exp(4.59889 + 14.48539𝐹 −
62.47622𝐹2 + 133.28411𝐹3 − 132.63654𝐹4 +
49.87552𝐹5).  

(43) 

In order to demonstrate the advantage of the optimal 

maximum entropy quantile function, the comparison is 

made with normal, lognormal, Gumbel, and Gamma 

functions. The Gumbel distribution also called the 

extreme value type I distribution, is the distribution of the 

maximum (or the minimum) of a number of samples of 

various distributions [1,43]  with −∞ < 𝑥 < +∞, 

𝑓(𝑥, 𝜇, 𝜎) =
1

𝜎
exp (

𝑥−𝜇

𝜎
) exp [− exp (

𝑥−𝜇

𝜎
)]. (44) 

The Gamma distribution covers exponential, Erlang, 

and chi-square distributions as special cases 

𝑓(𝑥, 𝑎, 𝑏) =
1

𝑏𝑎Γ(𝑎)
𝑥𝑎−1 exp(−

𝑥

𝑏
),      0 ≤ 𝑥 < +∞, (45) 

where Γ(𝑎) is the Gamma function.  

These distribution function parameters are estimated 

by the method of maximum likelihood, which is listed in 

Table 5. Comparison of quantile functions for the annual 

maximum daily discharge is illustrated in Fig. 11.  It 

appears that all QFs fit well the sample data points. Our 

attention is focused on the distribution tail in Fig. 12, 

where a semi-log plot is presented. Inspection of Fig.12 

indicates that in the tail region, normal distribution 

underestimates the sample data points, but lognormal 

distribution overestimates the sample value. Gumbel and 

Gamma quantile functions generally fit better than 

normal and lognormal functions. The optimal maximum 

entropy QF lies between Gumbel and Gamma quantile 

functions.  

This is rational because the optimal maximum 

entropy QF contains seven PWMs which are sure to attest 

more information than two ordinary moments in normal, 

lognormal, Gumbel, and Gamma functions. Another 

reason may come from the property of PWM that PWMs 

are only linear combinations of the observed sample 

values for any order PWMs, such that less bias and more 

efficiency can be achieved in moment estimate, as shown 

by Pandey [11]. The third advantage of the proposed 

model is that maximum entropy QFs are not confined to 

classical probability distributions, such as normal, 

lognormal, Gumbel, and Gamma functions. The choice of 

a maximum entropy QF depends on the sample 

information only; thus is objective, not subjective. 
 

 

Figure 10.  Maximum entropy quantile functions for annual 

maximum daily discharge.   
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Table 5. The parameters of Gumbel, lognormal, and gamma 

distributions 

Distribution parameters Maximum likelihood estimate 

Normal 
𝜇 500.6849315 

𝜎 205.8026041 

Lognormal 
𝜅 6.126279 

𝜁 0.447489 

Gumbel 
𝜇 -405.410729 

𝜎 172.927108 

Gamma 
𝑎 5.735789 

𝑏 87.291384 

 

Figure 11.  Comparison of quantile functions for annual 

maximum daily discharge.   

 

Figure 12. Semi-log plot for the sample tail region of 

maximum entropy and other quantile functions.  

The fourth advantage of maximum entropy QFs is 

the capability to adjustment of model sophistication in 

accordance with the available sample information. The 

maximum entropy principle, together with the AIC, can 

avoid a too-simple model (e.g., the model 𝐾 = 1 in 

Fig.10) and a too-elaborate model. Too simple models 

cannot extract enough information from the sample, and 

too elaborate models include too trivial and redundant 

information from an individual sample. Thus, both 

models cannot properly reflect the characteristics of the 

population from which the sample comes.  

5. Reliability Analysis Based on 

Quantile Functions 

5.1 Procedure of QF-based first-order 

reliability method 

The basic concept of the QF-based first-order reliability 

method is to transform nonnormal random variables into 

equivalent normal random variables by using QFs, and 

then use the Hasofer-Lind method [1,43] to conduct the 

reliability analysis. The maximum entropy QF-based 

first-order reliability method was proposed recently [27]. 

The procedure is summarized as follows. 

