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Abstract

Jaynes's information principle, i.e., maximum entropy principle (MEP), constrained by probability weighted moments (PWM),
has been well established as an alternative method to directly estimate quantile functions (QF) from samples of a random
variable. The existence, unbiasedness, and efficiency of the maximum entropy QFs have been illustrated in the literature.
However, the issue of how many orders of PWMs is optimal for a given sample of data remains unsolved, and applications of
the maximum entropy QFs to reliability analysis in civil engineering are still obscure. This paper serves four main purposes: (1)
anew general formulation is developed for the PWM-based MEP without sample normalization; (2) the optimal order of PWMs
in MEP is determined by another information principle, i.e., Akaike information criterion; (3) The feasibility of the proposed
maximum entropy QFs is illustrated by two case studies in probabilistic modeling of the soil undrained shear strength and the
flood frequency; (4) applications of the proposed maximum entropy QFs are substantiated in QF-based first order reliability
analysis of a cantilever steel beam with uncorrelated random variables and with correlated random variables. The maximum
entropy QFs are compared to common empirical probability distributions, such as normal and lognormal distributions, in
reliability analysis to demonstrate the advantages and disadvantages of the method developed.

Keywords: Quantile function; Maximum entropy principle; Probability weighted moments; Akaike information criterion; Reliability
analysis; Correlated random variables.

optimization [6]. Another quantile-based reliability
design method was proposed by Li et al. [7] and studied
by He et al. [8]. A quantile-based approach was used for
calibrating reliability-based partial factors [9]. A

1. Introduction

Reliability and risk in engineering analysis, design, and
planning have received worldwide acknowledgment [1].

Engineering parameters are commonly described by
continuous random variables, and the randomness is
represented by probability distributions such as
probability density functions (PDF) and cumulative
distribution functions (CDF). Sometimes, however, we
need to know the value of the random variable
corresponding to a given probability of occurrence of
values smaller than the value, and this value is defined as
quantile or fractile [2]. Probabilistic structural design was
based on weighted fractiles [3]. A semi-probabilistic
design method was also proposed by employing fractiles
of distributions as a measure of structural reliability [4].
It was found that quantile-based optimization under
uncertainties using adaptive kriging surrogate models can
increase accuracy and efficiency [5]. A quantile-based
sequential method using Kriging surrogate models was
recently presented for reliability-based design

comprehensive monograph on statistical modeling with
quantile functions (QF) was prepared by Gilchrist [10].

Quantile values can be calculated from QFs, which
are inverse CDFs. Such quantiles often characterize the
design values of loads and material properties specified
by design codes [2,11]. It is often necessary to determine
the quantiles of a random variable (for example, the
strength of new or unknown material) from a sample of
data [11,12].

If a random variable has been characterized by a
known probability distribution (PDF or CDF), then the
quantile is simply the point value at which the distribution
function attains the specified probability. However, direct
estimation of quantiles from a sample of a random
variable without having a PDF or CDF is a more
challenging task [11-13]. Several methods are available
for the estimate of the population quantile: the prediction
method, the coverage method, and the Bayesian method.



64/ 1IRRS / Vol. 5/ Issue 2/ 2022

The first two are mainly empirical in that both methods
need sample mean, standard deviation, and/or skewness.
The Bayes method requires previous experience with a
random variable. Methods were formulated to determine
fractile values from statistical data, which includes
information about data size [14]. Schobi and Sudret [15]
proposed a PC-Kriging-based meta-modeling method to
estimate quantiles. Adaptive kriging and importance
sampling were recently used in an efficient estimation of
extreme quantiles [16].

In most cases, quantile estimation involves
empirically choosing a common probability distribution,
such as normal or lognormal distribution, and then
distribution parameters are evaluated by a statistical
method, such as the method of moments or method of
maximum likelihood. An alternative and attractive
approach for the distribution fitting comes from Jaynes’
information principle, i.e., the maximum entropy
principle (MEP), which provides an objective
distribution-free probability distribution from observed
data in terms of sample moments [17-19]. Probability-
weighted moments (PWMs) [20,21] are linear
combinations of the observed sample values. By
interpreting PWMs as moments of quantile function,
Pandey [11] derived an analytical form of quantile
function using the MEP. The existence, unbiasedness,
and efficiency of the maximum entropy quantile
functions from samples have been well established as an
alternative method to estimate quantile functions (QF)
from samples of a random variable [11,22]. Entropy has
been extensively applied in hydrologic and hydraulic
science and engineering [23,24], but little research has
touched the PWM-based entropy [17,25,26].
Furthermore, the issue of how many orders of PWMs is
optimal for a given sample of data remains unsolved,
which prevents this promising technique from being
widely used in civil engineering. More recently, we
developed maximum entropy quantile functions from a
sample of data based on fractional probability weighted
moments and found applications in First Order Reliability
Method, a widely used method in civil engineering [27].

This paper directly estimates quantile functions
using two information principles and studies their
applications in reliability analysis. Section 2 introduces
PWMs and interprets PWMs as the moments of quantile
functions. A more general formulation without sample
normalization is developed in Section 3 for PWM-based
Jaynes information principle, i.e., the MEP, which is
different from our previous algorithms [25-27]; Section 3
also determines the optimal order of PWMs in MEP by
another information principle, i.e., Akaike information
criterion (AIC); Section 4 gives illustrative case studies
for the maximum entropy QF modeling in civil
engineering; Section 5 substantiates the developed
maximum entropy QFs in first-order reliability analysis.
Conclusions are given in Section 6.
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2. Probability Weighted Moments
2.1 Definition

For a random variable X, the weighted probability
moment is defined by [20]

M, s: =E[X"F5(1 —F)] = fol[X(F)]rFs(l - 1)

F)dF,F = F(x) = P(X < x),
where M, . is the integral PWM with integral order 7, s,
and t. E[-] is the mathematical expectation, F is the
probability of non-exceedance. Two types of PWM are
particularly interesting due to their linear combination of
the random variable, Type 1:

a = Mige = fy x(F)(1 = F)'dF = [[x(9)q'dq  (2)

and Type 2:

Bs = Myso = fy x(F)F*dF, ©)
where g =1—F. a, and B can be estimated from a
sample of data by a; and by, respectively,

@~ ap =3[ - F)xyl,

(4)

Bs ~ by = - X [(F)°x], Fr = 222,
where n is the sample size, x; is the i-th sample element,
F; is a suitable plotting position formula (e.g., the
Gringorten formula) [27,40]. For an ordered sample of
data, x; < x, <--<x,, Type 1 and Type 2 integral
order PWMs can be unbiasedly estimated by [21,28],
respectively,

a =32 (" )=
S (QUETIG AR

where s, t = 0,1,--,(n — 1) are non-negative integers.

1

bs=;

n!

