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Abstract 

A phased-mission system (PMS) involves several different tasks or phases that must be accomplished in sequence. The system 

configuration, task success criteria, and component failure characteristics may vary from phase to phase. Consequently, the 

reliability evaluation of PMSs is more challenging than that of single-phase in the field of system reliability analysis. The 

paper deals with the reliability evaluation of non-repairable Phased-Mission Systems with three phases and five phases 

involving dependent components in each phase.  The cumulative exposure model has been used to model a PMS, and the 

dependency between components of a system in a phase is modeled using the Gumbel-Hougaard copula. Reliability 

importance analyses of the 3-PMS and  5-PMS  have also been carried out. The method developed has been illustrated 

using numerical examples. The proposed methodology can also be generalized to PMSs with more than five phases. 

Keywords: copulas; cumulative exposure model; phased-mission system; reliability; reliability importance measure.

1. Introduction 

The increasing level of complexity and automation in 

engineering systems has resulted in dependencies among 

components within these systems. The operation of 

missions encountered in aerospace, nuclear power, 

chemical, electronic, navigation, military fields, and 

many other applications often involves several different 

tasks or phases that must be accomplished in sequence. 

The system configuration, task success criteria, and 

component failure characteristics may vary from phase to 

phase. During each mission phase, the system has to 

accomplish a specified task and may be subject to 

different stresses as well as different dependability 

requirements. This dynamic behavior requires a distinct 

model for each phase of the mission in the reliability 

analysis to be able to verify whether a system has met 

desired reliability. 

Definition 1.1: A phased-mission system (PMS) is 

defined as a system where the mission consists of phased 

sub-missions whose relevant configuration changes 

during time periods (phases).  

Definition 1.2: The reliability of a PMS is defined 

as the probability for all tasks in the PMS to complete 

successfully. 

The evaluation of the reliability of a PMS must 

account for changes in configuration, component use, and 

stresses. 

Some examples of PMSs are: 

 An aircraft flight involves take-off, ascent, 

level-flight, descent, and landing phases. During 

each phase, the system has to accomplish a 

specified task and may be subject to different 

stresses, environmental conditions, and 

reliability requirements. For example, in a twin-

engine airplane, one engine is required during 

the taxi phase, but both engines are necessary 

during the take-off phase. In addition, the 

engines are more likely to fail during the take-

off period because they are generally under 

enormous stress in this phase as compared to 

other phases of the flight profile. See for 

example [1] and [2]. 

 The batch processing of jobs on a distributed 

computer system in which each job requires 

different system resources to be available, thus 

resulting in different success criteria for each 

task. 

 In a boiling water reactor [3], a loss of coolant 

accident involves three phases for emergency 

core cooling - initial core cooling, suppression 

core cooling, and residual heat removal. 

PMSs introduced by [4] have been studied 

extensively in the literature. There are broadly three 

classes of analytical approaches to analyze the reliability 

of PMSs, viz., Combinatorial approach, State-space 

oriented Method, and Phase Modular approach. 
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Combinatorial methods exploit Boolean algebra and 

various forms of decision diagrams and can handle any 

arbitrary types of distributions [2], [5]- [9]. State space-

based methods (e.g., Markov chains, Petri nets) are 

powerful and flexible in modeling various dependencies 

but suffer from state explosion when modeling medium 

to large-scale systems [5], [10]. The phased Modular 

approach is the integrated approach combining the 

combinatorial approach and state space-based approach 

[2]. See also [6], [11]- [16]. Simulation methods can 

typically offer great generality in representing system 

behavior but can only provide approximate results [6]. 

The present paper uses the copula-based approach to 

capture dependencies amongst the components of the 

system in each phase. Copulas help model dependency 

between dependent components of a reliability system. 

The dependence structure relates the known marginal life 

distributions of components to their multivariate 

distribution [17]. The kind of dependence structure comes 

from the choice of an appropriate copula.  There are many 

types of copula functions, such as Gaussian copula, 

Student’s t-copula, Frank copula, Clayton copula and 

Gumbel copula. The copula-based approach in reliability 

theory has been studied by several authors, for example, 

[18]- [20]. However, this approach has not been used in 

PMSs so far. Gumbel-Hougaard Copula is used in this 

paper. The concept of equivalent age of a component to 

represent the cumulative damage it has accrued up to a 

given point of time is used [21]. 

The paper is organized as follows:  

Section 2 describes the PMS models considered. 

Section 3 describes the copula function; Section 4 

presents the method for evaluating the entire phased 

mission reliability; reliability importance analyses of the 

three PMSs have been carried out in Section 5, and 

Section 6 illustrates the proposed method. 

2. PMSs Model Description 

Two different three phases of mission systems (3-PMS) 

have been used, as depicted in Figure 1 see [10] and 

Figure 2 [9]. Also, the 5-PMS system representing the 

space application mission discussed by [22]- [23] (see 

also [9]) is shown in Figure 3. 

 

Figure 1. 3-PMS with inactive components. 

Figure 1 comprises three phases with: 

 The first phase comprises two subsystems in 

series, with the first subsystem composed of one 

component, C1, and the second subsystem being 

a parallel-series system of two subsystems with 

one composed of one component, C2, and the 

other two components, viz., C3 and C4, 

 the second phase is composed of a parallel-series 

configuration of two subsystems in which one is 

composed of two components, viz., C1 and C2, 

and the other one component, C3; component C4 

being inactive, 

 the third phase consists of a series configuration 

of three components, C1, C3, and C4; component 

C2 is inactive. 

Figure 2 comprises three phases with: 

 the first phase comprises a series configuration 

of three components, viz., A, B, and C, 

 the second phase comprises a parallel 

configuration of three components, viz., A, B, 

and C, 

 The third phase is composed of a series-parallel 

configuration of two subsystems, with one 

comprising one component, A, and the other 

comprising two components, B and C. 

Figure 3 comprises five phases with: 

 the first phase is launch comprising 3-out-of-4 

subsystems in series with a parallel subsystem 

of order 2, 

 the second phase is Hibern.1 comprises a 

parallel system of order 2, 

 the third phase is Asteroid comprising a 3-out-

of-4 subsystem in series with a parallel 

subsystem of order 2, 

 the fourth phase is Hibern.2 comprises a 

parallel system of order 2,  

 the fifth phase is Comet comprising a 3-out-of-

4 subsystem in series with a parallel subsystem 

of order 2. 

 

 Figure 2. 3-PMS with active components. 

 

Figure 3. 5-PMS with active components (Spacecraft 

Application). 
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Assumptions 

The reliability of these PMSs is derived using the 

following assumptions: 

 The lifetimes of all the components in the 

subsystems are dependent. 

 The components in a phase follow a Weibull or 

exponential life distribution. 

 The structure of the system varies across the 

phases. 

3. Copula Function 

The dependency existing between the marginal random 

variables in bivariate and multivariate distributions is 

described by a copula [17].  The copula describes the way 

in which the marginal are linked together on the basis of 

their association.  

The Weibull life distribution is widely used in the 

industrial situation, and exponential life distribution is its 

particular case. The reason for using Gumbel-Hougaard 

Copula in this work is the existence of the following 

relationship:  

Weibull life distribution  Gumbel-Hougaard 

Copula 

for the bivariate case, which can be extended to 𝑛 

dimensions, see [24].  

Let X1, X2 and X3 be the random variables 

with �̅�1(𝑥1), �̅�2(𝑥2) and �̅�3(𝑥3) as their marginal 

reliability functions, respectively. Let 𝐻(𝑥1, 𝑥2, 𝑥3) be 

their corresponding joint reliability function. Then, 

according to Sklar’s Theorem, there exists a copula 

reliability function C( , , )    such that for all (X1, X2, X3) in 

the defined range, 

𝐻(𝑥1, 𝑥2, 𝑥3) = 𝐶(�̅�1(𝑥1), �̅�2(𝑥2), �̅�3(𝑥3)),       (1) 

Three- dimensional Gumbel-Hougaard copula [25] 

is defined as: 

𝐶𝜃(𝑢, 𝑣, 𝑤) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔𝑒[𝑢])
𝜃 +

(−𝑙𝑜𝑔𝑒[𝑣])
𝜃 + (−𝑙𝑜𝑔𝑒[𝑤])

𝜃)
1/𝜃
],     

(2) 

where 𝜃𝜖[1,∞) characterizes the association 

between the two variables.  

Similarly, the four-dimensional Gumbel- Hougaard 

copula is defined as: 

𝐶𝜃(𝑢, 𝑣, 𝑤𝑧) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔𝑒[𝑢])
𝜃 +

(−𝑙𝑜𝑔𝑒[𝑣])
𝜃 + (−𝑙𝑜𝑔𝑒[𝑤])

𝜃 +

(−𝑙𝑜𝑔𝑒[𝑧])
𝜃)

1

𝜃],    

(3) 

Weibull marginal with reliability function 

𝑅(𝑡) = exp [− (
𝑡

𝛼
)
𝛽

] , 𝑡 > 0;  𝛼 > 0;  𝛽 > 0   (4) 

is used in the paper. 

4. Mission Reliability Evaluation 

Let 3-PMS in Figure 1 and Figure 2 be denoted as PMS-

1 and PMS-2, respectively, and 5-PMS in Figure 3 be 

denoted as PMS-3.  In Section 4.1, reliability, �̅�𝑃𝑀𝑆−𝐼(𝑡), 

of PMS-1 is computed, in section 4.2, reliability,  

�̅�𝑃𝑀𝑆−𝐼𝐼(𝑡), of PMS-2 is obtained, and finally, reliability, 

�̅�𝑃𝑀𝑆−𝐼𝐼𝐼(𝑡), of PMS-3 is evaluated in section 4.3. 