Step 1. Set up a limit state equation 

𝑍 = 𝑔𝑋(𝑿) = 𝑔𝑋(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = 0, (46) 

Determine the quantile distributions of basic random 

variables 𝑋𝑖(𝑖 = 1, 2, ⋯ , 𝑁), and calculate the correlation 

matrix 𝜌𝑿.  

Step 2. Assume the initial design values 𝒙∗ =
𝑥𝑖

∗(𝑖 = 1,2, ⋯ , 𝑁), usually the mean values, and the 

initial reliability index 𝛽, usually 𝛽 = 3.0.  The 

probability of failure is 𝑝𝑓 = Φ(−𝛽), where Φ is the CDF 

of standard normal variables. 

Step 3. For the non-normal random variable 𝑋𝑖, use 

the equivalent mean value (𝜇𝑋𝑖
′)  and the equivalent 

standard deviation (𝜎𝑋𝑖
′) to replace 𝜇𝑋𝑖

 and 𝜎𝑋𝑖
, 

respectively, 
𝜇𝑋𝑖

′ = 𝜇𝑋𝑖
, (47) 

𝜎𝑋𝑖
′ =

𝛽𝑖𝜎𝑋𝑖

𝛽
, (48) 

where for  
𝜕𝑔𝑿(𝑿)

𝜕𝑋𝑖
> 0, 

𝛽𝑖 =
𝜇𝑋𝑖

−𝐹𝑋𝑖
−1(𝑝𝑓)

𝜎𝑋𝑖

=
𝜇𝑋𝑖

−exp{− ∑ [𝜆𝑠(𝑝𝑓)
𝑠
]𝑀

𝑠=0 }

𝜎𝑋𝑖

 ;  (49) 

and for 
𝜕𝑔𝑿(𝑿)

𝜕𝑋𝑖
< 0, 

𝛽𝑖 = −
𝜇𝑋𝑖

−𝐹𝑋𝑖
−1(1−𝑝𝑓)

𝜎𝑋𝑖

= −
𝜇𝑋𝑖

−exp{− ∑ [𝜆𝑠(1−𝑝𝑓)
𝑠
]𝑀

𝑠=0 }

𝜎𝑋𝑖

 .  (50) 

Step 4.  Calculate the direction of cosines 𝛼𝑋𝑖
 at the 

values of the design point 

𝛼𝑋𝑖
= −

∑ (𝜌𝑋𝑖𝑋𝑗

𝜕𝑔𝑿(𝒙∗)

𝜕𝑋𝑖
𝜎𝑋𝑗

)𝑁
𝑗=1  

√∑ ∑ (𝜌𝑋𝑖𝑋𝑗

𝜕𝑔𝑿(𝒙∗)

𝜕𝑋𝑖

𝜕𝑔𝑿(𝒙∗)

𝜕𝑋𝑗
𝜎𝑋𝑖

𝜎𝑋𝑗
)𝑁

𝑗=1
𝑁
𝑖=1

, 𝑖 =

1,2, ⋯ , 𝑁, 

(51) 

where 𝜌𝑋𝑖𝑋𝑗
 is the correlation coefficient of the 𝑋𝑖 and 𝑋𝑗 

variables, and 𝜌𝑋𝑖𝑋𝑖
= 1.  

Step 5. Calculate the system reliability index 

𝛽 =
𝑔𝑋(𝒙∗)+∑ [

𝜕𝑔𝑿(𝒙∗)

𝜕𝑋𝑖
(𝜇𝑋𝑖

−𝑥𝑖
∗)]𝑁

𝑖=1

√∑ ∑ (𝜌𝑋𝑖𝑋𝑗

𝜕𝑔𝑿(𝒙∗)

𝜕𝑋𝑖

𝜕𝑔𝑿(𝒙∗)

𝜕𝑋𝑗
𝜎𝑋𝑖

𝜎𝑋𝑗
)𝑁

𝑗=1
𝑁
𝑖=1

 .   
(52) 
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Step 6. Calculate the new design point 𝒙∗ = 𝑥𝑖
∗(𝑖 =

1,2, ⋯ , 𝑁)  
𝑥𝑖

∗ = 𝜇𝑋𝑖
+ 𝛽𝛼𝑋𝑖

𝜎𝑋𝑖
, 𝑖 = 1,2, ⋯ , 𝑁. (53) 

Step 7. Repeat Steps 2 through 6 until 𝛽 converges 

to a given tolerance level. 

