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Abstract
In this paper, we consider the estimation problem in the presence of masked data for series systems. A missing indicator is 

proposed to describe masked set of each failure time. Moreover, a Generalized Linear model (GLM) with appropriate link function is 
used to model masked indicator in order to involve masked information into likelihood function. Both maximum likelihood and 
Bayesian methods were considered. The likelihood function with both missing at random (MAR) and missing not at random 
(MNAR) mechanisms are derived. Using an auxiliary variable, a Bayesian approach is expanded to obtain posterior estimations of 
the model parameters. The proposed methods have been illustrated through a real example. 
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Introduction*

In a series system, the failure time and the exact 
component that causes system failure are important and 
can be used to estimate the reliability of component and 
system. However, in many cases, for reasons such as 
lack of diagnostic equipment, cost and time constraints, 
the exact component that causes the system to fail is not 
known and we only know that it belongs to a smaller set 
of components. Data with this feature is called masked 
data [1, 2, 3]. 

The problem of maximum likelihood estimates 
(MLE) in the presence of masked data has been 
considered by some authors such as Miyakawa [1], 
Usher and Hodgson [4] and Lin et al. [5], while Reiser 
[6], Berger and Sun [7],Mukhopadhyay and Basu[8] and 
Cai et al. [9] studied Bayesian statistical inference under 
masked data. Sen et al. [10] provided comprehensive 
details of the statistical analysis of system failure data 
under competing risks with possibly masked failure 
causes. Basu et al. [11] developed a Bayesian analysis 
for masked competing risks data from engineering 
systems and presented a general parametric framework 
for any number of competing risks and any distribution. 
Above mentioned works have been done under 
equiprobableassumption, that is, the masking 
probabilities do not relate to cause of failure(called the 
symmetry assumption by some authors).However, many 
authors have not considered this assumption, some of 
them are referred as follows. Lin and Guess [12] 
considered reliability estimation when the masking 
probability is related to the particular cause of failure. 
                                                           
* Corresponding Author Email: hmisaii@ut.ac.ir 

Guttman et al. [13] developed a Bayesian method to 
estimate component reliabilities from masked system 
lifetime data when the masking probability is related to 
the true cause of system failure. Kuo and Yang [14] 
considered different probability model for the 
conditional masking probabilities, along with 
exponential and Weibull distributions for the component 
lifetimes. Mukhopadhyay and Basu[15] developed a 
Bayesian analysis for s-independent exponentials 
without the symmetry assumption using s-independent 
priors for the component failure rates and masking 
probabilities. Craiu and Duchesne [16] considered the 
maximum likelihood estimation of the cause-specific 
hazard functions and the masking probabilities via an 
EM algorithm. Mukhopadhyay [17] developed the 
maximum likelihood method to estimate the lifetime 
parameters and masking probabilities via an EM 
algorithm, and constructed approximate confidence 
intervals, also presented bootstrap confidence intervals. 
Xu and Tang [18] considered a Bayesian analysis for 
series systems with two components with Pareto 
distribution lifetime where masking probabilities are 
independent of time. Xu et al [19] presented a Bayesian 
approach for masked data in step stress accelerated life 
testing and considered log-location-scale distribution 
family for their study. 

There is another type of incomplete data called 
missing data. Missing data occur when no data value is 
stored for the variable in an observation and have 
different mechanisms with respect to missingness 
reasons. If missingness depends only on observed 
values, missing mechanism is called missing at random 
(MAR), while if missingness depends on both observed 
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and missing values, missing mechanism is called 
missing not at random (MNAR) (Little \& Rubin, 2002). 

In this work, both classic and Bayesian statistical 
inference in the presence of masked data has been 
studied. Novelty of work lies on the definition a missing 
indicator for masking set of each observed failure time. 
That is, if the masked set is singleton set, missing 
indicator takes one, otherwise takes zero. Then, a 
generalized linear model (GLM)with appropriate link 
function is used to model missing indicator and it is 
involved into the likelihood function. This method 
allows to analyse masked data in a new manner which is 
more flexible than existing approach, specially when 
using of Bayesian method is desired. 

The rest of the paper is as follow. In Section 2, 
model assumptions are introduced, and the general 
formulation of the likelihood function is given. In 
Section 3, the auxiliary variables are introduced, and the 
Bayesian analysis is discussed. In section 4, The 
proposed methodology is represented by a numerical 
example. Finally, a conclusion is given in Section 5. 