2.2 Moments of the quantile function

Type 2 probability-weighted moment can be written as

Bs =A 1\/1(11,5,0 = [, x(F)FSdF = B, f, F*dT, (6)
n
AT = G bo = i <P, )

where QF, x(F), is a monotonic and continuous function.
On the other hand, the ordinary raw moment (or
moment about the origin) can be given by

E[X®] = [pxsf(x)dx = [ [x(w)]*du, ®)
And
du=dF () =L T00 [ fGdx=1. )

A similar functional form can be found between Egs.
(6) and (8), thus B./B, can be interpreted as the s-th
moment of the quantile function, x(F),0 < F < 1.

3. Information Principles

Two information principles are presented: (1) the
maximum entropy principle constrained by PWMs; (2)
the Akaike information criterion. The first principle is
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used to generate a hierarchy of maximum entropy
quantile functions from a sample of data, and the second
principle will decide the optimal order of the maximum
entropy quantile functions.

3.1 Maximum entropy principle

The entropy of a random variable X can be defined in
terms of QF by [27]

H[x(F)] = — [, [x(F) In x(F)]dF, (10)
where H[x(F)] is the entropy, x(F) is the quantile
function, and F is the probability of non-exceedance. The
x(F) is anon-negative function for every F in the interval
[0,1] and is normalized to unity such that

folx(F)dF =1, (Normalization condition) (11)
which indicates that S, = by = 1. The x(F) is also
satisfied constraints

Jy x(F)FSdF=B,,s = 1,2, K, 12)
where K is the highest order of PWM and S, is the s-th
PWM. The g is estimated by b, in Eq. (5) from a sample
of data (B = by).

The maximum entropy principle (MEP) was created
and rationalized by Jaynes [29], which states that "the
minimally prejudiced assignment of probabilities is that
which maximizes the entropy subject to the given
information." To maximize the entropy in Eq. (10) under
the constraints in Egs. (11) and (12), the method of
Lagrange multipliers is used, and the Lagrangian function
H can be given by

H = — [1[x(F) Inx(F)]dF — (o —

D [Jy x(F)dF 1] =2 [ fy x(F)FSdF = (13)

by,
where H is the Lagrangian and 7, are the Lagrangian

multipliers. (n, — 1) is used as the coefficient instead of
no for ease of calculation. The maximization of H

demands
0H
o = (14)
Substitution of Eq. (13) into Eq. (14) yields
x(F) = xx(F) = exp[— X{_onsF°], (15)

where 7, are Lagrangian multipliers and also the

unknown parameters of the maximum entropy QF.
Substitution of Eq. (15) into In[x(F)] of Eq. (10) and

consideration of Eg. (12) yield a sample estimate of

H[x(F)],

H[x(F)] = 25 0(shs). (16)

The Lagrangian multipliers are determined by a set

of K + 1 nonlinear equations with the sample mean b, =

1

J, FS exp[— 2K omiF | dF=bs, s = 0,1, K. 17

This can be done through the robust nonlinear
system solver “fsolve” in Matlab (the Gauss-Newton
method with numerical gradient and Jacobian).

If a sample mean is not unit from random variable y,
then one can normalize the sample by the sample mean to
satisfy Eq. (11):
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X = X/1. (18)

After obtaining Eqg. (15), the maximum entropy QF
is given by

xx(F) = HeXP[— Yo T]sFS] = exp[— Yo )\st]: (19)

Where

Ao =—Inp+mn,, (20)
and
As =ngfors =1,2,-,K. (21)

The normalization condition is mainly designed for
interpreting PWMSs as moments of quantile function in
Section 2.2. It also serves to remove the effect of
dimension and prevent overflow and underflow in the
calculation.

If the Type-1 PWMSs, a, are chosen as constraints
of the entropy, the QF would be given as a function of the
exceedance probability,

xx (F) = exp[- XK, 4,1 - F)Y], (22)
where 1 — F is the probability of exceedance.

Eqg. (19) or (22) is the maximum entropy QF that is
estimated from a sample of data.

3.2 A general formulation of MEP without
normalization

A more general algorithm of MEP is presented, where the
normalization condition is relaxed. The moment
constraints in Egs. (11) and (12) can be combined as

J, X(F)FSdF=p, s = 0,1,2, K, (23)
where B is the s-th PWM, and K is the highest order of
PWM. If only a sample of data is available, B, is
estimated from b, in Eq. (5), i.e., Bs = b;. To maximize
the entropy H[x(F)] in Eqg. (10), under the constraints in
Eq. (23), the Lagrangian function H is given by

H = — [/[x(F) In x(F)]dF —

T o A5 [ fy x(F)F5dF — by,
where A, are unknown Lagrangian multipliers. The

maximization of H requires
oH

(24)

3x = 0 (25)
Substitution of Eq. (24) into Eq. (25) yields
x(F) =~ xx (F) = exp[—1 — XX, A,F*). (26)

Substitution of Eq. (26) into In[x(F)] of Eq. (10) and
consideration of Eq. (23) yield an estimate of H[x(F)]
from a sample of data,

HIx(F)] = by + X§_o(Asbs). (27)

The Lagrangian multipliers are determined by
solving a set of nonlinear equations

J, FSexp[—1— XK 4,F | dF =bs,s = 0,1,+,K.  (28)

Similar to Eq. (17), this can be done through the
robust nonlinear system solver “fsolve” in Matlab.
Similar to Eq. (22), if the Type-1 PWMs are selected as
constraints of the entropy, the QF is given by,

xg(F) = exp[-1 - XK, 2,(1 - F)], (29)
where 1 — F is the probability of exceedance. Eq. (26) or
(29) is the generalized maximum entropy QF that is
derived from a sample of data without normalization.
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3.3 Akaike information criterion

Sections 3.1 and 3.2 derived a maximum entropy QF from
a sample of data if several PWMs were given. This
section will develop a method to determine the optimal
order of the maximum entropy QF from a specific sample
of data. The method is based on the Akaike information
criterion (AIC), which is actually a means for model
selection [30].