4.1 Reliability of PMS-1 

Let 𝑇1, 𝑇2, 𝑇3 and 𝑇4 denote lifetimes of the components 

with reliabilities �̅�1(𝑡), �̅�2(𝑡), �̅�3(𝑡), and �̅�4(𝑡) 
respectively.  Let �̅�11(𝑡), �̅�21(𝑡), �̅�31(𝑡) be the reliability 

of subsystems in Phase 1, phase 2, and Phase 3, 

respectively. Then, the reliability of PMS-1 is: 

 

�̅�𝑃𝑀𝑆−𝐼(𝑡) = {

�̅�11(𝑡), 0 ≤ 𝑡 ≤ 𝜏1
�̅�21(𝑡), 𝜏1 ≤ 𝑡 ≤ 𝜏2
�̅�31(𝑡), 𝜏2 ≤ 𝑡 ≤ 𝜏3

,    (5) 

�̅�11(𝑡) = 𝑃[𝑚𝑖𝑛{𝑇1, 𝑇1
′} > 𝑡] = 𝑃[𝑇1 > 𝑡, 𝑇1

′ >
𝑡],   

(6) 

where, 

 𝑇1
′ = 𝑚𝑎𝑥{𝑇2, 𝑚𝑖𝑛{𝑇3, 𝑇4}} 

 

�̅�21(𝑡) = 𝑃[𝑇2
′ > 𝑡],  (7) 

where 

𝑇2
′ = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝑇1, 𝑇2}, 𝑇3},  

 

�̅�31(𝑡) = 𝑃[𝑇3
′ > 𝑡],  (8) 

where, 

𝑇3
′ = 𝑚𝑖𝑛{𝑇1, 𝑇3, 𝑇4},  

 

Consider  

�̅�11(𝑡) = 𝑃[𝑚𝑖𝑛{𝑇1, 𝑇1
′} > 𝑡], 

 

where, 𝑇1
′ = 𝑚𝑎𝑥{𝑇2, 𝑚𝑖𝑛{𝑇3, 𝑇4}} 

                   = 𝑃[𝑇1 > 𝑡, 𝑇1
′ > 𝑡]  

   = 𝑃[𝑇1 > 𝑡] − 𝑃[𝑇1 > 𝑡, 𝑇1
′ ≤ 𝑡]  

   = 𝑃[𝑇1 > 𝑡] − 𝑃[𝑇1 > 𝑡, 𝑇2 ≤
𝑡,𝑚𝑖𝑛{𝑇3, 𝑇4} ≤ 𝑡]  
= 𝑃[𝑇1 > 𝑡] 

−𝑃[𝑇1 > 𝑡, 𝑇2 ≤ 𝑡] −
𝑃[𝑇1 > 𝑡, 𝑇2 ≤ 𝑡,𝑚𝑖𝑛{𝑇3, 𝑇4} > 𝑡]  
= 𝑃[𝑇1 > 𝑡] −{P[𝑇1 > 𝑡] − 𝑃[𝑇1 >

𝑡, 𝑇2 > 𝑡] } 

+{𝑃[𝑇1 > 𝑡,𝑚𝑖𝑛{𝑇3, 𝑇4} >
𝑡] − 𝑃[𝑇1 > 𝑡, 𝑇2 > 𝑡,𝑚𝑖𝑛{𝑇3, 𝑇4} >
𝑡]}  
= 𝑃[𝑇1 > 𝑡, 𝑇2 > 𝑡] + 𝑃[𝑇1 >
𝑡,𝑚𝑖𝑛{𝑇3, 𝑇4} > 𝑡]  
−𝑃[𝑇1 > 𝑡, 𝑇2 > 𝑡,𝑚𝑖𝑛{𝑇3, 𝑇4} > 𝑡]  

                     = 𝐶(�̅�11(𝑡), �̅�21(𝑡), 1,1) +

𝐶(�̅�11(𝑡), 1, �̅�31(𝑡), �̅�41(𝑡)) −

𝐶(�̅�11(𝑡), �̅�21(𝑡), �̅�31(𝑡), �̅�41(𝑡)).  

(9) 

 

Consider now 

�̅�21(𝑡) = 𝑃[𝑇2
′ > 𝑡],    

where 𝑇2
′ = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝑇1 , 𝑇2}, 𝑇3}.  

 

⇒ �̅�21(𝑡) = 1 − 𝑃[𝑇2
′ ≤ 𝑡]  

= 1 − 𝑃[𝑚𝑖𝑛{𝑇1 , 𝑇2} ≤ 𝑡, 𝑇3 ≤ 𝑡]  
= 1 − {𝑃[𝑇3 ≤ 𝑡] − 𝑃[𝑚𝑖𝑛{𝑇1, 𝑇2} >
𝑡, 𝑇3 ≤ 𝑡]}  

(10) 
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= 1 − {{1 − 𝑃[𝑇3 > 𝑡]} − 𝑃[𝑇1 >

𝑡, 𝑇2 > 𝑡, 𝑇3 ≤ 𝑡]}  

= 1 − {{1 − 𝑃[𝑇3 > 𝑡]} − {𝑃[𝑇1 >

𝑡, 𝑇2 > 𝑡] − 𝑃[𝑇1 > 𝑡, 𝑇2 > 𝑡, 𝑇3 >

𝑡]}}  

= 1 − {{1 − 𝐶(1,1, �̅�32(𝑡), 1)} −

{𝐶(�̅�12(𝑡), �̅�22(𝑡), 1,1) −

𝐶(�̅�12(𝑡), �̅�22(𝑡), �̅�32(𝑡), 1)}}.  

Finally, consider 

�̅�31(𝑡) = 𝑃[𝑇3
′ > 𝑡], where, 

𝑇3
′ = 𝑚𝑖𝑛{𝑇1, 𝑇3, 𝑇4}.            
⇒ �̅�31(𝑡) = 𝑃[𝑇1 > 𝑡, 𝑇3 > 𝑡, 𝑇4 > 𝑡]  

= 𝐶(�̅�13(𝑡), 1, �̅�33(𝑡), �̅�43(𝑡)).  

(11) 

(9), (10), and (11) give the reliability of the three 

subsystems in PMS-1. 

Thus, the reliability of 3-PMS-1 system with �̅�𝑗𝑖(𝑡) 

denoting reliability of 𝑗𝑡ℎ component in 𝑖𝑡ℎ subsystem, 

𝑗 = 1,2,3,4 ;  𝑖 = 1,2,3, is: 

�̅�1(𝜏3) = 𝑃[�̅�11 > 𝜏1]𝑃[�̅�21 > 𝜏2 ∣ �̅�11 >
𝜏1]𝑃[�̅�31 > 𝜏3 ∣ �̅�11 > 𝜏1, �̅�21 > 𝜏2]  
 

= 𝑃[�̅�11 > 𝜏1, �̅�21 > 𝜏2, �̅�31 >
𝜏3]                                     

= 𝐶(�̅�11(𝜏1), �̅�21(𝜏2), �̅�31(𝜏3)),  

(12) 

where 

�̅�11(𝜏1) = 𝐶(�̅�11(𝜏1), �̅�21(𝜏1), 1,1) +

𝐶(�̅�11(𝜏1), 1, �̅�31(𝜏1), �̅�41(𝜏1)) −

𝐶(�̅�11(𝜏1), �̅�21(𝜏1), �̅�31(𝜏1), �̅�41(𝜏1)),  

�̅�21(𝜏2) = 1 − {{1 − 𝐶(1,1, �̅�32(𝜏2 − 𝜏1 + 𝑙32), 1)} −

{𝐶(�̅�12(𝜏2 − 𝜏1 + 𝑙12), �̅�22(𝜏2 − 𝜏1 + 𝑙22), 1,1) −
𝐶(�̅�12(𝜏2 − 𝜏1 + 𝑙12), �̅�22(𝜏2 − 𝜏1 + 𝑙22), �̅�32(𝜏2 − 𝜏1 +

𝑙32), 1)}},  

�̅�31(𝜏3) = 𝐶(�̅�13(𝜏3 − 𝜏2 + 𝑙13), 1, �̅�33(𝜏3 − 𝜏2 +

𝑙33), �̅�43(𝜏3 − 𝜏2 + 𝑙43)),  
 using cumulative exposure model [21]. 

𝑙12 is determined in such a way that 

�̅�12(𝑙12) = �̅�11(𝜏1),  
𝑙22 is determined in such a way that 

�̅�22(𝑙22) = �̅�21(𝜏1),  
𝑙32 is determined in such a way that 

�̅�32(𝑙32) = �̅�31(𝜏1),  
𝑙13 is determined in such a way that 

�̅�13(𝑙13) = �̅�12(𝜏2 − 𝜏1 + 𝑙12),  
𝑙33 is determined in such a way that 

�̅�33(𝑙33) = �̅�32(𝜏2 − 𝜏1 + 𝑙32),  
𝑙43 is determined in such a way that 

�̅�43(𝑙43) = �̅�41(𝜏2 − 𝜏1).  