For illustrative purposes, two examples are 

considered in the next two sections by a nonlinear limit 

state function with (1) uncorrelated and (2) correlated 

random variables, respectively. 

5.2 Example 1: Reliability with uncorrelated 

random variables 

A cantilever steel beam is loaded by a bending moment 𝐵 

at the free end. The resisting moment capacity of a section 

is taken as 𝑌𝑍, where 𝑌 is the yield stress, and 𝑍 is the 

section modulus of the section [43, 44]. At the limit state 

of collapse in flexure, the performance function may be 

written as 
𝑔(𝑿) = 𝑌𝑍 − 𝐵. (54) 

Random variables (RV)  𝑌, 𝑍, and 𝐵 are assumed 

uncorrelated.  The mean values for 𝑍 and 𝐵 are 50in.3 and 

1000kip‧in., respectively. The corresponding coefficients 

of variation are 0.05 and 0.2, respectively. 𝑍 and 𝐵 obey 

lognormal distribution and type 1 extreme asymptotic 

value (Gumbel)) distribution, respectively. 𝑌’s 

distribution must be determined from a sample of 50 

elements which is listed in Table 6, and the sample is 

generated by Monte Carlo simulation supposing 𝑌 obeys 

lognormal distribution with the mean and the coefficients 

of variation are 40ksi and 0.125, respectively. This 

distribution is called parent lognormal distribution. 

Table 6. A sample of 50 yield stresses (ksi). 

36.2236 44.9545    41.3409 44.4594 39.5704 

39.5391 32.2627 45.4191 42.7412 31.1391 

40.8562 36.8796 44.9882 41.4602 45.0690 

41.8553 38.3404 36.6011 46.3770 44.1867 

37.8907 41.8362 40.9821 44.5629 39.6969 

38.5396 32.2385 35.2878 40.8939 39.3426 

51.0655 42.0918 33.6679 36.4218 29.1235 

29.9619 34.1277 44.5353 36.5982 42.6698 

52.3907 40.0196 39.6914 46.0424 30.2088 

41.3950 43.0497 39.4206 32.4737 29.7355 

 

Traditionally, the method of moments is used for 

estimating the probability density function. The PDF is 

then integrated to obtain the CDF, which needs to be 

inverted to obtain the QF. By contrast, maximum entropy 

QFs are directly inferred from a sample in terms of PWMs 

and thus are distribution-free, which constitutes a direct 

advantage to conventional distributions.   

For random variable 𝑍 with lognormal distribution, 

the relations between parameters 𝜅 and 𝜁 to mean and 

standard deviation are 

𝜁 = √ln [1 + (
𝜇𝑋

𝜎𝑋
)

2
] = 0.04996879, 

𝜅 = ln 𝜇𝑋 −
1

2
 𝜁2 = 3.91077456. 

(55) 

The lognormal distribution can be obtained as, 

𝑓(𝑧) =
1

0.04996879 𝑧 √2𝜋
exp [−

1

2
(

ln 𝑧−3.91077456

0.04996879
)

2
], (56) 

where 𝑓(𝑧) is the lognormal PDF for 𝑍.  

For random variable 𝐵 with Gumbel distribution, the 

relations between parameters 𝛼 and 𝑢 to mean and the 

standard deviation is 
𝛼 =

𝜋

√6𝜎𝐵
= 0.00641275, 

𝑢 = 𝜇𝐵 −
0.5772157

𝛼
 = 909.989358. 

(57) 

The Gumbel distribution can be obtained as, 
𝐹(𝑏) = exp{− exp[−0.00641275(𝑏 −
909.989358)]},     

(58) 

where 𝐹(𝑏) is the Gumbel CDF for the moment 𝐵.  

Random variable  𝑌’s distribution is determined by 

conventional methods from the sample of 50 elements: 

firstly, assume normal or lognormal distribution, and then 

use the method of moments to calculate the parameters. 

The normal and lognormal distribution can be obtained 

as, respectively, 

𝑓𝑌1(𝑦) =
1

5.37394747  √2𝜋
exp [−

1

2
(

𝑦−39.60451139

5.37394747
)

2
], (59) 

𝑓𝑌2(𝑦) =
1

0.13937469 𝑦 √2𝜋
exp [−

1

2
(

ln 𝑦−3.66961379

0.13937469
)

2
], 

(60) 

where 𝑓𝑌1(𝑦) and 𝑓𝑌2(𝑦), respectively, are the normal and 

lognormal PDFs for 𝑌.  