Assume that x(F) is the true but unknown QF for
random variable X, x, (F) be the estimated QF based on
K order PWM which is given in Eq. (19). The closeness
between x (F) and xx (F) can be determined by Kullback-
Leibler (KL) entropy,

KL[x(F), x¢(F)] = f; x(F)In x’;((?) dF = C — (30)
LALK),

where
C = [; x(F)Inx(F) dF, (31)
LK) = [, x(F) Inx (F) dF. (32)

The KL entropy is a measure of the distance between
the true QF and the estimated QF, such that the smaller
KL[x(F), xx (F)], the closer of xx(F) to x(F), and the
higher quality of the fitted model xx(F). The extreme
case is  KL[x(F),xx(F)]=0 if xx(F) = x(F).
Consequently, the selection of parameters in xy(F)
should minimize the KL entropy,

min{ min {KL[x(F), x (F)]}}. (33)
0" WK

The term C in Eq. (31) does not depend on x (F),
so when the KL entropy is minimized with respect to K
and A, C can be taken as a constant. The term L(4, K) in
Eqg. (30) can be regarded as the expectation of In x, (F),
thus a natural estimate L(4, K) of L(4, K) can be obtained
from the probability of non-exceedance F;, corresponding
to the sample element x; (i = 1,2,---,n)

LK) = 21y [x In x (F14, K], 34
KL(AL,K) =C -L(A,K), (35)
where xg (F;) is written as x (F;| A, K) to emphasize that
the model features parameters A and K. KL(4,K) is a
sample estimate of the KL entropy. Eq. (33) is then recast

as
r}l}p{KL(/L K}=C+ 1}11’}(n{—L(/1, K}=Cc+
min {~ 2L, [ In e (Fi12, 601,

If K is given, the minimization of KL(A,K) will
result in the best choice of A, which is equivalent to the
system of nonlinear equations in Eg. (17) and the
transformation in Eqs. (20) and (21) [31]. The term
L(A,K) is the log-likelihood function. Hence the
parameters (1 and K) which minimize the KL entropy
estimate KL(4, K) are maximum likelihood estimates. It
should be noted that for a finite sample size n, the
maximum likelihood estimates are often biased estimates
of the true parameters. Akaike [32] proposed an unbiased
estimate of L(4, K), which was later named as Akaike

(36)
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information criterion (AIC) [33]. One of the AIC
unbiased estimates of —L (2, K) is given by
P K) = LK) +7, 37
where [(4,K), called differential entropy, are the
unbiased estimates of —L (4, K). By substituting Eq. (19)
into the term In x, (F;|A, K) of Eq. (34) and considering
Eq. (16), Eq. (37) can be expanded as
PAK) = Z50 A (23 [ (F)* 1} + 5 =
SK o(Ash) + 5 = Alx(F)] +X,
where by is the sample estimate of the type 2 PWM pB; in
Eq. (4).

Given a sample of data and a specific order of K, the
maximum entropy QF (with parameters A1) can be
obtained by using the algorithm in Section 3.1. By
increasing a model of sufficiently high order K, one can
make the quantity KL[x(F), xx(F)] in Eq. (30) as small
as that one wants. This is because the more PWMs are
used, the more information the MEP can extract from the
sample of data. It is theoretically possible to approximate
any QF x(F) using xx(F) with an arbitrary degree of
accuracy which depends on the order K. In other words,
the function —L(A, K) decreases as a function of K,
approaching zero asymptotically.

For a constant of n, the term g in Eq. (38) increases

as a function of K. Consequently, the differential entropy
£'(4, K) must have a minimum for a certain K value. That
is to say; for a series of K, there does exist a number K to
minimize the differential entropy T'(4,K) in Eqg. (38),
which in turn minimizes the term KL(4, K) in Eq. (36).
This K is the optimal order of the maximum entropy QF.

The term % in AIC can be interpreted as a penalty

term that prevents us from establishing too elaborate
models which cannot be justified by the given sample of
data. When only a sample of data is available, the MEP
and the AIC are combined to determine the optimal order
of PWMs being used in the estimation of a QF, thus
preventing us from using either too sophisticated models
(models with too many alterable parameters to properly
contain the sample information) or too simple models
(models with too little adjustable parameters to fully
accommodate the sample information).

The existing optimal order in model selection
acknowledged the fact that the information contained in a
sample of data shouldn’t produce a too complicated
model, which may have redundant parameters, and
shouldn’t generate a too simple model in which too little
information is used. AIC has been successfully used in
the determination of maximum entropy distribution
constrained by ordinary moments [34] and fractional
moments [18, 35]. The present paper is to determine the
optimal order of PWMs in MEP.

(38)
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4. Case Studies

Two case studies from civil engineering are given; one is
soil undrained shear strength in the Nipigon River
landslide area, and the other is flood frequency analysis
for the Grand River in Ontario, Canada.

4.1 Soil undrained shear strength

On April 23, 1990, a large landslide occurred on the east
bank of the Nipigon River in the District of Thunder Bay
in Northwestern Ontario, Canada (Fig. 1, adapted from
[36]). The landslide involved approximately 300,000m3
of soil and extended almost 350m inshore with a
maximum width of approximately 290m. Soil from the
landslide was pushed into the Nipigon River 300m
upstream and downstream and formed several islands in
the river. These islands redirected the river current and
caused subsequent erosion on the west bank of the
Nipigon River opposite the slide area. This likely caused
several landslides to occur further south one month after
the landslide. Since then, people have started to pay
attention to the landslides of various scales frequently
occurring in this area due to adverse landscape geology
and soil properties of the upper silty sand layer.

uuuuuuuuuuuu

o TR
TOTERRACE B4

To MIPIGON BAY

< Nipigo: e Liadslide

uuuuuuuuuu

[} Map of Caneda b Local mep

Figure 1. Location of Nipigon River landslide.

In order to investigate the mechanism of the
landslides, soil properties are needed in undrained
conditions because short-term slope stability requires the
undrained shear strength of the soil. In the case of field
investigation, the vane shear test (VST) is the most
frequently adopted method to obtain the undrained shear
strength of soil [37]. A complete outline of the vane shear
test is provided by Walker [38]. The field test procedure
followed the standards of ASTM D2573-08 [39]. The
VST testing was carried out by graduate students (NS
Kanwar, S Singh, and D Joshi) under the supervision of
Dr. J Deng from Lakehead University, and the measured
undrained shear strengths are listed in Table 1. Even if
great care was taken and the strict standard was followed
to keep the conditions of testing as homogeneous as
possible, the values exhibit an intrinsic variability that
cannot be ignored in slope stability analysis. The soil
undrained shear strength is actually a random variable,
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and a probabilistic approach to treatment is appropriate.
Maximum entropy QFs are used to characterize this soil's
undrained shear strength.

Based on the sample in Table 1, ten-order sample
PWMs can be calculated by using Eq. (5), the results of
which are listed in Table 2. The third column is the
normalized PWM by the sample mean (51.68471074
kPa). Eight digits to the right of the decimal point are kept
to increase the calculation accuracy. The maximum
entropy QFs can be obtained from the algorithm in
Section 3.1 for the PWM order K from 1 to 10, of which
the parameters are listed in Table 3. The differential
entropy ['(4,K) in Table 3 indicates that the minimum
value occurs at K = 5, so in accordance with the AIC in
Section 3.3, the maximum entropy QF with K = 5 is the
unbiased and optimal model from the soil sample in Table
1, the analytical function of which is given by

xx (F) = exp(2.737607 + 7.917811F —
33.2429746F2 + 77.56007F3 — (39)
83.5084853F* + 33.31704F°).