4.1.1 Computation of Reliability of PMS-1 

The reliability of 3-PMS–1 is computed using a four-

dimensional Gumbel-Hougaard copula with Weibull 

marginal: 

𝐶(�̅�1𝑖(𝑡1), �̅�2𝑖(𝑡2), �̅�3𝑖(𝑡3), �̅�4𝑖(𝑡4)) =

𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(�̅�1𝑖(𝑡1)))
𝜃

+ (−𝑙𝑜𝑔(�̅�2𝑖(𝑡2)))
𝜃

+

(−𝑙𝑜𝑔(�̅�3𝑖(𝑡3)))
𝜃

+ (−𝑙𝑜𝑔(�̅�4𝑖(𝑡4)))
𝜃

)
1/𝜃

],  

𝐶(1, �̅�2𝑖(𝑡2), �̅�3𝑖(𝑡3), �̅�4𝑖(𝑡4)) =

𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(�̅�2𝑖(𝑡2)))
𝜃

+ (−𝑙𝑜𝑔(�̅�3𝑖(𝑡3)))
𝜃

+

(−𝑙𝑜𝑔(�̅�4𝑖(𝑡4)))
𝜃

)
1/𝜃

],  

𝐶(1,1, �̅�3𝑖(𝑡3), �̅�4𝑖(𝑡4)) =

𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(�̅�3𝑖(𝑡3)))
𝜃

+ (−𝑙𝑜𝑔(�̅�4𝑖(𝑡4)))
𝜃

)
1/𝜃

],  

𝐶(1,1,1, �̅�4𝑖(𝑡4)) = �̅�4𝑖(𝑡4),  
where, 

�̅�𝑗𝑖(𝑡) = 𝑒𝑥𝑝 [− (
𝑡

𝛼𝑗𝑖
)
𝛽𝑗𝑖

] , 𝑡 > 0; 𝛼𝑗𝑖 > 0; 𝛽𝑗𝑖 > 0, 𝑗 =

1,2,3,4, 𝑖 = 1,2,3,   
𝛽𝑗𝑖 = 1 implies a constant failure rate, 𝛽𝑗𝑖 > 1 implies an 

increasing failure rate, and 𝛽𝑗𝑖 < 1 implies decreasing 

failure rate. 

Further, a constant failure rate signifies an 

exponential life distribution. 

Similarly, copulas with different placements of 1s in 

𝐶(�̅�1𝑖(𝑡1), �̅�2𝑖(𝑡2), �̅�3𝑖(𝑡3), �̅�4𝑖(𝑡4)) can be obtained. 

4.2 Reliability of PMS-2 system 

Let  𝑇1, 𝑇2 and 𝑇3 denote lifetimes of the components with 

reliabilities 𝐻1(𝑡), 𝐻2(𝑡) and 𝐻3(𝑡) , respectively.  Let 

�̅�12(𝑡), �̅�22(𝑡), �̅�32(𝑡) be the reliability of subsystems in 

phase 1, phase 2, and phase 3, respectively. Then, the 

reliability of PMS-2 is: 

�̅�𝑃𝑀𝑆−𝐼𝐼(𝑡) = {

�̅�12(𝑡), 0 ≤ 𝑡 ≤ 𝜏1
�̅�22(𝑡), 𝜏1 ≤ 𝑡 ≤ 𝜏2
�̅�32(𝑡), 𝜏2 ≤ 𝑡 ≤ 𝜏3

,  (13) 

�̅�12(𝑡) = 𝑃[𝑇1
′ > 𝑡],  (14) 

where, 𝑇1
′ = 𝑚𝑖𝑛{𝑇1, 𝑇2, 𝑇3}, 

�̅�22(𝑡) = 𝑃[𝑇2
′ > 𝑡],  

(15) 

where 𝑇2
′ = 𝑚𝑎𝑥{𝑇1, 𝑇2, 𝑇3},           

�̅�32(𝑡) = 𝑃[𝑇3
′ > 𝑡], where 

(16) 

𝑇3
′ = 𝑚𝑖𝑛{𝑇1, 𝑚𝑎𝑥{𝑇2, 𝑇3}},       

Consider  

�̅�12(𝑡) = 𝑃[𝑇1
′ > 𝑡],   

where 𝑇1
′ = 𝑚𝑖𝑛{𝑇1, 𝑇2, 𝑇3}.           

⇒ �̅�12(𝑡) = 𝑃[𝑇1 > 𝑡, 𝑇2 > 𝑡, 𝑇3 > 𝑡]  

= 𝐶(𝐻11(𝑡), 𝐻21(𝑡), 𝐻31(𝑡)).  
(17) 

Consider now 

�̅�22(𝑡) = 𝑃[𝑇2
′ > 𝑡], where   
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𝑇2
′ = 𝑚𝑎𝑥{𝑇1, 𝑇2, 𝑇3}.          
⇒ �̅�22(𝑡) = 1 − 𝑃[𝑇2

′ ≤ 𝑡]  

= 1 − 𝑃[𝑇1 ≤ 𝑡, 𝑇2 ≤ 𝑡, 𝑇3 ≤ 𝑡]  

= 1 − {𝑃[𝑇1 ≤ 𝑡, 𝑇2 ≤ 𝑡] − 𝑃[𝑇1 ≤

𝑡, 𝑇2 ≤ 𝑡, 𝑇3 > 𝑡]}  

= 1 − {{𝑃[𝑇1 ≤ 𝑡] − 𝑃[𝑇1 ≤ 𝑡, 𝑇2 >

𝑡]} − {𝑃[𝑇1 ≤ 𝑡, 𝑇3 > 𝑡] − 𝑃[𝑇1 ≤

𝑡, 𝑇2 > 𝑡, 𝑇3 > 𝑡]}}  

= 1 − {𝑃[𝑇1 ≤ 𝑡] − {𝑃[𝑇2 > 𝑡] −

𝑃[𝑇1 > 𝑡, 𝑇2 > 𝑡]}}  

 + {{𝑃[𝑇3 > 𝑡] − 𝑃[𝑇1 > 𝑡, 𝑇3 >

𝑡]} − {𝑃[𝑇2 > 𝑡, 𝑇3 > 𝑡] − 𝑃[𝑇1 >

𝑡, 𝑇2 > 𝑡, 𝑇3 > 𝑡]}}  

= 1 − {[1 − 𝐶(�̅�12(𝑡), 1,1)] −

{𝐶(1, 𝐻22(𝑡), 1) −

𝐶(𝐻12(𝑡), 𝐻22(𝑡), 1)}} +

 {{𝐶(1,1, 𝐻32(𝑡)) −

𝐶(�̅�12(𝑡), 1, 𝐻32(𝑡))} −

{𝐶(1, 𝐻22(𝑡), 𝐻32(𝑡)) −

𝐶(�̅�12(𝑡), �̅�22(𝑡), 𝐻32(𝑡))}}.  

(18) 

Finally, consider 

�̅�32(𝑡) = 𝑃[𝑇3
′ > 𝑡], where     

𝑇3
′ = 𝑚𝑖𝑛{𝑇1, 𝑚𝑎𝑥{𝑇2, 𝑇3}}.       

⇒ �̅�32(𝑡) = 𝑃[𝑇1 > 𝑡,𝑚𝑎𝑥{𝑇2, 𝑇3} > 𝑡]  
= 𝑃[ 𝑇1 > 𝑡] − 𝑃[  𝑇1 > 𝑡,𝑚𝑎𝑥{𝑇2, 𝑇3} ≤ 𝑡]  
= 𝑃[ 𝑇1 > 𝑡] − 𝑃[  𝑇1 > 𝑡, 𝑇2 ≤ 𝑡, 𝑇3 ≤ 𝑡]  
= 𝑃[ 𝑇1 > 𝑡] − {𝑃[ 𝑇1 > 𝑡, 𝑇3 ≤ 𝑡] − 𝑃[  𝑇1 >
𝑡, 𝑇2 > 𝑡, 𝑇3 ≤ 𝑡]}  
= 𝑃[ 𝑇1 > 𝑡] − {𝑃[ 𝑇1 > 𝑡] − 𝑃[ 𝑇1 > 𝑡, 𝑇3 >
𝑡]} + {𝑃[ 𝑇1 > 𝑡, 𝑇2 > 𝑡] − 𝑃[  𝑇1 > 𝑡, 𝑇2 >
𝑡, 𝑇3 > 𝑡]}  

= 𝐶(𝐻13(𝑡), 1,1) − {𝐶(𝐻13(𝑡), 1,1) −

𝐶(𝐻13(𝑡), 1, 𝐻33(𝑡))} +

{𝐶(𝐻13(𝑡), 𝐻23(𝑡), 1) −

𝐶(𝐻13(𝑡), 𝐻23(𝑡), �̅�33(𝑡))}.  

(19) 

 (17), (18), and (19) give the reliability of the three 

subsystems in PMS-2. 