Based on the same sample data, the optimal 

maximum entropy QF is fitted by using the methodology 

in Section 3. The result is 
𝑦𝐾(𝐹) = exp(3.31148365 + 1.63566312𝐹 −
2.47119017𝐹2 + 1.45463938𝐹3).  

(61) 

A comparison of the optimal maximum entropy, 

normal, and lognormal QFs from the same sample of 50 

elements is shown in Fig. 13, together with the sample 

data points. Fig. 14 compares various orders of maximum 

entropy QFs, and Fig. 15 illustrates the semi-log plot for 

the sample tail region of maximum entropy QFs, normal 

QF, and lognormal QF. Figs. 13-15 shows that the 

optimal maximum entropy QF fits the sample data very 

well.  

Three reliability analyses are conducted by 

assuming that random variable 𝑌 obeys three different 

probability functions: the normal distribution in Eq. (59), 

the lognormal distribution in Eq. (60), and the optimal 

entropy QF in Eq. (61). The results are listed in the upper 

half of Table 7. By comparison, the reliability analysis is 

also listed for the case that the lognormal parent 

distribution is used for 𝑌 with the mean and the 

coefficients of variation are 40ksi and 0.125, respectively. 

This case may be regarded as the exact result. The closer 

the reliability index is to the parent case, the better the 

distribution that 𝑌 is modeled. It is found that the optimal 

entropy QF results in a very accurate and efficient result, 

with the reliability index very close to the case of the 

parent distribution and with the smallest number of total 

iterations. In this example, the normal distribution gives 

the most conservative reliability index as compared to the 

lognormal and the maximum entropy QFs, although these 

QFs are modeled from the same sample.  
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The order of maximum entropy (ME) QF plays a 

significant role in the results of reliability analysis, as 

shown in the lower half of Table 7. Among this 

maximum entropy QFs, the optimal QF yields the most 

conservative reliability index, and the calculation is the 

most efficient. The detailed iteration calculations are 

tabulated in Table 8 for the case of the optimal 

maximum entropy QF. 

 

 

Figure 13. Sample-based three quantile functions. 

 

Figure 14. Sample-based maximum entropy QFs. 

 

 

 

Table 7. Results of reliability analysis with different QF of  𝑌 

for example 1 

Sample-based 

QF of 𝑌 
𝛽 𝑝𝑓  

Total 

Iter. 

No. 

Final design point {𝑌, 𝑍, 𝐵} 

ME QF (𝐾=3) 2.6072 0.00456 7 {32.4087,48.7327, 1579.3638} 

Lognormal QF 2.5856 0.00486 12 {32.0799,48.7646, 1564.3641} 

Normal QF 2.4841 0.00649 12 {30.6237,48.9046, 1497.6395} 

Parent 

Lognormal QF 
2.6869 0.00361 12 {33.4006,48.6468, 624.8299} 

ME QF (𝐾=1) 2.8230 0.00238 12 {36.0693,48.3717,1744.7336} 

ME QF (𝐾=2) 2.7559 0.00293 10 {34.8537,48.4929,1690.1569} 

ME QF (𝐾=4) 2.6677 0.00382 9 {33.3639,48.6396, 1622.8061} 

ME QF (𝐾=5) 2.6408 0.00416 8 {32.9327,48.6817,1603.2223} 

ME QF (𝐾=6) 2.739 0.00308 9 {34.5631,48.5216,1677.0570} 

ME QF (𝐾=7) 2.6762 0.00372 9 {33.5021,48.6261,1629.0759} 

5.3 Example 2: Reliability with correlated 

random variables 

Consider the same problem in Section 5.2, except 

assuming that the design variables 𝑌 and 𝑍 are now 

partially correlated with a correlation coefficient 𝜌𝑌𝑍 =
0.4.  The correlation matrix is 

𝐶 = [
1.0 0.4 0
0.4 1.0 0
0 0 1.0

]  (62) 

  

 

Figure 15. Semi-log plot for the sample tail region of 

maximum entropy, normal, and lognormal QF. 