Table 1. Measured undrained shear strength (kPa) (n =121)

60.80 | 56.05 | 52.25 | 41.80 | 80.75 | 38.95 | 18.05 | 23.75
32.30 | 61.75 | 56.05 | 52.25 | 42.75 | 81.70 | 39.90 | 18.05
25.65 | 33.25 | 61.70 | 57.00 | 52.25 | 44.65 | 84.55 | 39.90
19.00 | 26.60 | 33.25 | 62.70 | 57.00 | 52.25 | 44.65 | 85.50
39.90 | 19.00 | 26.60 | 33.25 | 63.65 | 57.00 | 53.20 | 45.60
87.40 | 39.90 | 19.00 | 27.55 | 33.25 | 64.60 | 57.00 | 53.20
46.55 | 95.00 | 39.90 | 20.90 | 28.50 | 33.25 | 64.60 | 57.95
54.15 | 47.50 | 95.00 | 39.90 | 20.90 | 29.45 | 33.25 | 64.60
57.95 | 54.15 | 49.40 | 95.00 | 40.85 | 22.80 | 29.45 | 33.25
64.60 | 57.95 | 55.10 | 49.40 | 96.90 | 40.85 | 22.80 | 30.40
34.20 | 65.55 | 58.90 | 55.10 | 51.30 | 104.5 | 41.80 | 23.75
32.30 | 35.15 | 68.40 | 68.40 | 68.40 | 71.25 | 71.25 | 74.10
77.90 | 77.90 | 80.75 | 65.55 | 66.50 | 66.50 | 66.50 | 66.50
67.45 | 67.45 | 68.40 | 68.40 | 68.40 | 35.15 | 36.10 | 37.05
37.05 | 38.00 | 38.00 | 38.00 | 38.00 | 38.00 | 38.00 |104.50
114.00

Table 2. Sample PWMs for soil undrained shear strength

PWM Order PWM Normalized PWM
K=1 51.68471074 1.0
K=2 31.78724862 0.61502228
K=3 23.39131381 0.45257705
K=4 18.65441261 0.36092709
K=5 15.58642715 0.30156746
K=6 13.42819194 0.25980975
K=7 11.82289047 0.22875025
K=8 10.57950802 0.20469318
K=9 9.58623690 0.18547529
K=10 8.77319651 0.16974452

The corresponding QF curve for K = 5 is shown in
Fig. 2, superposed by QFs with K = 1, K = 10, and the
empirical quantiles of the sample based on the Gringorten
plotting position formula [40]. Inspection of the curves in
Fig. 2 shows that the difference between the optimal five-
order model and the 10-order model is very small, so
there seems to be no justification for the complication of
adopting a 10-order model with 11 coefficients. It is also
evident that the QF with K = 1 does not fit the sample as
well as the optimal model. Therefore, it is reasonable to
choose the model with K = 5 as the optimal QF. One can
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draw the same conclusion from Fig. 3, where the quantile
value is expressed as a semi-log plot of the probability of
exceedance (POE). The probability of exceedance is cut
at the quantile of 1073 [22]. The model with K =1
evidently underestimates the distribution tail region. This
is because accurate modeling and extrapolation of the tail
are not rational if only limited information is involved.

120
* Sampledéta . /

100 k=1
o K=5 3 4
=3 —emeem K=10
£ s
=
£
ool
-
g 60
=
S
.=
2
E 40
=
£
=}
= | =

0

0 01 02 03 04 05 06 07 08 09 1.0
Probability of non-exceedance

Figure 2. Maximum entropy quantile functions of soil
undrained shear strength.

Table 3. Parameters of maximum entropy quantile functions
(moment order K=1-10)

K=1 K=2 K=3 K=4 K=5
o —3.1485742 |4.79282214|—2.872965 |—2.940865 |—2.737607
A1 —1.4264077 |—0.032497 |—3.916489 |—2.782127 |—7.917811
2, 8.6442E—6 |5.29956191 |0.6808321233.2429746
A3 —3.170614 (3.54722833|—77.56007
A4 —3.197236 (83.5084853
As —33.31704
I'(4,K)|—4.162 —4.161 —4.235 —4.233 —4.261
(minimum)
K=6 K=7 K=8 K=9 K=10
o —2.7239104 |—2.807432 |—2.855384 |—2.753099 |—3.945162
A —8.3984161 |—4.398103 [—2.575307 |—7.463430 |—4.16645
1, 37.5870965 |—11.56287 |—36.71253 [32.2787573|—5.815689
s —03.761831 |161.616299 (326.477491 |—110.4325 |68.1260732
Ny 112.324229 |—554.8126 |—1133.799 |329.519011|30.3032168
s —57.635068 |864.251273(2016.4031 |—756.0733 |—1063.242
A 7.83238654 |—635.6442 |—1936.525 (1043.36223 (2986.67449
1, 178.616313|954.814281|—729.4156 |—3719.649
g —189.9773 |187.763121 |2234.45903
A 8.47675453|—528.4069
1o —0.194222
F(4,K)| —4.253 —4.249 —4.243 —4.231 —4.242

A comparison of maximum entropy QFs for orders
1to 5isgiven inFig. 4, which shows that with an increase
in the PWM order, better QFs have been obtained. This
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observation is also consolidated in Fig. 5, where the
quantile value is plotted versus a semi-log POE. The
conclusion is somewhat obvious: the more PWM is
employed, the more information is incorporated into
MEP, which will then result in a better QF.

To further demonstrate the accuracy of the optimal
maximum entropy QF, normal and lognormal
distributions, the most commonly used probability
functions in engineering [1], are assumed to fit the soil
property by the method of moments. The PDFs of normal
and lognormal distributions are given by, respectively,

G = e |- (21)] =

1 (x-51.6847)2 (40)
21.1043\/ﬁeXp [_E( 21.1043 ) ]’
1 _1(lnx-«k 2 _
£u0) = i exn |3 (22) ] = a

ox 1 1nx—3.8582)2
0.4298 x/2m P 2 0.4298 ’

where X is the undrained shear strength, taking as a
random variable.