Thus, the reliability of the 3-PMS-2 system with 

𝐻𝑗𝑖(𝑡) denoting reliability of 𝑗𝑡ℎ component in 𝑖𝑡ℎ  

subsystem 𝑖 = 1,2,3 ;  𝑗 = 1,2,3, is: 

�̅�2(𝜏3) = 𝑃[�̅�12 > 𝜏1]𝑃[�̅�22 > 𝜏2 ∣
�̅�12 > 𝜏1]𝑃[�̅�32 > 𝜏3 ∣ �̅�12 >
𝜏1, �̅�22 > 𝜏2]  

= 𝑃[�̅�12 > 𝜏1, �̅�22 >
𝜏2, �̅�32 > 𝜏3]     

= 𝐶(�̅�12(𝜏1), �̅�22(𝜏2), �̅�32(𝜏3)), 

(20) 

where 

�̅�12(𝜏1) = 𝐶(𝐻11(𝜏1), �̅�21(𝜏1), 𝐻31(𝜏1)), 

�̅�22(𝜏2) = 1 − {[1 − 𝐶(𝐻12(𝜏2 − 𝜏1 + 𝑙12), 1,1)] −
{𝐶(1, 𝐻22(𝜏2 − 𝜏1 + 𝑙22), 1) − 𝐶(𝐻12(𝜏2 − 𝜏1 +

𝑙12), 𝐻22(𝜏2 − 𝜏1 + 𝑙22), 1)}} − {{𝐶(1,1, 𝐻32(𝜏2 − 𝜏1 +

𝑙32)) − 𝐶(𝐻12(𝜏2 − 𝜏1 + 𝑙12), 1, �̅�32(𝜏2 − 𝜏1 + 𝑙32))} −

{𝐶(1, 𝐻22(𝜏2 − 𝜏1 + 𝑙22), 𝐻32(𝜏2 − 𝜏1 + 𝑙32)) −

𝐶(𝐻12(𝜏2 − 𝜏1 + 𝑙12), 𝐻22(𝜏2 − 𝜏1 + 𝑙22), �̅�32(𝜏2 −

𝜏1 + 𝑙32))}},  

�̅�32(𝜏3) = 𝐶(𝐻13(𝜏3 − 𝜏2 + 𝑙13), 1,1) − {𝐶(𝐻13(𝜏3 −

𝜏2 + 𝑙13), 1,1) − 𝐶(𝐻13(𝜏3 − 𝜏2 + 𝑙13), 1, 𝐻33(𝜏3 −

𝜏2 + 𝑙33))} + {𝐶(𝐻13(𝜏3 − 𝜏2 + 𝑙13), 𝐻23(𝜏3 − 𝜏2 +

𝑙23), 1) − 𝐶(𝐻13(𝜏3 − 𝜏2 + 𝑙13), �̅�23(𝜏3 − 𝜏2 +

𝑙23), 𝐻33(𝜏3 − 𝜏2 + 𝑙33))},  
using cumulative exposure model.  

𝑙12 is determined in such a way that 

𝐻12(𝑙12) = 𝐻11(𝜏1),  
𝑙22 is determined in such a way that 

𝐻22(𝑙22) = 𝐻21(𝜏1),  
𝑙32 is determined in such a way that 

𝐻32(𝑙32) = 𝐻31(𝜏1),  
𝑙13 is determined in such a way that 

𝐻13(𝑙13) = 𝐻12(𝜏2 − 𝜏1 + 𝑙12),  
𝑙23 is determined in such a way that 

𝐻23(𝑙23) = 𝐻22(𝜏2 − 𝜏1 + 𝑙22),  
𝑙33 is determined in such a way that 

𝐻33(𝑙33) = 𝐻32(𝜏2 − 𝜏1 + 𝑙32).  

4.2.1 Computation of Reliability of 3-PMS-2 

The reliability of 3-PMS–2 is computed using a three-

dimensional Gumbel-Hougaard copula with Weibull 

marginal: 

𝐶(𝐻1𝑖(𝑡1), �̅�2𝑖(𝑡2), 𝐻3𝑖(𝑡3)) =

𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(𝐻1𝑖(𝑡1)))
𝜃

+ (−𝑙𝑜𝑔(𝐻2𝑖(𝑡2)))
𝜃

+

(−𝑙𝑜𝑔(𝐻3𝑖(𝑡3)))
𝜃

)
1/𝜃

],  

𝐶(1, 𝐻2𝑖(𝑡2), 𝐻3𝑖(𝑡3)) = 𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(𝐻2𝑖(𝑡2)))
𝜃

+

(−𝑙𝑜𝑔(𝐻3𝑖(𝑡3)))
𝜃

)
1/𝜃

],  

𝐶(𝐻1𝑖(𝑡1), 1, 𝐻3𝑖(𝑡3), ) = 𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(�̅�1𝑖(𝑡1)))
𝜃

+

(−𝑙𝑜𝑔(𝐻3𝑖(𝑡3)))
𝜃

)
1/𝜃

],  

𝐶(𝐻1𝑖(𝑡1), 𝐻2𝑖(𝑡2), 1) = 𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(�̅�1𝑖(𝑡1)))
𝜃

+

(−𝑙𝑜𝑔(𝐻2𝑖(𝑡2)))
𝜃

)
1/𝜃

],  

𝐶(𝐻1𝑖(𝑡1), 1,1) = 𝐻1𝑖(𝑡1),  
𝐶(1, 𝐻2𝑖(𝑡2), 1) = 𝐻2𝑖(𝑡2),  

𝐶(1,1, 𝐻3𝑖(𝑡3)) = �̅�3𝑖(𝑡3),  
where, 
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𝐻𝑗𝑖(𝑡) = 𝑒𝑥𝑝 [− (
𝑡

𝛼𝑗𝑖
)
𝛽𝑗𝑖

] , 𝑡 > 0; 𝛼𝑗𝑖 > 0; 𝛽𝑗𝑖 > 0, 𝑗 =

1,2,3, 𝑖 = 1,2,3.  
Thus, 

𝐶 (𝐻𝑗𝑖(𝑡1), 𝐻𝑗𝑖(𝑡2), 𝐻𝑗𝑖(𝑡3)) =

𝑒𝑥𝑝 [−((((
𝑡1

𝛼𝑗𝑖
)
𝛽𝑗𝑘

))

𝜃

+ (((
𝑡2

𝛼𝑗𝑖
)
𝛽𝑗𝑖

))

𝜃

+

(((
𝑡3

𝛼𝑗𝑖
)
𝛽𝑗𝑖

))

𝜃

)

1/𝜃

].  

4.3    Reliability of 5-PMS-3 system 

Let  𝑇1, 𝑇2, 𝑇3 and 𝑇4 denote lifetimes of the components 

of subsystem ′1′ with reliabilities �̅�1(𝑡), �̅�2(𝑡), �̅�3(𝑡) and 

�̅�4(𝑡), respectively, and 𝑇1
′ and 𝑇2

′ denote lifetimes of the 

components of subsystem ′2′ with reliabilities �̅�1
′ (𝑡)and 

�̅�2
′ (𝑡) , respectively.  Let �̅�𝑝1(𝑡), �̅�𝑝2(𝑡), �̅�𝑝3(𝑡), �̅�𝑝4(𝑡), 

and �̅�𝑝5(𝑡) be the reliability of subsystems in Phase 1, 

phase 2, phase 3, phase 4, and Phase 5, respectively. 

Then, the reliability of PMS-3 is: 

�̅�𝑃𝑀𝑆−𝐼𝐼𝐼(𝑡) =

{
 
 

 
 
�̅�𝑝1(𝑡), 0 ≤ 𝑡 ≤ 𝜏1

�̅�𝑝2(𝑡), 𝜏1 ≤ 𝑡 ≤ 𝜏2

�̅�𝑝3(𝑡), 𝜏2 ≤ 𝑡 ≤ 𝜏3

�̅�𝑝4(𝑡), 𝜏3 ≤ 𝑡 ≤ 𝜏4

�̅�𝑝5(𝑡), 𝜏4 ≤ 𝑡 ≤ 𝜏5

,  (21) 

PHASE-1 

Let 𝐹11(𝑡), 𝐹21(𝑡), 𝐹31(𝑡), and 𝐹41(𝑡) be life distribution 

of components ‘𝐻𝑎 ’, ‘𝐻𝑏 ’, ‘𝐻𝑐 ’, and ‘𝐻𝑑 ’, respectively in 

subsystem ‘1’ further let 𝑉11(𝑡) and 𝑉21(𝑡) be life 

distribution of components ‘𝐿𝑎 ’ and ‘𝐿𝑏’, respectively, in 

subsystem ‘2’. 
Reliability of Subsystem-I, 

�̅�𝑠𝑢𝑏11(𝑡) = 𝑝[𝑇1 > 𝑡, 𝑇2 > 𝑡, 𝑇3 > 𝑡, 𝑇4 ≤ 𝑡]  + 𝑝[𝑇1 >
𝑡, 𝑇2 > 𝑡, 𝑇4 > 𝑡, 𝑇3 ≤ 𝑡] + 𝑝[𝑇1 > 𝑡, 𝑇3 > 𝑡, 𝑇4 >
𝑡, 𝑇2 ≤ 𝑡] + 𝑝[𝑇2 > 𝑡, 𝑇3 > 𝑡, 𝑇4 > 𝑡, 𝑇1 ≤ 𝑡] + 𝑝[𝑇1 >
𝑡, 𝑇2 > 𝑡, 𝑇3 > 𝑡, 𝑇4 > 𝑡]  
              = 𝑝[𝑇1 > 𝑡, 𝑇2 > 𝑡, 𝑇3 > 𝑡] − 𝑝[𝑇1 > 𝑡, 𝑇2 >
𝑡, 𝑇3 > 𝑡, 𝑇4 > 𝑡] +  𝑝[𝑇1 > 𝑡, 𝑇2 > 𝑡, 𝑇4 > 𝑡] − 𝑝[𝑇1 >
𝑡, 𝑇2 > 𝑡, 𝑇4 > 𝑡, 𝑇3 > 𝑡] + 𝑝[𝑇1 > 𝑡, 𝑇3 > 𝑡, 𝑇4 > 𝑡] −
𝑝[𝑇1 > 𝑡, 𝑇3 > 𝑡, 𝑇4 > 𝑡, 𝑇2 > 𝑡] + 𝑝[𝑇2 > 𝑡, 𝑇3 >
𝑡, 𝑇4 > 𝑡] − 𝑝[𝑇2 > 𝑡, 𝑇3 > 𝑡, 𝑇4 > 𝑡, 𝑇1 > 𝑡] + 𝑝[𝑇1 >
 𝑡, 𝑇2 > 𝑡, 𝑇3 > 𝑡, 𝑇4 > 𝑡] 