Model Assumptions and Likelihood 
Function

Assumptions 
Suppose that we have r series systems under the test 
such that all of them have equal components, say J 
components.  Assume that at the end of the test we 
observe failure data, ��� ��� � � � � ��, but the exact cause of 
failure might be unknown, and only we know that 
belongs to the Minimum Random Subset (MRS) of {1, 
2, ..., J}. Let �	 be the observed MRS corresponding to 
the failure time �	
 ��  �� �� � � � � � for ith system. The set 
�	 essentially includes components that are possible to 
be cause for system failure. If �	 be a singleton set, then 
the data are competing risks data.  While if �	 
��� �� � � � � ��  then the system is called to be completely 
masked.  We define the binary variable �	 which takes 
the value 1, when �	 is a singleton set and has zero 
value for masked data (when �	 has more than one 
element). Thus, the observed data are 

������� ���� ������� ���� � � � � ������� �������� (1) 
The model used in this paper is based on the 

following assumptions: 
� Let��� ���� � ��be the lifetimes of independent 

components, also assume that the system fails 
only due to one of the components, therefore 
system failure time is�  �� !��� ���� � ��"� 

� #$, the failure time of the first component, 
follows a distribution in continuous 
distribution family with density and reliability 
functions denoted by%&���� �&���� 

� '(��  �)*�  �)� +)  ,� is called the 
masking probability, where+)denotes the 
exact cause offailure ofith system.  In this 
article, we assume'(��  �)*�  �)� +) 

,� � �'(��  �)*+)  ,� � -&��)�, that is, 
the masking probability is independent of 
failure time, but is dependent to the cause of 
failure. 

� -&��)�s have some constraints.  SupposeMbe 
the all of nonempty subsets 
of{1,...,J}thathave�� . �members.  
Define�&  ��/ 0 � 1 �, 0 �/� , 0
��� � � � � 2��thus 

-&��)�  '(��  �)*+)  ,�  3� 4�) 0 �&5 � .�& 
And  

6 -&��)� �
7897

6 -&��)�  �,�
7897:,  �� � � � � 2� 

(2) 

Denote -& � � �-,����; ��<�,�� ,� 
��� �� � � � � 2��=> �-  �-�� � � � � -��� 

� Let Tbe the system failure time, the reliability 
function is given by 

����  ���
 ?�  '�� @ �� AB� . C&���D
�

&E�
 (3) 

Where ?  !?�� � � �� ?�" and ?& is parameters 
set related to componentl. 

� Let K be a random variable which indicates 
the indicator for the failure cause.  Then the 
jointprobability distribution function of (T, K) 
is given by 

, ( , ) ( ) [1 ( )]T K l j
j l

f t l f t F t
�

� ��  (4) 

� �)is a Bernoulli variable with success 
probability

{ }

0 1 2

( 1 | , , )

( )
ii i j M i i

i i

p R k jI M t

h k t� � �
�� � �

	 	
where 

h(.) is some appropriate link function (e.g.  
logit, probit, clog-log,...).  WhenF�  3the 
missing is ignorable and missing mechanism 
is MAR. 

Likelihood Function 
The likelihood function for data (1) can be written as 
follow: 

( , , ) [ ( | , , ) ( | , ) ( , )],1

[ ( | , , ) ( ) ( , )],1

r
L p P R t M K j P M t K j f t ji i i i i i i T K ii j Mi
r

P R t M K j P M f t ji i i i j i T K ii j Mi


 � �� � ��
� �

�� ��
� �

 

(5) 

Where F�  � �F�/� F���� and Gis the vector of 
parameters related to lifetime distributions. 

For simplify letHIJKL  �� M � M (
��)  3�denotes 
the set of indices for masked data.  Therefore, the 
complete likelihood function for data (1) is rewritten as 
follows: 
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( ) [ ( | { }) ( { }| ) ( )]

[

  

( | ) ( ) ( )

1 , , , ,,

, , ] 0 , ,

L P R k j t M j p M j k j t f t js i i i i i i i T K ici Imask

P R k j t M p M f t ji i i i j i T K ii I j Mmask i


 �� � � � � �

�
� �

�

�

� � �
 (6) 

If the missing mechanism is at random F�  3then 
the above likelihood is reduced to: 

( ) ( | ) ( ) (
1

),,
r

L f R t p M f t jR T Ki i j i ij Mi i

 ��

��

� �
� �
� �

 

(7) 

Where the part related to�	NO could be ignored and 
simple masked data analysis could be used. 