Fig. 6 compares the maximum entropy, normal and
lognormal QFs, accompanied by a semi-log plot of POE
in Fig. 7. The normal distribution somewhat
underestimates the sample tail region, while the
lognormal distribution overestimates the sample tail
region. The normal distribution is unacceptable for soil
undrained shear strength due to its negative values of
support. By contrast, the optimal maximum entropy QF
lies between lognormal and normal QFs, which appears a
better fit for the soil sample data.
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40
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0 -1
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Probability of exceedance

Figure 3. Semi-log plot of maximum entropy QF
approximation of the sample tail region.
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0 Figure 7. Semi-log plot of three quantile functions.
4.2 Flood frequency analysis
100 .
= Three common data sets are usually used in flood
i« frequency analysis: (1) peaks over a threshold (POT)
& 80 model, (2) annual maximum series model, and (3) time
5 series model. The time series flood model is described
E best by a stochastic process in continuous time. The POT
E model is devalued by the involvement of dependent
£ + Sanpledas observations. The annual maximum model is statistically
B K=1 more efficient than the POT model when ¢ is small (¢ <
E / - K=2 1.65), where ¢ is the mean number of peaks per year
& 2 - _:ﬁj included in the POT series [40]. The historical annual
rs maximum daily discharge data of the Grand River in
Do Ontario, Canada, is taken as an example [41], which is
- - L B listed in Table 4. The Grand River watershed spans a
10 1w 10 10 length of 290km and covers an area of 6965 km?. It is the
Probability of exceedance . .
_ _ _ largest of the watersheds in Southwestern Ontario that
Figure 5. Semi-log plot of maximum entropy QF drain into Lake Erie, which is shown in Fig. 8 (adapted
approximation of the sample tail region. from Fig. 2 [42])
250 T T T :
¥ S“mPledﬁ . QB(K=5) Table 4. Annual maximum daily discharge of the Grand River,
aximum entropy = H
B Lognormal QF Ontario, Canada (m3/s)
-~ Normal QF
) . Lognormal 331 | 841 | 379 | 490 | 855 | 253 | 323 | 476
?5“ \ 680 | 5615 | 558 | 351 | 530 | 173 | 501 | 719
2 oo K= j‘/ 6535 | 1040 | 311 | 445 | 493 | 439 | 1070 | 3515
= 428 | 685 | 430 | 657 | 127 | 697 | 459 | 527
Z Nornal ’ M’é
£ 5 N il 7595 | 470 | 425 | 402 | 374 | 524 | 179 | 367
= .
E MW 538 | 343 | 382 | 6575 | 478 | 498 | 561 | 357
g o0 264 | 248 | 456 | 654 | 1140 | 487 | 244 | 473
| 600 | 292 | 228 | 636 | 411 | 388 | 654.5 | 345
-50 564 | 583 | 575 | 396 | 733 | 759 | 725 | 112
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Probability of non-exceedance 433

Figure 6. Comparison of three quantile functions.
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Grand River Watershed

Map ol Onlario
Figure 8. The Grand River, Southwestern Ontario, Canada.

Theoretically, the algorithm in Section 3.1, being
used in Section 4.1, is equivalent to the one in Section 3.2,
which is used in this section. Based on the sample in
Table 4, ten-order sample PWMs can be calculated by
using Eq. (5). From these sample PWMs, the maximum
entropy QFs can be obtained by solving Eq. (28). The
corresponding differential entropy of Eq. (38) versus
PWM order is plotted in Fig. 9, which shows the optimal
order of quantile function is K =7. So the optimal
quantile function is

x(F) = exp(4.41357 + 22.92339F —
166.00783F* + 676.15183F% — 1566.7939F* +

42
2053.42095F° — 1412.42386F° + ( )
395.52942F7).
3151
31515 . SRR SO USSR SOU SOU SSOU S
3152 \ ________
g: 31525 bbb
é -3153
=
=
¥ -31535 S - SO S
B s ,__\ SR S—
-31545 /\ ,,,,,,,
-315%
1 2 3 4 5 5 7 8 9 10

Order of Quantile Function

Figure 9. Differential entropy versus order of quantile
function.

Fig. 10 shows that the maximum entropy QF with
K = 7 is quite similar to that with K = 5, the functional
form of which is

x(F) = exp(4.59889 + 14.48539F —
62.47622F? + 133.28411F3 — 132.63654F* + (43)
49.87552F%).

In order to demonstrate the advantage of the optimal
maximum entropy quantile function, the comparison is
made with normal, lognormal, Gumbel, and Gamma
functions. The Gumbel distribution also called the
extreme value type | distribution, is the distribution of the
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maximum (or the minimum) of a number of samples of
various distributions [1,43] with —o < x < 400,

o) = top (L)ew[-ew(Z)]. @
The Gamma distribution covers exponential, Erlang,
and chi-square distributions as special cases

f(x,a,b) = barl(u)x“‘l exp(—3), 0<x<+o, (45)

where I'(a) is the Gamma function.

These distribution function parameters are estimated
by the method of maximum likelihood, which is listed in
Table 5. Comparison of quantile functions for the annual
maximum daily discharge is illustrated in Fig. 11. It
appears that all QFs fit well the sample data points. Our
attention is focused on the distribution tail in Fig. 12,
where a semi-log plot is presented. Inspection of Fig.12
indicates that in the tail region, normal distribution
underestimates the sample data points, but lognormal
distribution overestimates the sample value. Gumbel and
Gamma quantile functions generally fit better than
normal and lognormal functions. The optimal maximum
entropy QF lies between Gumbel and Gamma quantile
functions.

This is rational because the optimal maximum
entropy QF contains seven PWMSs which are sure to attest
more information than two ordinary moments in normal,
lognormal, Gumbel, and Gamma functions. Another
reason may come from the property of PWM that PWMs
are only linear combinations of the observed sample
values for any order PWMs, such that less bias and more
efficiency can be achieved in moment estimate, as shown
by Pandey [11]. The third advantage of the proposed
model is that maximum entropy QFs are not confined to
classical probability distributions, such as normal,
lognormal, Gumbel, and Gamma functions. The choice of
a maximum entropy QF depends on the sample
information only; thus is objective, not subjective.
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Figure 10. Maximum entropy quantile functions for annual
maximum daily discharge.



Direct Quantile Function Estimation Using Information Principles ...

Table 5. The parameters of Gumbel, lognormal, and gamma
distributions

Distribution parameters Maximum likelihood estimate
u 500.6849315
Normal o 2058026041
Lognormal X 6.126279
g { 0.447489
U -405.410729
Gumbel s 172.927108
Gamma a 5.735789
b 87.291384
2500 T H H T T
* Sample data
- | Lognormal QF
= Normal QF
o -
& 20000 .- Gumbel QF
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Figure 11. Comparison of quantile functions for annual
maximum daily discharge.
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Figure 12. Semi-log plot for the sample tail region of
maximum entropy and other quantile functions.

The fourth advantage of maximum entropy QFs is
the capability to adjustment of model sophistication in
accordance with the available sample information. The
maximum entropy principle, together with the AIC, can
avoid a too-simple model (e.g., the model K =1 in
Fig.10) and a too-elaborate model. Too simple models

IJRRS/Vol. 5/ Issue 2/ 2022 [71

cannot extract enough information from the sample, and
too elaborate models include too trivial and redundant
information from an individual sample. Thus, both
models cannot properly reflect the characteristics of the
population from which the sample comes.