74/ IJRRS / Vol. 5/ Issue 2/ 2022 

 

J. Deng 

Three reliability analyses are conducted by 

assuming that random variable 𝑌 obeys three different 

probability functions: the normal distribution in Eq. (59), 

the lognormal distribution in Eq. (60), and the optimal 

maximum entropy QF in Eq. (61). The results are listed 

in the upper half of Table 9. By comparison, the reliability 

analysis is also listed for the case that the parent 

lognormal distribution is used for 𝑌 with the mean and the 

coefficients of variation are 40ksi and 0.125, respectively. 

This case may be regarded as the exact result. It is 

observed in Table 9 that the optimal maximum entropy 

QF results in comparable results to the case of lognormal 

QF but better results than the case of normal QF. The use 

of the optimal maximum entropy QF also leads to an 

efficient algorithm, with the smallest number of only 7 

total iterations.  

The lower half of Table 9 shows the significant 

effect of orders of maximum entropy QFs on the results 

of reliability analysis with correlated random variables. 

Among these maximum entropy QFs, the optimal QF 

yields the most conservative reliability index, and the 

calculation is the most efficient, which suggests that the 

optimal QF generates results more similar to the 

conventional QFs, such as normal and lognormal QFs 

than any other maximum entropy QFs. The detailed 

iteration calculations are tabulated in Table 10 for the 

case of the optimal maximum entropy QF. 

To investigate the effect of the correlation 

coefficient of random variables on the reliability analysis 

of structures, the variation of the correlation coefficient 

𝜌𝑌𝑍  versus the reliability index is shown in Table 11. 

Positive values of the correlation coefficient would lead 

to smaller reliability indexes. Results from sample-based 

optimal maximum entropy QF are close to those with the 

parent QF, especially when the correlation coefficient is 

negative. Table 11 shows that the sample-based normal 

QF always leads to the smallest reliability index, 

regardless of positive or negative correlation coefficients. 

Therefore, the use of normal QFs would result in 

conservative reliability results in this example. 

Table 8. Iterative calculations for Example 1 using the optimal 

maximum entropy QF (𝐾=3) 

Iter

No. 
 

Assumed 

design 

point 𝒙∗ 

𝑝𝑓 𝜎𝑋𝑖
′

𝑁  𝛽𝑖 
New 

𝛽 
New 𝒙∗ 

1 

𝑌 39.6045 

0
.0

0
1

3
5

, 
  

𝛽
0

=
3

 

4.0394 2.2550 

2
.5

5
1
4
 

39.6045 − 2.123𝛽 

𝑍 50 2.3381 2.8057 50 − 0.56353𝛽 

𝐵 1000 313.4295 4.7014 1000 + 255.6994𝛽 

2 

𝑌 34.1866 

0
.0

0
5
3

6
 

4.6794 2.2216 

2
.6

0
9
3
 

39.6045 − 2.853𝛽 

𝑍 48.5622 2.3672 2.4159 50 − 0.5141𝛽 

𝐵 1652.387 284.0831 3.6240 1000 + 216.5472𝛽 

3 

𝑌 32.1595 

0
.0

0
4
5

4
 

4.5897 2.2285 

2
.6

0
7
1
 

39.6045 − 2.754𝛽 

𝑍 48.6587 2.3634 2.4667 50 − 0.4827𝛽 

𝐵 1565.035 287.8259 3.7551 1000 + 222.6079𝛽 

4 

𝑌 32.4238 

0
.0

0
4
5

7
 

4.5930 2.2283 

2
.6

0
7
2
 

39.6045 − 2.760𝛽 

𝑍 48.7416 2.3635 2.4648 50 − 0.4863𝛽 

𝐵 1580.364 287.6847 3.7501 1000 + 222.1829𝛽 

5 

𝑌 32.4074 

0
.0

0
4
5

6
 

4.5928 2.2283 

2
.6

0
7
2
 

39.6045 − 2.759𝛽 

𝑍 48.7322 2.3635 2.4649 50 − 0.4861𝛽 

𝐵 1579.284 287.6929 3.7504 1000 + 222.2154𝛽 

6 

𝑌 32.4088 

−
0

.0
0
4
6
 4.5929 2.2283 

2
.6

0
7
2
 

39.6045 − 2.759𝛽 

𝑍 48.7327 2.3635 2.4649 50 − 0.4861𝛽 

𝐵 1579.368 287.6927 3.7504 1000 + 222.2138𝛽 

7 

𝑌 32.4087 

−
0

.0
0
4
6
 4.5929 2.2283 

2
.6

0
7
2
 

39.6045 − 2.759𝛽 

𝑍 48.7327 2.3635 2.4649 50 − 0.4861𝛽 

𝐵 1579.364 287.6927 3.7504 1000 + 222.2138𝛽 

 