Bayesian Analysis 
Here, we define an auxiliary variable to simplify 
Bayesian likelihood function. Consider H)P  H��P 
�)��%Q(�� M � M (and � M R M 2, whereI(.) is the indicator 
variable such that shows the exactcauseoffailure.H)P 
��means that theith system has been failed due to 
component whereR 0 �).Note that, if�) � � �R��is a 
singleton set, that is the failure cause is known,thenH)P 
��andH)PS  3
 �RN T R. Therefore, likelihood functions (5), 
(6) and (7) can be rewritten as follows (8), (9) and (10), 
respectively: 

( | ) ( ( | ) ( ) ( ))

( ( | ) ( ) (

, , , ,  , , ,,1

, , ,, )
1

)
1

r IijL p t M R P R t M K j p M f t ji i i i j i T K ii j Mi

r IijP R t M K j p M f t ji i i i j i Ti

J

j
K i


 � �� ��
� �

� ���
� �

� �
� �
� �
� �� �

� �
� �
� �� �

 

(8) 

 
( ) [ ( | { }) ( { }|  1 , , , ,,

 0 , , , ,,

) ( )]

[ ( | { }) ( { }| ) ( )]
1

L P R k j t M j p M j k j t f t jS i i i i i i i T K ici Imask

Iij
P R k j t M j p M j k j t f t ji i i i i i i T K ii Imask

J

j


 �� � � � � �
�

��
�

�
�

� � � � �

(9) 

 

( ) ( | ) [ ( ) ( )]
1

,,
1

Ir ijL f R t p M f t jR i i j i T K i
ji

J



� �
� � �
� �

�
� ���

(10) 

 
Because of conjugacy a suitable prior for-Pis the 

Dirichletdistribution,D(UP),whereUPisa��V�dimensional 
vector.  The choice of prior distributions for other 
parameters will be s-dependent on theCDF that is 
considered for�&. 

If �(�),�(�) andW$�X$� be the priors for 
parameters�,�and-&respectively, then the joint density 
function of (t,M,I,R) isresulted as 

( ) ( | ) ( ) ( ),, , ,  , , , ( ),
1

J
p t M I R p p t M I R pl l

l

 � � 
 � � �� �

�
 (11) 

The full conditional posterior distribution of-&is 
also a Dirichlet distribution, but its parameters depend 
on the observations. The full conditional distribution 
ofH)P  �� R� 0 �)is 

( | )( )

( | ) ( ) ( )

( | ) ( ) ( )

( | ) ( ) ( ) ( )

( | ) ( ) ( ) ( )

( | ) ( ) ( )

( |

 1 , , , , , ,  

, ,,
, ,,

,

,

,

P I t M R p Iij ij

P R t K j p M f t ji i i j i T K i
P R t K m p M f t mi i i m i T K i

m M i

P R t K j p M f t R ti i i j i j i l i

P R t K m p M f t R ti i i m i m i l i
m M i

P R t K j p M ti i i j i j i

l j

l m

i

h

P R

� 


�
�

�

� ��

�
�

��
�

�

�
��

� �

�

) (, ) ( )t K m p M ti i m i m i
m M

h

i

��
�

 (12) 

whereH�V)P�isIexcludingH�)P�and=P��)�  YZ�[8�
�V\Z�[8�


 �R 
���� � � � � 2. 

As a especial case, the likelihood function for 
exponential distribution with parameter]$forlth 
component based on (8) isobtained as follows: 

( | ), , , ,  ( , ,
1 1

1 1

| ) ( )

{ }

r I I IJ ij ij ijL p t M R P R t M K j p Mi i i i j i ji j

r J
exp r tl ii l


 � �

�

�� ��
� �

�� � �
� �

� �
� �
� �� �

 

(13) 

And the likelihood function for the Weibull 
distribution with parameters �^$� F$�forlth component 
based on (8) is as follows: 

1
, ,

1

( )
( |

, , , ,  
1

1 1

) ( )

( | )

{ ( ) }

J I b II I ij j ijij ijP R t M K j p M b ti i i i j ir j ijL p t M R b Ii j ij
j

r J blexp
i l

ti
l


 �
�

�

� �
� �
� �
� �
� �
� �
� �� �

�
��

���
�

�� � �
� �

 

(14) 

Numerical Example 
In this section, we illustrate the application of the 
proposed methods by two simulation data sets and a real 
data.  