= 𝐶(�̅�11(𝑡), �̅�21(𝑡), �̅�31(𝑡)) +

𝐶(�̅�11(𝑡), �̅�21(𝑡), �̅�41(𝑡)) + 𝐶(�̅�11(𝑡), �̅�31(𝑡), �̅�41(𝑡)) +

𝐶(�̅�21(𝑡), �̅�31(𝑡), �̅�41(𝑡)) −

3𝐶(�̅�11(𝑡), �̅�21(𝑡), �̅�31(𝑡), �̅�41(𝑡)).  
Reliability of Subsystem-II, 

�̅�𝑠𝑢𝑏21(𝑡) = 1 − 𝑝[min(𝑈1, 𝑈2) ≤ 𝑡]  
                  = 1 − 𝑝[𝑈1 ≤ 𝑡, 𝑈2 ≤ 𝑡]  
                  = 1 − {𝑝[𝑈1 ≤ 𝑡] − 𝑝[𝑈1 ≤ 𝑡, 𝑈2 > 𝑡]}  

                  = 1 − {1 − 𝑝[𝑈1 > 𝑡] − {𝑝[𝑈2 > 𝑡] − 𝑝[𝑈1 >
𝑡, 𝑈2 > 𝑡]}}  
                  = 𝑝[𝑈1 > 𝑡] + 𝑝[𝑈2 > 𝑡] − 𝑝[𝑈1 > 𝑡, 𝑈2 > 𝑡]  

                  = 𝐶(�̅�11(𝑡), 1) + 𝐶(1, �̅�21(𝑡)) −

𝐶(�̅�11(𝑡), �̅�21(𝑡)). 
Thus, the Reliability of phase-1, 

�̅�𝑝1(𝑡) = �̅�𝑠𝑢𝑏11(𝑡). �̅�𝑠𝑢𝑏21(𝑡).  (22) 

PHASE-2  

Let 𝐹12(𝑡) and 𝐹22(𝑡) be life distribution of components 

‘𝐻𝑎 ’ and ‘𝐻𝑏 ’, respectively,  

�̅�𝑝2(𝑡) = 𝐶(�̅�12(𝑡), 1) + 𝐶(1, �̅�22(𝑡)) −

𝐶(�̅�12(𝑡), �̅�22(𝑡)).  
(23) 

PHASE-3  

Let 𝐹13(𝑡), 𝐹23(𝑡), 𝐹33(𝑡) and 𝐹43(𝑡) be life distribution 

of components ‘𝐻𝑎 ’, ‘𝐻𝑏 ’, ‘𝐻𝑐 ’ and ‘𝐻𝑑 ’, respectively in 

subsystem ‘1’. Further, let 𝑉13(𝑡) and 𝑉23(𝑡) be life 

distribution of components ‘𝐴𝑎’and ‘𝐴𝑏’, 

 �̅�𝑠𝑢𝑏13(𝑡) = 𝐶(�̅�13(𝑡), �̅�23(𝑡), �̅�33(𝑡)) +

𝐶(�̅�13(𝑡), �̅�23(𝑡), �̅�43(𝑡)) + 𝐶(�̅�13(𝑡), �̅�33(𝑡), �̅�43(𝑡)) +

𝐶(�̅�23(𝑡), �̅�33(𝑡), �̅�43(𝑡)) −

3𝐶(�̅�13(𝑡), �̅�23(𝑡), �̅�33(𝑡), �̅�43(𝑡)).  
Reliability of Subsystem-II, 

�̅�𝑠𝑢𝑏23(𝑡) =  𝐶(�̅�13(𝑡), 1) + 𝐶(1, �̅�23(𝑡)) −

𝐶(�̅�13(𝑡), �̅�23(𝑡)).  
Thus, the Reliability of phase-3, 

�̅�𝑝3(𝑡) = �̅�𝑠𝑢𝑏13(𝑡). �̅�𝑠𝑢𝑏23(𝑡).  (24) 

PHASE-4 

Let 𝐹14(𝑡) and 𝐹24(𝑡) be life distribution of components 

‘𝐻𝑎 ’ and ‘𝐻𝑏 ’, respectively, 

�̅�𝑝4(𝑡) = 𝐶(�̅�14(𝑡), 1) + 𝐶(1, �̅�24(𝑡)) −

𝐶(�̅�14(𝑡), �̅�24(𝑡)).  
(25) 

PHASE-5  

Let 𝐹15(𝑡), 𝐹25(𝑡), 𝐹35(𝑡), and 𝐹45(𝑡) be life distribution 

of components ‘𝐻𝑎 ’, ‘𝐻𝑏 ’, ‘𝐻𝑐 ’, and ‘𝐻𝑑 ’, respectively in 

subsystem ‘1’ further let 𝑉15(𝑡) and 𝑉25(𝑡) be life 

distribution of components ‘𝐶𝑎’ and ‘𝐶𝑏’, 

 �̅�𝑠𝑢𝑏15(𝑡) = 𝐶(�̅�15(𝑡), �̅�25(𝑡), �̅�35(𝑡)) +

𝐶(�̅�15(𝑡), �̅�25(𝑡), �̅�45(𝑡)) + 𝐶(�̅�15(𝑡), �̅�35(𝑡), �̅�45(𝑡)) +

𝐶(�̅�25(𝑡), �̅�35(𝑡), �̅�45(𝑡)) −

3𝐶(�̅�15(𝑡), �̅�25(𝑡), �̅�35(𝑡), �̅�45(𝑡)).  
Reliability of Subsystem-II, 

�̅�𝑠𝑢𝑏25(𝑡) =  𝐶(�̅�15(𝑡), 1) + 𝐶(1, �̅�25(𝑡)) −

𝐶(�̅�15(𝑡), �̅�25(𝑡)).  

Thus, the Reliability of phase-5, 

�̅�𝑝5(𝑡) = �̅�𝑠𝑢𝑏15(𝑡). �̅�𝑠𝑢𝑏25(𝑡).  (26) 

 (22), (23), (24), (25), and (26) give reliability of the five 

phases in PMS-3. 

Thus, the reliability of the 5-PMS-3 system with 𝐿3 

denoting its lifetime and �̅�𝑗𝑖(𝑡) and �̅�𝑗𝑖
′ (𝑡) denoting 
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reliability of 𝑗𝑡ℎ component in 𝑖𝑡ℎ phases of  ′1′ and ′2′ 
subsystems, respectively, 𝑖 = 1,2,3,4,5;  𝑗 = 1,2,3,4 is: 

�̅�3(𝜏5) = 𝑃[�̅�𝑝1 > 𝜏1]𝑃[�̅�𝑝2 > 𝜏2 ∣ �̅�𝑝1 >

𝜏1]𝑃[�̅�𝑝3 > 𝜏3 ∣ �̅�𝑝1 > 𝜏1, �̅�𝑝2 > 𝜏2]𝑃[�̅�𝑝4 > 𝜏4 ∣

�̅�𝑝1 > 𝜏1, �̅�𝑝2 > 𝜏2, �̅�𝑝3 > 𝜏3]𝑃[�̅�𝑝5 > 𝜏5 ∣ �̅�𝑝1 >

𝜏1, �̅�𝑝2 > 𝜏2, �̅�𝑝3 > 𝜏3, �̅�𝑝4 > 𝜏4]  

= 𝑃[�̅�𝑝1 > 𝜏1, �̅�𝑝2 > 𝜏2, �̅�𝑝3 > 𝜏3, �̅�𝑝4 > 𝜏4, �̅�𝑝5 >

𝜏5]  

= 𝐶(�̅�𝑝1(𝜏1), �̅�𝑝2(𝜏2), �̅�𝑝3(𝜏3), �̅�𝑝4(𝜏4), �̅�𝑝5(𝜏5)), 

(27

) 