Table 9. Results of reliability analysis with different QF of  𝑌 

for example 2 

Sample-based 

QF of 𝑌 
𝛽 𝑝𝑓 

Total 

Iter 

No. 

Final design point (𝑌, 𝑍, 𝐵) 

ME QF(𝐾=3) 2.4861 0.00646 7 {31.6899,47.4664,1504.2026} 

Lognormal 

QF 
2.4882 0.00642 11 {31.7192,47.4653,1505.5619} 

Normal QF 2.3919 0.00837 11 {30.4740,47.5189,1448.0930} 

Parent 

Lognormal 

QF 

2.5917 0.00478 11 {32.9555,47.4069,1562.3177} 

ME QF(𝐾=1) 2.7346 0.00312 11 {35.3370,47.4253,1675.8685} 

ME QF(𝐾=2) 2.6539 0.00398 9 {34.0851,47.4171,1616.2166} 

ME QF(𝐾=4) 2.5520 0.00535 8 {32.5973,47.4389,1546.3810} 

ME QF(𝐾=5) 2.5229 0.00582 8 {32.1919,47.4499,1527.5031} 

ME QF(𝐾=6) 2.6305 0.00426 8 {33.7345,47.4194,1599.6693} 

ME QF(𝐾=7) 2.5623 0.00520 8 {32.7429,47.4354,1553.1727} 
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6. Conclusions 

In this paper, the maximum entropy principle (MEP) is 

integrated with another information principle, the Akaike 

information criterion (AIC), to directly derive an 

analytical quantile function (QF) from an observed 

sample of data. The MEP is constrained by integral 

probability-weighted moments (PWMs) and is used to 

estimate a series of QFs, where PWMs are interpreted as 

the moments of QF. The MEP with normalization is 

constructed in a conventional probabilistic sense, and 

normalization is mainly designed to remove the effect of 

dimension in sample data and to prevent overflow and 

underflow in the calculation. A more general formulation 

is developed for the PWM-based MEP, where the 

normalization condition is relaxed. The AIC is then used 

to locate the optimal order of PWMs in such a way that 

the estimated QF can properly catch the information in a 

given sample of data.  

An illustrative case study is given for modeling the 

maximum entropy QF from a sample of data. The 

maximum entropy QF with order 𝐾 = 5 is found to be the 

optimal model for the soil sample of undrained shear 

strength from the Nipigon River landslide area. The 

sample was obtained by field vane shear testing. The 

optimal maximum entropy QF lies between lognormal 

and normal QFs, which appears to be the best fit for the 

soil sample data. The normal distribution underestimates 

the sample data in the tail region, but the lognormal 

distribution overestimates the tail value. Furthermore, the 

negative value of support in a normal distribution is a 

defect for the positive values of soil undrained shear 

strength. By contrast, the optimal maximum entropy QF 

lies between lognormal and normal QFs, which appears 

to be a better QF for the soil sample data. 

Table 10. Iterative calculations for Example 2 using the 

optimal maximum entropy QF (𝐾=3) 

  𝒙∗ 𝑝𝑓 𝜎𝑋𝑖
′

𝑁  𝛽𝑖 
New 

𝛽 
New 𝒙∗ 

1 

𝑌 39.6045 

0
.0

0
1
3

5
, 

𝛽
0

=
3

 