5. Reliability Analysis Based on
Quantile Functions

5.1 Procedure of QF-based first-order
reliability method

The basic concept of the QF-based first-order reliability
method is to transform nonnormal random variables into
equivalent normal random variables by using QFs, and
then use the Hasofer-Lind method [1,43] to conduct the
reliability analysis. The maximum entropy QF-based
first-order reliability method was proposed recently [27].
The procedure is summarized as follows.

Step 1. Set up a limit state equation

Z = gx(X) = gx(Xy, X3, , X)) =0, (46)

Determine the quantile distributions of basic random
variables X;(i = 1, 2,---, N), and calculate the correlation
matrix py.

Step 2. Assume the initial design values x* =
x;{(i=1,2,--,N), usually the mean values, and the
initial reliability index g, usually g =3.0. The
probability of failure is p, = ®(—p), where @ is the CDF
of standard normal variables.

Step 3. For the non-normal random variable X;, use
the equivalent mean value (Hx{) and the equivalent

standard deviation (o) to replace uy, and oy,
A
respectively,

luXi’ = #Xi’ (47)
oy = ﬂi;xl—, (48)
agx(X)

where for == > 0,
0X;

A
x=Fx; ) _ ux;—exp{- T4 4s(py)°]}

.Bi = ox. ox. H (49)
and for 2% < o,
g =— wx=Fx (1-pp) _ ﬂXi_eXp{_Z.IsVI:l)[As(l_Pf)s]}. (50)

Ox; Ox;
Step 4. Calculate the direction of cosines ay, at the
values of the design point

N agx(x*)
ijl(pXin—aXi ij) )
Ay, = — L=

\/E?’:lzyﬂ(/))(ixj%agax)?axiaxj) (51)
1,2,-,N,
where py x . is the correlation coefficient of the X; and X;
]
variables, and py,x, = 1. o
Step 5. Calculate the system reliability index
Ix G+ [P )|

= - 52)
agx(x*)agx(x*) (
\/Zlivz1 E?Jﬂ(l’xixjwcfxicij)

aX;  0X;
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Step 6. Calculate the new design point x* = x; (i =
1,2,--,N)

X; = px, + Pay,0ox, i =12,-,N. (53)

Step 7. Repeat Steps 2 through 6 until 8 converges
to a given tolerance level.

For illustrative purposes, two examples are
considered in the next two sections by a nonlinear limit
state function with (1) uncorrelated and (2) correlated
random variables, respectively.

5.2 Example 1: Reliability with uncorrelated
random variables

A cantilever steel beam is loaded by a bending moment B
at the free end. The resisting moment capacity of a section
is taken as YZ, where Y is the yield stress, and Z is the
section modulus of the section [43, 44]. At the limit state
of collapse in flexure, the performance function may be
written as
gX)=YZ-B. (54)
Random variables (RV) Y, Z, and B are assumed
uncorrelated. The mean values for Z and B are 50in.% and
1000kip-in., respectively. The corresponding coefficients
of variation are 0.05 and 0.2, respectively. Z and B obey
lognormal distribution and type 1 extreme asymptotic
value (Gumbel)) distribution, respectively. Y’s
distribution must be determined from a sample of 50
elements which is listed in Table 6, and the sample is
generated by Monte Carlo simulation supposing Y obeys
lognormal distribution with the mean and the coefficients
of variation are 40ksi and 0.125, respectively. This
distribution is called parent lognormal distribution.

Table 6. A sample of 50 yield stresses (ksi).

36.2236 44.9545 41.3409 44.4594 39.5704
39.5391 32.2627 45.4191 42.7412 31.1391
40.8562 36.8796 44.9882 41.4602 45.0690
41.8553 38.3404 36.6011 46.3770 44.1867
37.8907 41.8362 40.9821 44.5629 39.6969
38.5396 32.2385 35.2878 40.8939 39.3426
51.0655 42.0918 33.6679 36.4218 29.1235
29.9619 34.1277 44.5353 36.5982 42.6698
52.3907 40.0196 39.6914 46.0424 30.2088
41.3950 43.0497 39.4206 32.4737 29.7355

Traditionally, the method of moments is used for
estimating the probability density function. The PDF is
then integrated to obtain the CDF, which needs to be
inverted to obtain the QF. By contrast, maximum entropy
QFs are directly inferred from a sample in terms of PWMs
and thus are distribution-free, which constitutes a direct
advantage to conventional distributions.

For random variable Z with lognormal distribution,
the relations between parameters k¥ and ¢ to mean and
standard deviation are

7= /ln [1 + (’;—;()2] = 0.04996879, (55)

k= Inpy —% % = 3.91077456.
The lognormal distribution can be obtained as,
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1 1 1nz—3.91o77456)2
7)) =————exp|—=(—— =2 56
f@) 0.04996879 z V21 p[ 2\ 0.04996879 . (36)

where f(z) is the lognormal PDF for Z.

For random variable B with Gumbel distribution, the
relations between parameters @ and u to mean and the
standard deviation is

a= GL = 0.00641275,

Vé6og 57
= g _@ =909.989358. &7

The Gumbel distribution can be obtained as,
F(b) = exp{—exp[—0.00641275(b —
909.989358)]3},

where F(b) is the Gumbel CDF for the moment B.

Random variable Y’s distribution is determined by
conventional methods from the sample of 50 elements:
firstly, assume normal or lognormal distribution, and then
use the method of moments to calculate the parameters.
The normal and lognormal distribution can be obtained
as, respectively,

_ 1 1 (y-39.60451139\2
fra) = 537394747 vanm P [_E( 5.37394747 ) ]’ (59)

fra(¥) =
1 1ny—3.66961379)2]l (60)

mexp [_E 0.13937469
where fy1 (¥) and fy, (y), respectively, are the normal and
lognormal PDFs for Y.

Based on the same sample data, the optimal
maximum entropy QF is fitted by using the methodology
in Section 3. The result is

yx(F) = exp(3.31148365 + 1.63566312F — (61)
2.47119017F? + 1.45463938F3).

A comparison of the optimal maximum entropy,
normal, and lognormal QFs from the same sample of 50
elements is shown in Fig. 13, together with the sample
data points. Fig. 14 compares various orders of maximum
entropy QFs, and Fig. 15 illustrates the semi-log plot for
the sample tail region of maximum entropy QFs, normal
QF, and lognormal QF. Figs. 13-15 shows that the
optimal maximum entropy QF fits the sample data very
well.

Three reliability analyses are conducted by
assuming that random variable Y obeys three different
probability functions: the normal distribution in Eq. (59),
the lognormal distribution in Eq. (60), and the optimal
entropy QF in Eq. (61). The results are listed in the upper
half of Table 7. By comparison, the reliability analysis is
also listed for the case that the lognormal parent
distribution is used for Y with the mean and the
coefficients of variation are 40ksi and 0.125, respectively.
This case may be regarded as the exact result. The closer
the reliability index is to the parent case, the better the
distribution that Y is modeled. It is found that the optimal
entropy QF results in a very accurate and efficient result,
with the reliability index very close to the case of the
parent distribution and with the smallest number of total
iterations. In this example, the normal distribution gives
the most conservative reliability index as compared to the
lognormal and the maximum entropy QFs, although these
QFs are modeled from the same sample.