where, 

�̅�𝑠𝑢𝑏11(𝜏1) = 𝐶(�̅�11(𝜏1), �̅�21(𝜏1), �̅�31(𝜏1)) +

𝐶(�̅�11(𝜏1), �̅�21(𝜏1), �̅�41(𝜏1)) +

𝐶(�̅�11(𝜏1), �̅�31(𝜏1), �̅�41(𝜏1)) +

𝐶(�̅�21(𝜏1), �̅�31(𝜏1), �̅�41(𝜏1)) −

3𝐶(�̅�11(𝜏1), �̅�21(𝜏1), �̅�31(𝜏1), �̅�41(𝜏1)),  

 �̅�𝑠𝑢𝑏21(𝜏1) = 𝐶(�̅�11(𝜏1), 1) + 𝐶(1, �̅�21(𝜏1)) −

𝐶(�̅�11(𝜏1), �̅�21(𝜏1)), 

�̅�𝑝1(𝜏1) = �̅�𝑠𝑢𝑏11(𝜏1). �̅�𝑠𝑢𝑏21(𝜏1),  

�̅�𝑝2(𝜏2) = 𝐶(�̅�12(𝜏2 − 𝜏1 + 𝑘12), 1) + 𝐶(1, �̅�22(𝜏2 −

𝜏1 + 𝑘22)) − 𝐶(�̅�12(𝜏2 − 𝜏1 + 𝑘12), �̅�22(𝜏2 − 𝜏1 +

𝑘22)),  

�̅�𝑠𝑢𝑏13(𝜏3) = 𝐶(�̅�13(𝜏3 − 𝜏2 + 𝑘13), �̅�23(𝜏3 − 𝜏2 +

𝑘23), �̅�33(𝜏3 − 𝜏1 + 𝑘33)) + 𝐶(�̅�13(𝜏3 − 𝜏2 +

𝑘13), �̅�23(𝜏3 − 𝜏2 + 𝑘23), �̅�43(𝜏3 − 𝜏1 + 𝑘43)) +

𝐶(�̅�13(𝜏3 − 𝜏2 + 𝑘13), �̅�33(𝜏3 − 𝜏1 + 𝑘33), �̅�43(𝜏3 −

𝜏1 + 𝑘43)) + 𝐶(�̅�23(𝜏3 − 𝜏2 + 𝑘23), �̅�33(𝜏3 − 𝜏1 +

𝑘33), �̅�43(𝜏3 − 𝜏1 + 𝑘43)) − 3𝐶(�̅�13(𝜏3 − 𝜏2 +

𝑘13), �̅�23(𝜏3 − 𝜏2 + 𝑘23), �̅�33(𝜏3 − 𝜏1 + 𝑘33), �̅�43(𝜏3 −

𝜏1 + 𝑘43)),  

�̅�𝑠𝑢𝑏23(𝜏3) = 𝐶(�̅�13(𝜏3), 1) + 𝐶(1, �̅�23(𝜏3)) −

𝐶(�̅�13(𝜏3), �̅�23(𝜏3)),  

�̅�𝑝3(𝜏3) = (�̅�𝑠𝑢𝑏13(𝜏3). �̅�𝑠𝑢𝑏23(𝜏3)),  

�̅�𝑝4(𝜏4) = 𝐶(�̅�14(𝜏4 − 𝜏3 + 𝑘14), 1) + 𝐶(1, �̅�24(𝜏4 −

𝜏3 + 𝑘24)) − 𝐶(�̅�14(𝜏4 − 𝜏3 + 𝑘14), �̅�24(𝜏4 − 𝜏3 +

𝑘24)),  

�̅�𝑠𝑢𝑏15(𝜏5) = 𝐶(�̅�15(𝜏5 − 𝜏4 + 𝑘15), �̅�25(𝜏5 − 𝜏4 +

𝑘25), �̅�35(𝜏5 − 𝜏3 + 𝑘35)) + 𝐶(�̅�15(𝜏5 − 𝜏4 +

𝑘15), �̅�25(𝜏5 − 𝜏4 + 𝑘25), �̅�45(𝜏5 − 𝜏3 + 𝑘45 )) +

𝐶(�̅�15(𝜏5 − 𝜏4 + 𝑘15), �̅�35(𝜏5 − 𝜏3 + 𝑘35), �̅�45(𝜏5 −

𝜏3 + 𝑘45)) + 𝐶(�̅�25(𝜏5 − 𝜏4 + 𝑘25), �̅�35(𝜏5 − 𝜏3 +

𝑘35), �̅�45(𝜏5 − 𝜏3 + 𝑘45)) − 3𝐶(�̅�15(𝜏5 − 𝜏4 +

𝑘15), �̅�25(𝜏5 − 𝜏4 + 𝑘25), �̅�35(𝜏5 − 𝜏3 + 𝑘35), �̅�45(𝜏5 −

𝜏3 + 𝑘45)),  

�̅�𝑠𝑢𝑏25(𝜏5) = 𝐶(�̅�15(𝜏5), 1) + 𝐶(1, �̅�25(𝜏5)) −

𝐶(�̅�15(𝜏5), �̅�25(𝜏5))  

�̅�𝑝5(𝜏5) = (�̅�𝑠𝑢𝑏15(𝜏5). �̅�𝑠𝑢𝑏25(𝜏5)),  

using cumulative exposure model. 

𝑘𝑗𝑖 is determined in such a way, 

𝑅11(𝜏1) = 𝑅12(𝑘12)  

𝑅21(𝜏1) = 𝑅22(𝑘22)  
𝑅13(𝑘13) = 𝑅12(𝜏2 − 𝜏1 + 𝑘12)  
𝑅23(𝑘23) = 𝑅22(𝜏2 − 𝜏1 + 𝑘22)  
𝑅31(𝜏1) = 𝑅33(𝑘33)  
𝑅41(𝜏1) = 𝑅43(𝑘43)  
𝑅14(𝑘14) = 𝑅13(𝜏3 − 𝜏2 + 𝑘13)  
𝑅24(𝑘24) = 𝑅23(𝜏3 − 𝜏2 + 𝑘23)  
𝑅15(𝑘15) = 𝑅14(𝜏4 − 𝜏3 + 𝑘14)  
𝑅25(𝑘24) = 𝑅24(𝜏4 − 𝜏3 + 𝑘24)  
𝑅35(𝑘35) = 𝑅33(𝜏3 − 𝜏1 + 𝑘33)  
𝑅45(𝑘45) = 𝑅43(𝜏3 − 𝜏1 + 𝑘43). 

4.3.1 Computation of Reliability of 5-PMS-3 

The reliability of 5-PMS–3 is computed using a four-

dimensional Gumbel-Hougaard copula with Exponential 

marginal: 

For Subsystem-I, 

𝐶(�̅�1𝑖(𝑡1), �̅�2𝑖(𝑡2), �̅�3𝑖(𝑡3), �̅�4𝑖(𝑡4)) =

𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(�̅�1𝑖(𝑡1)))
𝜃

+ (−𝑙𝑜𝑔(�̅�2𝑖(𝑡2)))
𝜃

+

(−𝑙𝑜𝑔(�̅�3𝑖(𝑡3)))
𝜃

+ (−𝑙𝑜𝑔(�̅�4𝑖(𝑡4)))
𝜃

)
1/𝜃

],  

𝐶(1, �̅�2𝑖(𝑡2), �̅�3𝑖(𝑡3), �̅�4𝑖(𝑡4)) =

𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(�̅�2𝑖(𝑡2)))
𝜃

+ (−𝑙𝑜𝑔(�̅�3𝑖(𝑡3)))
𝜃

+

(−𝑙𝑜𝑔(�̅�4𝑖(𝑡4)))
𝜃

)
1/𝜃

],  

𝐶(1,1, �̅�3𝑖(𝑡3), �̅�4𝑖(𝑡4)) =

𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(�̅�3𝑖(𝑡3)))
𝜃

+ (−𝑙𝑜𝑔(�̅�4𝑖(𝑡4)))
𝜃

)
1/𝜃

],  

𝐶(1,1,1, �̅�4𝑖(𝑡4)) = �̅�4𝑖(𝑡4),  
where, 

�̅�𝑗𝑖(𝑡) = 𝑒𝑥𝑝[−(𝑡𝛼𝑗𝑖)], 𝑡 > 0; 𝛼𝑗𝑖 < 0; 𝑗 = 1,2,3,4, 𝑖 =

1,2,3,4,5.  

For Subsystem-II 

𝐶(�̅�1𝑖
′ (𝑡1), �̅�2𝑖

′ (𝑡2)) = 𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(�̅�1𝑖
′ (𝑡1)))

𝜃

+

(−𝑙𝑜𝑔(�̅�2𝑖
′ (𝑡2)))

𝜃

)
1/𝜃

],  

𝐶(�̅�1𝑖
′ (𝑡1), 1) = �̅�1𝑖

′ (𝑡1),  

𝐶(1, �̅�2𝑖
′ (𝑡2)) = �̅�2𝑖

′ (𝑡2),  

where, �̅�𝑗𝑖
′ (𝑡) = 𝑒𝑥𝑝[(𝑡𝜆𝑗𝑖)], 𝑡 > 0; 𝜆𝑗𝑖 < 0; 𝑗 = 1,2,3,

𝑖 = 1,2,3,4,5. 

5. Reliability Importance Analysis 

Reliability importance analysis is used to identify a 

system's weakness and quantify the impact of component 

failures. These importance measures provide a numerical 

rank to determine which components are more important 

to system reliability improvement or more critical to 

system failure. This helps to allocate resources for 
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inspection, maintenance, and repairs in an optimal 

manner over the lifetime of a system [9], [26],[27]. 

In this paper, the theory of Birnbaum importance 

measure is used to perform a reliability importance 

analysis of PMSs with respect to each component in each 

phase.  

Birnbaum’s measure is the partial derivative of the 

system's reliability with respect to the reliability of an 

individual component. Let the reliability importance 

index of PMS-1 and PMS-2 with respect to component 𝑗, 
𝑗 ∈ {1,2, … ,𝑚} in phase 𝑖, 𝑖 ∈ {1,2, … ,𝑀}, be denoted by 

𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒𝑖_𝑃𝑀𝑆1
𝐵  𝑎𝑛𝑑 𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒𝑖_𝑃𝑀𝑆2

𝐵 , respectively, and that 

of PMS-3 with respect to component 𝑗, 𝑗 ∈ {1,2, … ,𝑚} in 

subsystem 𝑘, 𝑘 = 1,2 of phase 𝑖,  𝑖 ∈ {1,2,… ,𝑀},  be 

denoted by 𝐼𝐶𝑘𝑗𝑃ℎ𝑎𝑠𝑒𝑖_𝑃𝑀𝑆3
𝐵 . 

For PMS-1, as defined in section 4.1, 

�̅�11(𝑡), �̅�21(𝑡), �̅�31(𝑡) are the reliability of subsystems in 

phase 1, phase 2, and phase 3, respectively. Then, the 

reliability of PMS-1 is: 

�̅�𝑃𝑀𝑆−𝐼(𝑡) = {

�̅�11(𝑡), 0 ≤ 𝑡 ≤ 𝜏1
�̅�21(𝑡), 𝜏1 ≤ 𝑡 ≤ 𝜏2
�̅�31(𝑡), 𝜏2 ≤ 𝑡 ≤ 𝜏3

.  