Exponential Distribution 
We consider 100 series systems with two components 
where the lifetime of components follows the 
exponential distribution with parameters]�and]�for the 
first and second component, respectively.  We have 
generated non-ignorable missing mechanism according 
to the logistic regression_`a���X��	  ���*b	  c�� ��
F/ d F�b	.The masking probabilities of the data 
areX�andX�,whereX�  �X�������� andX�  �X��������.  
Lete�  �3�f� e�  �3�g� h/  �.3��� h�  �3�i� -� 
�3��� -�  �3����The simulated data are generated by 
thefollowing steps. 

1. Generate����)�� ���)��
 ��  �� �� � � � � ( 
independently,fromexp(e�) andexp(e�), 
respectively. 

2. Set �)  �� ����)�� ���)��
 ��  �� �� � � � � (as the 
failure time of theith system and then specify 
the cause of failure such that if the first 
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component causes to failure putk=1 if not 
putk=2. 

3. Generate�	from Bernoulli distribution with 
success probability-��)  ���*j)  R�,  such  
that,Qk���-��)  ���*j)  R�� �� h/ d h�j). 

4. If�	 � 3, that isith masked set have more than 
one element, and if failure cause is first 
(second)component, we randomly masked 
100-�%(100X�%) of the observations. 

The simulated data are listed in Table 1. 

Table1.Thesimulated data

(t,k,R) 

(1.501,1,1),(2.386,1,1),(0.849,2,1),(2.223,1,0),(3.055,1,1),(0.444,0,0),(1.878,1,0),(4.101,2,1),(1.965,2,0),  
(0.252,1,0),(1.938,2,1),(0.221,1,0),(0.282,1,1),(2.006,2,1),(0.511,2,1),(3.057,1,1),(0.563,2,1),(1.308,2,1),  
(0.160,1,0),(1.341,2,1),(2.546,2,1),(0.040,0,0),(1.863,1,0),(1.207,2,1),(1.497,1,1),(1.717,0,0),(0.705,2,1),  
(3.170,1,1),(0.067,1,1),(1.808,1,1),(0.319,2,0),(3.444,2,1),(0.676,2,1),(0.566,2,1),(0.960,1,1),(0.299,0,0),  
(2.111,0,0),(0.210,1,1),(0.433,2,1),(0.868,2,1),(0.275,2,1),(2.029,2,0),(3.218,2,1),(0.584,1,1),(1.221,2,1),  
(0.224,0,0),(0.485,1,1),(0.333,0,0),(0.919,2,1),(0.209,2,1),(0.816,1,1),(1.488,2,1),(1.234,2,1),(1.792,0,0),  
(1.681,2,1),(0.291,2,1),(0.815,1,0),(0.444,2,1),(2.776,2,1),(0.718,1,0),(0.847,2,1),(1.362,2,1),(2.438,2,0),  
(1.735,2,1),(1.481,2,1),(0.471,2,1),(0.545,0,0),(0.688,1,1),(1.489,2,1),(2.274,1,0),(1.095,1,1),(0.265,2,1),  
(0.166,2,1),(0.557,1,1),(0.181,2,1),(0.544,2,0),(2.207,2,1),(0.246,2,1),(0.645,1,1),(0.095,1,0),(0.090,2,1),  
(0.195,2,0)(0.486,2,1),(0.203,2,1),(0.215,2,1),(0.248,2,1),(1.310,2,1),(0.826,2,1),(0.198,2,1),(1.634,0,0), 

(0.689,2,1),(0.357,1,0),(3.419,0,0),(1.148,2,0),(0.607,2,1),(1.249,2,1),(1.259,1,1),(0.921,2,1),(0.071,2,1),(2.169,2,1) 

 
The results of MLEs of the parameters e� and 

e�have been presented in Table 2. The true values of the 
parameters as well as the corresponding bias ofe� and 
e� (denoted by Be� and Be�, respectively) based on the 
1000 iterations have been reported in the Table 2.  