(58)
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The order of maximum entropy (ME) QF plays a
significant role in the results of reliability analysis, as
shown in the lower half of Table 7. Among this
maximum entropy QFs, the optimal QF yields the most
conservative reliability index, and the calculation is the
most efficient. The detailed iteration calculations are
tabulated in Table 8 for the case of the optimal
maximum entropy QF.

60 [ : I I
‘ ‘ l l l l Logﬁormajl QF I
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Figure 13. Sample-based three quantile functions.
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Figure 14. Sample-based maximum entropy QFs.
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Table 7. Results of reliability analysis with different QF of Y
for example 1

Total
Sample-based | Final desi int {.2, B)
ter. inal design point {Y, Z,
OF of ¥ B 173 N gnp
0.

ME QF (K=3) [2.6072 |0.00456 7 |{32.4087,48.7327, 1579.3638}

Lognormal QF(2.5856 |0.00486 | 12 |[{32.0799,48.7646, 1564.3641}

Normal QF  |2.4841 |0.00649 | 12 |{30.6237,48.9046, 1497.6395}

Parent
2.6869 |0.00361 | 12 [{33.4006,48.6468, 624.8299}
Lognormal QF

ME QF (K=1) |2.8230 | 0.00238 | 12 |{36.0693,48.3717,1744.7336}

ME QF (K=2) |2.7559 | 0.00293 | 10 |{34.8537,48.4929,1690.1569}

ME QF (K=4) 2.6677 | 0.00382 | 9 [{33.3639,48.6396, 1622.8061}

ME QF (K=5) [2.6408 | 0.00416 | 8 [{32.9327,48.6817,1603.2223}

ME QF (K=6)|2.739 |0.00308 | 9 [{34.5631,48.5216,1677.0570}

ME QF (K=7) [2.6762 | 0.00372 | 9 [{33.5021,48.6261,1629.0759}

5.3 Example 2: Reliability with correlated
random variables

Consider the same problem in Section 5.2, except
assuming that the design variables Y and Z are now
partially correlated with a correlation coefficient py, =
0.4. The correlation matrix is

[1.0 04 O
C=104 10 0 (62)
L 0 0 1.0
70
K=i7 i L )gn‘ormal
60 A
K=1
50
fra ,v\’;;ff'
: | e
b 40 f
& /j i i
& iy :
@ /i * Sample data
g 3O bbb m Maximum entropy QF(K=1)
) Maximum entropy QF(K=2)
= Maximum entropy QF(K=3)
20 Maximum entropy QF(K=4) 4
= Maximum entropy QF(K=5)
————— Maximum entropy QF(K=6)
10 Maximum entropy QF(K=7) |
Lognormal QF
0 Normal QF
- 11 1 H I H H
100 10-1 1072 0 3

Probability of exceedance

Figure 15. Semi-log plot for the sample tail region of
maximum entropy, normal, and lognormal QF.
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T_hree reliability aqalyses are conductgd by v b2 1505 15397 b ooes 30,6045 — 2.7548
assuming that random variable Y obeys three different < .
probability functions: the normal distribution in Eq. (59), 3|z lsess7 | S bssss  baser S 50 — 0.48278
the lognormal distribution in Eq. (60), and the optimal 3 o
maximum entropy QF in Eq. (61). The results are listed B [1565.035 287.8259 (3.7551 1000 + 222.60798
in the upper half of Table 9. By comparison, the reliability
analysis is also listed for the case that the parent Y 32.4238 4.5930  [2.2283 39.6045 — 2.7608
lognormal distribution is used for Y with the mean and the 5 [N
coefficients of variation are 40ksi and 0.125, respectively. 4|2 p8rals g 23635 24648 |G 50— 048634
This case may be regarded as_the exac_t result. It is  hss0.364 ba7 6847 137501 1000 + 22218298
observed in Table 9 that the optimal maximum entropy
QF results in comparable results to the case of lognormal v B2.4074 U5928  |p.2283 39.6045 — 2.7598
QF but better results than the case of normal QF. The use g «
of the optimal maximum entropy QF also leads to an 5|z {87322 | S .3635 24649 § 50 — 0.48618
efficient algorithm, with the smallest number of only 7 o o
total iterations. B [1579.284 287.6929 [3.7504 1000 + 222.21548
The lower half of Table 9 shows the significant
effect of orders of maximum entropy QFs on the results v 24088 | 45929 2283 N 39.6045 — 2.759
of reliability analy§|s with correlated random v_arlables. 6 | z hs7307 § T 'é 50 — 048615
Among these maximum entropy QFs, the optimal QF g N
yields the most conservative reliability index, and the B 579368  b87.6927 B.7504 1000 + 22221388
calculation is the most efficient, which suggests that the
optimal QF generates results more similar to the Y [32.4087 45929  [2.2283 39.6045 — 2.7598
conventional QFs, such as normal and lognormal QFs g o
than any other maximum entropy QFs. The detailed 7| Z 487327 | S 3635 4649 | @ |50 —0.4861p
iteration calculations are tabulated in Table 10 for the ! o
case of the optimal maximum entropy QF. B [1579.364 287.6927 [3.7504 1000 + 222.21388
To investigate the effect of the correlation
coefficient of random variables on the reliability analysis
of structures, the variation of the correlation coefficient Table 9. Results of reliability analysis with different QF of Y
pyz Versus the reliability index is shown in Table 11. for example 2
Positive values of the correlation coefficient would lead
to smaller reliability indexes. Results from sample-based Sample-based Total
optimal maximum entropy QF are close to those with the B ps | lter |Final design point (¥, Z, B)
parent QF, especially when the correlation coefficient is QFof ¥ No.
negative. Table 11 shows that the sample-based normal
QF always leads to the smallest reliability index, ME QF(K=3) [2.4861 [0.00646 | 7 |{31.6899,47.4664,1504.2026}
regardless of positive or negative correlation coefficients.
Therefore, the use of normal QFs would result in Lognormal |, 4gs2 0.00642 | 11 |{31.7192,47.4653,1505 561}
conservative reliability results in this example. QF
Table 8. Iterative calt_:ulations for Example 1 using the optimal Normal QF [2.3919 (0.00837 | 11 [{30.4740,47.5189,1448.0930}
maximum entropy QF (K=3)
Parent
er|  (ASSUmed New Lognormal  [2.5917 (0.00478 | 11 |{32.9555,47.4069,1562.3177}
No. de%;ign pr| oy B 5 New x* oF
point x*
- ME QF(K=1) [2.7346 [0.00312 | 11 |{35.3370,47.4253,1675.8685}
Y [39.6045 | 1| 14.0394 [2.2550 39.6045 — 2.1238
< 5 ME QF(K=2) [2.6539 [0.00398 | 9 [{34.0851,47.4171,1616.2166}
1]z 0 5 23381 [2.8057 |18 [50 —0.563538
g o ME QF(K=4) [2.5520 [0.00535 | 8 [{32.5973,47.4389,1546.3810}
B (1000 S [313.4295 147014 1000 + 255.69948
ME QF(K=5) [2.5229 [0.00582 | 8 [{32.1919,47.4499,1527.5031}
Y [34.1866 4.6794  [2.2216 39.6045 — 2.8538
= 9 ME QF(K=6) [2.6305 [0.00426 | 8 [{33.7345,47.4194,1599.6693}
2|z 485622 | S [2.3672 24159 |Q |50 —0.5141p
S o ME QF(K=7) [2.5623 [0.00520 | 8 [{32.7429,47.4354,1553.1727}
B [1652.387 284.0831 (3.6240 1000 + 216.54728
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6. Conclusions