Also,  �̅�𝑗𝑖(𝑡) denotes reliability of 𝑗𝑡ℎ component in 

𝑖𝑡ℎ Phase, 𝑗 = 1,2,3,4 ;  𝑖 = 1,2,3. 
Since we are using the cumulative exposure model, 

the reliabilities of 𝑗𝑡ℎ components for phase 𝑖 is 

�̅�𝑗𝑖(𝑡 − 𝜏𝑖−1 + 𝑙𝑗𝑖), 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖  , 𝑖 = 2,3. 

The reliability importance index of PMS-1 is defined 

as follows: 

𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑃𝑀𝑆1
𝐵 =

{
 

 
𝜕𝐹𝑗𝑖(𝑡)

𝜕�̅�𝑗𝑖(𝑡)
, 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 1

𝜕𝐹𝑗𝑖(𝑡)

𝜕�̅�𝑗𝑖(𝑡−𝜏𝑖−1+𝑙𝑗𝑖)
, 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 2,3

 

.  
(28) 

For PMS-2, as defined in section 4.2, 

�̅�12(𝑡), �̅�22(𝑡), �̅�32(𝑡) are the reliability of subsystems in 

phase 1, phase 2, and phase 3, respectively. Then, the 

reliability of PMS-2 is: 

�̅�𝑃𝑀𝑆−𝐼𝐼(𝑡) = {

�̅�12(𝑡), 0 ≤ 𝑡 ≤ 𝜏1
�̅�22(𝑡), 𝜏1 ≤ 𝑡 ≤ 𝜏2
�̅�32(𝑡), 𝜏2 ≤ 𝑡 ≤ 𝜏3

.     

Also, �̅�𝑗𝑖(𝑡) denotes reliability of 𝑗𝑡ℎ component in 

𝑖𝑡ℎ Phase, 𝑗 = 1,2,3 ;  𝑖 = 1,2,3. 
Since we are using the cumulative exposure model, 

the reliabilities of 𝑗𝑡ℎ components for phase 𝑖 is 

𝐻𝑗𝑖(𝑡 − 𝜏𝑖−1 + 𝑙𝑗𝑖), 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 2,3. 

The reliability importance index of PMS-2 is defined 

as follows: 

𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒𝑖_𝑃𝑀𝑆2
𝐵 =

{
 

 
𝜕𝐹𝑗𝑖(𝑡)

𝜕�̅�𝑗𝑖(𝑡)
, 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 1

𝜕𝐹𝑗𝑖(𝑡)

𝜕�̅�𝑗𝑖(𝑡−𝜏𝑖−1+𝑙𝑗𝑖)
, 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 2,3

 

.  
(29) 

For PMS-3, as defined in section 4.3, Let 

�̅�𝑝1(𝑡), �̅�𝑝2(𝑡), �̅�𝑝3(𝑡), �̅�𝑝4(𝑡), and �̅�𝑝5(𝑡) be the 

reliability of subsystems in Phase 1, Phase 2, Phase 3, 

Phase 4, and Phase 5, respectively. Then, the reliability of 

PMS-3 is: 

�̅�𝑃𝑀𝑆−𝐼𝐼𝐼(𝑡) =

{
 
 

 
 
�̅�𝑝1(𝑡), 0 ≤ 𝑡 ≤ 𝜏1

�̅�𝑝2(𝑡), 𝜏1 ≤ 𝑡 ≤ 𝜏2

�̅�𝑝3(𝑡), 𝜏2 ≤ 𝑡 ≤ 𝜏3

�̅�𝑝4(𝑡), 𝜏3 ≤ 𝑡 ≤ 𝜏4

�̅�𝑝5(𝑡), 𝜏4 ≤ 𝑡 ≤ 𝜏5

.  

Also, �̅�𝑗𝑖(𝑡) denoting reliability of 𝑗𝑡ℎ component of 

subsystem ′1  in 𝑖𝑡ℎ Phase, 𝑗 = 1,2,3,4 ;  𝑖 = 1,2,3,4,5 

and �̅�𝑗𝑖
′ (𝑡) denoting reliability of 𝑗𝑡ℎ component of 

subsystem ′2  in 𝑖𝑡ℎ Phase, 𝑗 = 1,2;  𝑖 = 1,3,5. 
Since we are using the cumulative exposure model, 

the reliabilities of 𝑗𝑡ℎ components of subsystem ′1′ for 

phase 𝑖 is: 

{
�̅�𝑗𝑖(𝑡 − 𝜏𝑖−1 + 𝑙𝑗𝑖), 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 2,3,4,5, 𝑗 = 1,2 

�̅�𝑗𝑖
′ (𝑡 − 𝜏𝑖−2 + 𝑙𝑗𝑖), 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 3,5, 𝑗 = 3,4

.  

The reliability importance index of PMS-3 is defined 

as follows: 

𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒𝑖_𝑃𝑀𝑆3
𝐵 =

{
 
 
 

 
 
 

𝜕𝐹𝑗𝑖(𝑡)

𝜕�̅�𝑗𝑖
, 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 1, 𝑗 = 1,2,3,4

𝜕𝐹𝑗𝑖(𝑡)

𝜕�̅�𝑗𝑖
′ , 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 1, 𝑗 = 1,2,

𝜕𝐹𝑗𝑖(𝑡)

𝜕�̅�𝑗𝑖(𝑡−𝜏𝑖−1+𝑙𝑗𝑖)
, 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 2,3,4,5, 𝑗 = 1,2  

𝜕𝐹𝑗𝑖(𝑡)

𝜕�̅�𝑗𝑖
′ (𝑡−𝜏𝑖−2+𝑙𝑗𝑖)

, 𝜏𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖 , 𝑖 = 3,5, 𝑗 = 3,4 

.  (30) 

Reliability importance for each component of PMS-1: 

For Phase 1: 

𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒1_𝑃𝑀𝑆1
𝐵 =

𝜕𝐹11(𝑡)

𝜕�̅�𝑗1(𝑡)
, 𝜏0 ≤ 𝑡 ≤ 𝜏1,   

where  

�̅�𝑗1(𝑡) = 𝑒𝑥𝑝 [− (
𝑡

𝛼1
)
𝛽𝑗
] , 𝑡 > 0; 𝛼1 > 0;𝛽𝑗 > 0, 𝑗 =

1,2,3,4   
for Phase 2:  

𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒2_𝑃𝑀𝑆1
𝐵 =

𝜕𝐹21(𝑡)

𝜕�̅�𝑗2(𝑡−𝜏1+𝑙𝑗2)
, 𝑗 = 1,2,3, 𝜏1 ≤ 𝑡 ≤ 𝜏2  

for Phase 3:  
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𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒3_𝑃𝑀𝑆1
𝐵 =

𝜕𝐹31(𝑡)

𝜕�̅�𝑗3(𝑡−𝜏2+𝑙𝑗3)
, 𝑗 = 1,3,4, 𝜏2 ≤ 𝑡 ≤ 𝜏3 .  

Reliability importance for each component of PMS-2: 

For Phase 1:  

  𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒1_𝑃𝑀𝑆2
𝐵 =

𝜕𝐹12(𝑡)

𝜕�̅�𝑗1(𝑡)
, 𝜏0 ≤ 𝑡 ≤ 𝜏1,  

where 

𝐻𝑗1(𝑡) = 𝑒𝑥𝑝 [− (
𝑡

𝛼1
)
𝛽𝑗
] , 𝑡 > 0; 𝛼1 > 0; 𝛽𝑗 > 0, 𝑗 =

1,2,3,  
for Phase 2:  

𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒2_𝑃𝑀𝑆2
𝐵 =

𝜕�̅�22(𝑡)

𝜕�̅�𝑗2(𝑡−𝜏1+𝑙𝑗2)
, 𝑗 = 1,2,3, 𝜏1 ≤ 𝑡 ≤ 𝜏2,   

for Phase 3:   

𝐼𝐶𝑗𝑃ℎ𝑎𝑠𝑒3_𝑃𝑀𝑆2
𝐵 =

𝜕�̅�32(𝑡)

𝜕�̅�𝑗3(𝑡−𝜏2+𝑙𝑗3)
, 𝑗 = 1,2,3, 𝜏2 ≤ 𝑡 ≤ 𝜏3 .  

Reliability importance for each component of PMS-3: 

For components 𝐻𝑎, 𝐻𝑏 , 𝐻𝑐 , and 𝐻𝑑 of Phase 1: 

𝐼𝐶1𝑗𝑃ℎ𝑎𝑠𝑒1_𝑃𝑀𝑆3
𝐵 =

𝜕𝐹𝑝1(𝑡)

𝜕�̅�𝑗1(𝑡)
, 𝑗 = 1,2,3,4, 𝜏0 ≤ 𝑡 ≤ 𝜏1,   

for components ‘𝐿𝑎 ’ and ‘𝐿𝑏 ’ of phase 1: 

𝐼𝐶2𝑗𝑃ℎ𝑎𝑠𝑒1_𝑃𝑀𝑆3
𝐵 =

𝜕𝐹𝑝1(𝑡)

𝜕�̅�𝑗1
′ (𝑡)

, 𝑗 = 1,2, 𝜏0 ≤ 𝑡 ≤ 𝜏1,    

for components 𝐻𝑎 and 𝐻𝑏  of phase 2: 

𝐼𝐶1𝑗𝑃ℎ𝑎𝑠𝑒2_𝑃𝑀𝑆3
𝐵 =

𝜕𝐹𝑝2(𝑡)

𝜕�̅�𝑗2(𝑡−𝜏1+𝑘𝑗2)
, 𝑗 = 1,2, 𝜏1 ≤ 𝑡 ≤ 𝜏2,   

for components 𝐻𝑎 and 𝐻𝑏  of phase 3: 