Table 2.The MLE results of simulation analysis 

 ]� ]� F/ F� l]� l]�
MAR 0.3 0.7 -0.1 0.5 0.038 0.033 

MNAR     0.023 0.018 
 
According to the results, MNAR model leads to 

less biased estimators compared with the usual MAR 
model. Now we consider some proper priors for 
parameters at the MNAR model and obtain Bayesian 
estimates for the parameters using MCMC method with 
masking probabilities-�  �3��� -�  �3�� and true 
values e�  �3�f� e�  �3�g. We consider the following 
prior setting 

( ) ( ) ( )0.9, 3 ,  0.49, 0.7 ,  0.1, 1000 ,1 2 0

0.5, 1000 0.8, 7.2 0.01, 0.051 ( ), ( ), ( )1 2

gamma gamma norm

norm p Beta p Beta

� � �

�

� � � �

� � �

 

(15) 

Using 10,000 iterations of Gibbs sampling with 
burn-in 2,000 iterations and length of the thinning 
interval 5, the posterior estimates of the parameters 
based on (15) and 1,600 posterior samples are listed in 
Table 3.  

Table 3. posterior estimates of parameters 

Paramete
r 

True 
Valu

e 

mea
n SD LC

I 
UC

I 

-� 0.1 0.388 0.07
9 0.241 0.545 

-� 0.2 0.340 0.05
8 0.224 0.460 

e� 0.3 0.295 0.05
6 0.195 0.415 

e� 0.7 0.606 0.07
5 0.474 0.756 

m/  -0.1 -0.138 0.30
1 -0.199 -0.077 

m�  0.5 0.418 0.02
8 0.364 0.471 

 
Also, standard deviation (SD), lower bound (LCI) 

and upper bound of credible interval are calculated. To 
avoid of randomness effects the simulation has been 
repeated 200 times with masking probabilities �-��
-�� � (0.3,0.5), (0.7,0.3), and (0.8,0.8).  The results are 
given in Table 4.  In Table 4, Mean is referred to the 
average posterior estimates of model parameters and 
SRMSE is referred to the square root of the mean 
squared errors. As we expected, it is observed that as 
masking probability increases the SRMSE becomes 
larger. 

Table 4. The posterior estimates based on non-informative priors with 200 replications 

Masking 
probability Statistics X� X� ]� ]� n/ n�  

(0.1,0.2) Mean 0.367 0.274 0.317 0.653 -0.143 0.412 
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 SRMSE 0.278 0.091 0.058 0.084 0.043 0.088 
(0.3,0.5) Mean 0.345 0.274 0.312 0.651 -0.141 0.415 

 SRMSE 0.093 0.233 0.059 0.093 0.041 0.085 
(0.7,0.3) Mean 0.214 0.349 0.246 0.714 -0.137 0.419 

 SRMSE 0.492 0.073 0.076 0.083 0.037 0.081 
(0.8,0.8) Mean 0.160 0.359 0.229 0.737 -0.137 0.419 

 SRMSE 0.643 0.445 0.084 0.086 0.037 0.082 

Weibull Distribution 

Similar to the previous subsection, here we consider100 
series systems with two components where the lifetime 
of components follows the Weibull distribution with 
parameters �^�� n�� and �^�� n����for the first and second 
components, respectively.  Supposem� � ���i� m�� 
�3�o� p� � � p�  �� h/  .3�i� h�  �� -� 
3��� q r�-�  3��� The results of MLEs of the 
parametersm�� m�� p��q r�p� have been  presentedin 
Table 5.  True values of parameters and the 
corresponding bias of m�� m�� p��q r�p�based on 1000 
iterations are also given in Table 5. According tothe 
results, MNAR model has less bias compared with the 
usual MAR model. 

Table 5. The MLE results of simulation analysis 

 m� m� p� p� h/ h� sm� sm� sp� sp�
MAR 1.5 0.8 4 2 -0.5 1 0.114 0.013 0.509 0.451

MNAR       0.102 0.009 0.455 0.411

 

 

For Bayesian inference, we consider the following 
prior setting 

 
0.002, 0.001 ,  0.0006, 0.0008 ,  0.5, 100

)

0 ,1 2 0

1,1000 0.8,7.2 0.01,0.051 1 2

1 2
0.0

( ) ( ) ( )

( ), ( ), ( ),

( ) (001, 0.0 1 , 0.001, 0.0011 2

b gamma b gamma norm

norm p Beta p Beta

b b
IG IG

�

�

� �

� � � �

� � �

� �

 (16) 

 
The simulation has been repeated 200 times in 

order to avoid of randomness effects. Different cases of 
masking probabilities have been considered such as, 
�-�� -�� �(0.3,0.5), (0.7,0.3), and (0.8,0.8).  Based on 
the obtained results in Table 7, as the masking 
probability increases SRMSE becomes larger. 