In this paper, the maximum entropy principle (MEP) is
integrated with another information principle, the Akaike
information criterion (AIC), to directly derive an
analytical quantile function (QF) from an observed
sample of data. The MEP is constrained by integral
probability-weighted moments (PWMSs) and is used to
estimate a series of QFs, where PWMs are interpreted as
the moments of QF. The MEP with normalization is
constructed in a conventional probabilistic sense, and
normalization is mainly designed to remove the effect of
dimension in sample data and to prevent overflow and
underflow in the calculation. A more general formulation
is developed for the PWM-based MEP, where the
normalization condition is relaxed. The AIC is then used
to locate the optimal order of PWMs in such a way that
the estimated QF can properly catch the information in a
given sample of data.

An illustrative case study is given for modeling the
maximum entropy QF from a sample of data. The
maximum entropy QF with order K = 5 is found to be the
optimal model for the soil sample of undrained shear
strength from the Nipigon River landslide area. The
sample was obtained by field vane shear testing. The
optimal maximum entropy QF lies between lognormal
and normal QFs, which appears to be the best fit for the
soil sample data. The normal distribution underestimates
the sample data in the tail region, but the lognormal
distribution overestimates the tail value. Furthermore, the
negative value of support in a normal distribution is a
defect for the positive values of soil undrained shear
strength. By contrast, the optimal maximum entropy QF
lies between lognormal and normal QFs, which appears
to be a better QF for the soil sample data.

Table 10. Iterative calculations for Example 2 using the
optimal maximum entropy QF (K=3)

IJRRS/Vol. 5/ Issue 2/ 2022 [75

Y |31.6852 47831 |2.2126 39.6045 — 3.1842p
e o
> ©
4| Z |47.4741 =] 2.3717 [2.3583 | ¥ |50 —1.0191p8
S o
B (1504.2003 279.8663(3.4786 1000 + 202.786683
Y |31.6885 47828 |2.2126 39.6045 — 3.1836p
© ~
b4 ©
5| Z |47.4664 =] 2.3716 [2.3584 | ¥ |50 —1.0191p8
S o
B |1504.1374 279.8764(3.4789 1000 + 202.8127p
Y |31.6898 47828 |2.2126 39.6045 — 3.18368
< —
2 ©
6| Z |47.4664 S 2.3716 [2.3584 | ¥ |50 —1.0191p8
S N
B |1504.2034 279.8767|3.4789 1000 + 202.8124p

The proposed method is also applied in the flood
frequency analysis of the Grand River in Ontario. In the
tail region of the flood QFs, normal distribution
underestimates the sample data, but lognormal
distribution overestimates the sample value. Gumbel and
Gamma quantile functions generally fit better than
normal and lognormal functions. The optimal maximum
entropy QF lies between Gumbel and Gamma quantile
functions.

The optimal maximum entropy QF can be directly
used in QF-based first-order reliability analysis.
Examples with correlated and uncorrelated random
variables are presented for illustration of the application
of sample-based optimal maximum entropy QF to
reliability analysis of structures. Reliability analysis
results from sample-based optimal maximum entropy QF
are generally better than those of normal and lognormal
distributions from the same sample by obtaining closer to
those with the parent QF, especially when the correlation
coefficient is negative. In these two application examples,
the use of optimal maximum entropy QFs also leads to an
efficient algorithm with the smallest number of iterations

. ot New New x- in the calculation of the reliability index. Sample-based
x Pro| % | B 8 ewx normal QFs yield the smallest reliability index, regardless
of positive or negative correlation coefficients. The use of
Y |39.6045 i 4.0394 [2.2549 39.6045 — 2.3945p8 normal QFs would result in conservative reliability
< - results. Among those maximum entropy QFs with various
1| Z %0 o 23381 |2.8057 | @ |50 —1.0058 orders, the optimal QF vyields the most conservative
2 o~ reliability index.
B |1000 S [313.4295(4.7014 1000 + 243.64888 o ) o
Table 11. Reliability index vs. correlation coefficient py,
Y [33.7831 4.8713 [2.2037 39.6045 — 3.3038 Sample- Sample- Sample-
b o based based based Parent
™
2| Z |47.5556 'é 2.3754 [2.3099 | &§ |50 — 1.0558p Pyz ase ase ase lognormal
= o optimal normal lognormal .
B [1592.3452 276.3543(3.3593 1000 + 196.30998 entropy QF OF OF Q
0.8 2.3725 2.3078 2.3989 2.5039
Y [31.4038 . 4.7876 |2.2121 ) 39.6045 — 3.18578 0z 54861 53919 54882 5E917
2 st 0.2 2.5457 2.4369 2.5359 2.6383
3|z 473785 | S [2.3719 [2.3558 | ¥ |50 —1.0161f 0 26072 24841 2 5356 26870
e N -0.2 2.6705 2.5334 2.6376 2.7377
B |1487.4465 279.6834(3.4723 1000 + 202.8246f8 04 7355 25350 26920 27908
—0.8 2.8703 2.6959 2.8089 2.9045
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Maximum entropy QFs are directly inferred from a
sample of data in terms of PWMs and are free from
classical probability distributions such as normal,
lognormal, and Gumbel distributions, which constitute a
prominent advantage to conventional distributions.
Maximum entropy QFs have the capability of automatic
adjustment of model sophistication based on the available
sample information only, thus avoiding arbitrary and
subjective choice of probability distributions. The
maximum entropy QFs are applied to random variables
that take only positive values. If the sample normalization
condition is relaxed, the algorithm in Section 3.2 may be
applied to censored or truncated samples. How to deal
with censored or truncated sample data [45] in PWM-
based MEP and in reliability analysis deserves future
research.
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