𝐼𝐶1𝑗𝑃ℎ𝑎𝑠𝑒3_𝑃𝑀𝑆3
𝐵 =

𝜕𝐹𝑝3(𝑡)

𝜕�̅�𝑗3(𝑡−𝜏2+𝑘𝑗3)
, 𝑗 = 1,2, 𝜏2 ≤ 𝑡 ≤ 𝜏3,   

for components 𝐻𝑐  and 𝐻𝑑 of phase 3: 

𝐼𝐶1𝑗𝑃ℎ𝑎𝑠𝑒3_𝑃𝑀𝑆3
𝐵 =

𝜕𝐹𝑝3(𝑡)

𝜕�̅�𝑗3(𝑡−𝜏1+𝑘𝑗3)
, 𝑗 = 3,4, 𝜏2 ≤ 𝑡 ≤ 𝜏3,   

for components ‘𝐴𝑎’ and ‘𝐴𝑏’ of phase 3: 

𝐼𝐶2𝑗𝑃ℎ𝑎𝑠𝑒3_𝑃𝑀𝑆3
𝐵 =

𝜕𝐹𝑝3(𝑡)

𝜕�̅�𝑗3
′ (𝑡)

, 𝑗 = 1,2, 𝜏2 ≤ 𝑡 ≤ 𝜏3,   

for components 𝐻𝑎 and 𝐻𝑏  of phase 4: 

𝐼𝐶1𝑗𝑃ℎ𝑎𝑠𝑒4_𝑃𝑀𝑆3
𝐵 =

𝜕𝐹𝑝4(𝑡)

𝜕�̅�𝑗4(𝑡−𝜏3+𝑘𝑗4)
, 𝑗 = 1,2, 𝜏3 ≤ 𝑡 ≤ 𝜏4,   

for components 𝐻𝑎 and 𝐻𝑏  of phase 5: 

𝐼𝐶1𝑗𝑃ℎ𝑎𝑠𝑒5_𝑃𝑀𝑆3
𝐵 =

𝜕𝐹𝑝5(𝑡)

𝜕�̅�𝑗5(𝑡−𝜏4+𝑘𝑗5)
, 𝑗 = 1,2, 𝜏4 ≤ 𝑡 ≤ 𝜏5,   

for components 𝐻𝑐  and 𝐻𝑑 of phase 5: 

𝐼𝐶1𝑗𝑃ℎ𝑎𝑠𝑒5_𝑃𝑀𝑆3
𝐵 =

𝜕𝐹𝑝5(𝑡)

𝜕�̅�𝑗5(𝑡−𝜏3+𝑘𝑗5)
, 𝑗 = 3,4, 𝜏4 ≤ 𝑡 ≤ 𝜏5,   

for Components ‘𝐶𝑎’ and ‘𝐶𝑏’ of phase 5: 

𝐼𝐶2𝑗𝑃ℎ𝑎𝑠𝑒5_𝑃𝑀𝑆3
𝐵 =

𝜕𝐹𝑝5(𝑡)

𝜕�̅�𝑗5
′ (𝑡)

, 𝑗 = 1,2,   𝜏4 ≤ 𝑡 ≤ 𝜏5.   

6. Numerical Illustrations 
The method developed has been illustrated using different 

parametric sets. The reliability values of PMS-1, PMS-2, 

and PMS-3 are depicted in Tables 1 & 2, 3 & 4, and 5 & 

6, respectively. See for reference [9]. We are taking the 

same scale and shape parameters for each component 

across the phases.  

Table 1.  

Data Set for PMS-1 

Table 1. Data Set for PMS-1 

 

Table 2. Reliability of PMS-1 

 

 

Figure 4. Reliability Plot of the PMS-1 for data set of Table 2 

for 𝜃 = 1.17. 

The result of analyzing the reliability of PMS-1 is 

shown in Tables 1 and 2 and Figure 4. 

Table 3. Data Set for PMS-2 

 

 

Table 4. Reliability of PMS-2 
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Figure 5. Reliability Plot of the PMS-2 for data Set of table 4 

for 𝜃 = 1.17. 

The results of analyzing the reliability of PMS-2 are 

shown in Tables 3 & 4 and Figure 5. 

Table 5. Data Set for PMS-3 

 

Table 6. Reliability of PMS-3 

 

 

Figure 6. Reliability Plot of the PMS-3 for data set of Table 6 

for 𝜃 = 1.17. 

The result of analyzing the reliability of PMS-3 is 

shown in Tables 5 & 6 and Figure 6. 

Independent Case: 

Figures 7(a)-7(c) depict the component-wise reliability 

importance plot of each phase in PMS-1. 

Table 7. Reliability of PMS-1 for independent case 

 

Table 8. Reliability of PMS-2 for independent case 

 

Table 9. Reliability of PMS-3 for independent case 

 

 

Figure 7(a). Reliability importance plot of the PMS-1 for each 

component of phase 1. 

 

Figure 7(b). Reliability importance plot of the PMS-1 for each 

component of phase 2. 
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Figure 7(c). Reliability importance plot of the PMS-1 for each 

component of phase 3. 

 

Figure 7(d). Reliability importance of each component phase-

wise in PMS-1. 

Figure 7(d) shows the reliability importance of each 

component phase-wise in PMS-1, and it can be seen that 

‘𝐶1’  has the most significant influence on the reliability 

of the PMS-1 in phase 1 and phase 3, and ‘𝐶3’  has the 

most significant impact on the reliability in phase 2.  

 

Figure 8(a). Reliability importance plot of the PMS-2 for each 

component of phase 1. 

 

Figure 8(b). Reliability importance plot of the PMS-2 for each 

component of phase 2. 

 

Figure 8(c). Reliability importance plot of the PMS-2 for each 

component of phase 3. 

 

Figure 8(d). Reliability importance of each component phase-

wise in PMS-2. 

Figures 8(a)-8(c) depict the component-wise 

reliability importance plot of each phase in PMS-2. 

Figure 8(d) shows the reliability importance of each 

component phase-wise in PMS-2, and it can be seen that 

‘𝐴’  has the most significant influence on the reliability of 

the PMS-2 in phase 1 and phase 3, and ′𝐵′ has the most 

significant impact on the reliability in phase 2. 

 

Figure 9 (a). Reliability importance plot of the PMS-3 for 

component 𝐻𝑎, 𝐻𝑏, 𝐻𝑐, 𝐻𝑑 of subsystem 1 of phase 1. 

 

Figure 9 (b). Reliability importance plot of the PMS-3 for 

component ‘𝐿𝑎’ & ‘𝐿𝑏’  of subsystem 2 of phase 1. 



IJRRS / Vol. 5/ Issue 2/ 2022 60 / 

 

 

P. W. Srivastava1, S Rani 

 

Figure 10. Reliability importance plot of the PMS-3 for 

component ‘𝐻𝑎’ & ‘𝐻𝑏’  of subsystem 1 of phase 2. 

 

Figure 11(a). Reliability importance plot of the PMS-3 for 

component ‘𝐻𝑎’ & ‘𝐻𝑏’  of subsystem 1 of phase 3. 

 

Figure 11(b): Reliability importance plot of the PMS-3 for 

component ‘𝐻𝑐’ & ‘𝐻𝑑 ’  of subsystem 1 of phase 3. 

 

Figure 11(c). Reliability importance plot of the PMS-3 for 

component ‘𝐴𝑎’ & ‘𝐴𝑏’  of subsystem 2 of phase 3. 

 

Figure 12: Reliability importance plot of the PMS-3 for 

component ‘𝐻𝑎’ & ‘𝐻𝑏’  of subsystem 1 of phase 4. 

 

Figure 13 (a). Reliability importance plot of the PMS-3 for 

component ‘𝐻𝑎’ & ‘𝐻𝑏’  of subsystem 1 of phase 5. 

 

Figure 13 (b). Reliability importance plot of the PMS-3 for 

component ‘𝐻𝑐’ & ‘𝐻𝑑 ’  of subsystem 1 of phase 5. 

 

Figure 13 (c). Reliability importance plot of the PMS-3 for 

component ‘𝐶𝑎’ and ‘𝐶𝑏’  of subsystem 2 of phase 5. 
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Figure 14. Reliability importance plot of each component 

phase-wise in PMS-3. 

Figures 9(a)-13(c) depict each phase's component-

wise reliability importance plot in PMS-3. Figure 14 

shows the reliability importance of each component 

phase-wise in PMS-3, and it can be seen that ‘𝐻𝑎 ’ and ‘𝐻𝑏 ’  
have the most significant influence on the reliability of 

the PMS-3. 

7. Conclusion 

In this paper copula-based approach has been used to 

obtain the reliability of phased-mission systems. Two 3-

PMSs with and without inactive components and 5-PMS 

representing space application have been used with 

dependency between components modeled using the 

Gumbel-Hougaard copula and cumulative exposure 

model. Reliability importance analyses of the three PMSs 

based on the Birnbaum importance measure have been 

conducted to quantify the influence of the reliability of 

each component on the reliability of the PMSs. The 

method developed has been described using numerical 

examples. The expected results regarding the reliability 

and importance of components have been obtained for the 

hypothetical data set used. For instance, in space 

application PMS,  𝐻𝑎 & 𝐻𝑏  are found to be most 

important, implying that failure of both of them will result 

in failure of the PMS. In engineering practice, it would be 

advisable to prioritize these components in different 

phases to ensure the successful completion of the PMS’s 

mission. The information about the reliability and 

importance of the components of the PMS can assist in 

formulating different maintenance strategies in different 

phases, thereby reducing the risk of failure.  The proposed 

methodology can also be generalized to PMSs with more 

than five phases. 
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