4.0394 2.2549 

2
.4

3
1
1
 

39.6045 − 2.3945𝛽 

𝑍 50 2.3381 2.8057  50 − 1.005𝛽 

𝐵 1000 313.4295 4.7014 1000 + 243.6488𝛽 

2 

𝑌 33.7831 

0
.0

0
7
5

3
 

4.8713 2.2037 

2
.4

8
3
0
 

39.6045 − 3.303𝛽 

𝑍 47.5556 2.3754 2.3099  50 − 1.0558𝛽 

𝐵 1592.3452 276.3543 3.3593 1000 + 196.3099𝛽 

3 

𝑌 31.4038 

0
.0

0
6
5

1
 

4.7876 2.2121 

2
.4

8
5
9
 

39.6045 − 3.1857𝛽 

𝑍 47.3785 2.3719 2.3558  50 − 1.0161𝛽 

𝐵 1487.4465 279.6834 3.4723 1000 + 202.8246𝛽 

4 

𝑌 31.6852 

0
.0

0
6
4

6
 

4.7831 2.2126 

2
.4

8
6
0
 

39.6045 − 3.1842𝛽 

𝑍 47.4741 2.3717 2.3583  50 − 1.0191𝛽 

𝐵 1504.2003 279.8663 3.4786 1000 + 202.7866𝛽 

5 

𝑌 31.6885 

0
.0

0
6
4

6
 

4.7828 2.2126 

2
.4

8
6
1
 

39.6045 − 3.1836𝛽 

𝑍 47.4664 2.3716 2.3584  50 − 1.0191𝛽 

𝐵 1504.1374 279.8764 3.4789 1000 + 202.8127𝛽 

6 

𝑌 31.6898 

0
.0

0
6
4

6
 

4.7828 2.2126 

2
.4

8
6
1
 

39.6045 − 3.1836𝛽 

𝑍 47.4664 2.3716 2.3584  50 − 1.0191𝛽 

𝐵 1504.2034 279.8767 3.4789 1000 + 202.8124𝛽 

The proposed method is also applied in the flood 

frequency analysis of the Grand River in Ontario. In the 

tail region of the flood QFs, normal distribution 

underestimates the sample data, but lognormal 

distribution overestimates the sample value. Gumbel and 

Gamma quantile functions generally fit better than 

normal and lognormal functions. The optimal maximum 

entropy QF lies between Gumbel and Gamma quantile 

functions.  

The optimal maximum entropy QF can be directly 

used in QF-based first-order reliability analysis. 

Examples with correlated and uncorrelated random 

variables are presented for illustration of the application 

of sample-based optimal maximum entropy QF to 

reliability analysis of structures. Reliability analysis 

results from sample-based optimal maximum entropy QF 

are generally better than those of normal and lognormal 

distributions from the same sample by obtaining closer to 

those with the parent QF, especially when the correlation 

coefficient is negative. In these two application examples, 

the use of optimal maximum entropy QFs also leads to an 

efficient algorithm with the smallest number of iterations 

in the calculation of the reliability index. Sample-based 

normal QFs yield the smallest reliability index, regardless 

of positive or negative correlation coefficients. The use of 

normal QFs would result in conservative reliability 

results. Among those maximum entropy QFs with various 

orders, the optimal QF yields the most conservative 

reliability index. 

Table 11. Reliability index vs. correlation coefficient 𝜌𝑌𝑍 

𝜌𝑌𝑍 

Sample-

based 

optimal 

entropy QF 

Sample-

based 

normal 

QF 

Sample-

based 

lognormal 

QF 

Parent 

lognormal 

QF 

0.8 2.3725 2.3078 2.3989 2.5039 

0.4 2.4861 2.3919 2.4882 2.5917 

0.2 2.5457 2.4369 2.5359 2.6383 

0 2.6072 2.4841 2.5856 2.6870 

−0.2 2.6705 2.5334 2.6376 2.7377 

−0.4 2.7355 2.5850 2.6920 2.7908 

−0.8 2.8703 2.6959 2.8089 2.9045 
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Maximum entropy QFs are directly inferred from a 

sample of data in terms of PWMs and are free from 

classical probability distributions such as normal, 

lognormal, and Gumbel distributions, which constitute a 

prominent advantage to conventional distributions. 

Maximum entropy QFs have the capability of automatic 

adjustment of model sophistication based on the available 

sample information only, thus avoiding arbitrary and 

subjective choice of probability distributions. The 

maximum entropy QFs are applied to random variables 

that take only positive values. If the sample normalization 

condition is relaxed, the algorithm in Section 3.2 may be 

applied to censored or truncated samples. How to deal 

with censored or truncated sample data [45] in PWM-

based MEP and in reliability analysis deserves future 

research. 
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