 

 

Table 6. Posterior estimates of parameters 

Parameter True Value mean SD LCI UCI 
          

n� 1.5 1.514 0.158 1.215 1.829 

n� 0.8 1.03 0.144 0.770 1.343 

^� 1 0.799 0.072 0.674 0.963 

^� 1 1.28 0.249 0.925 1.894 

� F/ -0.5 -0.497 0.031 -0.559 -0.435 

F� 1 0.999 0.029 0.943 1.059 

X� 0.1 0.201 0.033 0.140 0.269 

X� 0.2 0.251 0.032 0.192 0.316 

 

Table 7. The posterior estimates based on non-informative priors with 200 replicationsReal Data 

Masking probability Statistics n� n� ^� ^� F/ F� X� X�
(0.1,0.2) Mean 1.521 0.795 0.975 1.161 -0.498 0.998 0.184 0.271 

 SRMSE 0.162 0.093 0.098 0.333 0.004 0.003 0.087 0.073 
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(0.3,0.5) Mean 1.523 0.799 0.985 1.169 -0.500 0.998 0.300 0.493 
 SRMSE 0.177 0.107 0.111 0.374 0.004 0.003 0.011 0.013 

(0.7,0.3) Mean 1.538 0.836 1.083 0.971 -0.498 1.002 0.623 0.330 
 SRMSE 0.210 0.107 0.167 0.191 0.004 0.004 .078 .033 

(0.8,0.8) Mean 1.579 0.848 1.135 0.902 -0.495 1.004 0.683 0.743 
 SRMSE 0.230 0.108 0.186 0.192 0.006 0.005 0.118 0.059 
          
To motivating our study, we consider the real dataset 
given in Levuliene[8] from a test recorded bus tire 
failure times (T) and corresponding cause of failure (V).  
In this data, we ignored soft failures and randomly 
masked 100-� percent and 100-� percent of those that 
failed due to first and second competing risks, such that 
-�= 0.1 and -�= 0.2.  A Weibull distribution was fitted 
to these data, also for implementation logit model we 
consideredh/  .3�i� h�  ��and MLEs of parameters 
based on (14) have been presented in Table 8.  

Table 8. The MLE results of simulation analysis 

 n�  n� ^� ^� F/ F� X� X�
MAR 7.013 8.999 67.711 71.395 - - 0.388 0.557

MNAR 7.003 8.947 67.907 71.160 -0.286 0.796 0.375 0.571

 

Using bellow non-informative priors, posterior 
estimates are presented in Table 9.  

Table 9. Posterior estimates of parameters 
 

Parameter 
True 
Value 

 
mean SD LCI UCI

n�  7  6.361 0.644 5.215 7.754 

n� 9 
 

8.963 1.043 6.947 10.93 
^� 70  68.64 2.008 65.04 72.63^� 

70  71.04 1.789 67.96 75.05
F/ -0.5  -0.497 0.031 -0.555 -0.432
F� 1  1.001 .032 0.0940 1.066
X� 0.1  0.303 .073 0.172 0.458
X�  0.2  0.592 0.103 0.380 0.776 

 
 

( ) ( ) ( )

( ),

0.049, 0.007 ,  0.081, 0.009 ,  0.5, 1000 ,1 2 0

1,1000 0.8,7.2 0.01,0.051 1 2

1 21.474 1

( ), (

3, 1.214 , 6.141 17, 2.4781 ) ( )2

),

(

b gamma b gamma norm

norm p Beta p Beta

b b
IG E IG E

�

�

� �

� � � �

� � �

� � � �

 

(17) 

Conclusion
In this paper, we have introduced a new approach for 
handle masked data.  We proposeda generalizedlinear 
model to conduct relationship between masking 
probability and exact cause of failure using a binary 

variable. The simulation results show that the proposed 
method provides good estimations for modelparameters 
under both maximum likelihood and Bayesian methods.  
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