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Abstract 

This paper presents a comprehensive framework for enhancing the safety and reliability of quadrotor UAVs by integrating second-

order sliding mode control (2-SMC) and an advanced anomaly detection and prediction system based on machine learning and AI. The 

paper addresses the challenges of designing controllers for quadrotors by proposing a novel sliding manifold approach divided into two 

subsystems for accurate position and attitude tracking. The paper also provides a detailed analysis of the nonlinear coefficients of the 

sliding manifold using Hurwitz stability analysis. It demonstrates the effectiveness of the proposed method through extensive 

simulation results. To further assess the safety and reliability of the quadrotor, an anomaly detection and prediction system is integrated 

with the position and attitude tracking control. The system utilizes machine learning and AI techniques to identify and predict abnormal 

behaviours or faults in real time, enabling the quadrotor to quickly and effectively respond to critical situations. The proposed 

framework provides a promising approach for designing robust and safe controllers for quadrotor UAVs. It demonstrates the potential 

of advanced machine learning and AI techniques for enhancing the safety and reliability of autonomous systems. 

Keywords: Anomaly detection; Auto-encoder; Fault detection; Machine learning; Quadrotor UAVs; Safety; second-order sliding mode 

control (2-SMC). 

1. Introduction 

The research community, including industry, 

government, and academia, has recently demonstrated 

a growing interest in Unmanned Aerial Vehicles 

(UAVs) [1-4]. The appeal of UAVs can be attributed 

to their ability to perform various applications such as 

search and rescue missions, law enforcement, 

mapping, aerial cinematography, power plant 

inspection, and wildfire surveillance [5]. The potential 

to eliminate human pilots from danger and the size and 

cost of unmanned aircraft is undeniably attractive; 

however, their mission capabilities, efficiency, and 

flexibility must be compared to those of traditional 

manned aircraft. However, developing intelligent and 

data-driven controllers for UAVs necessitates working 

with the real system to learn their nonlinear and 

complex dynamics. A recent study proposed a novel 

approach to mitigate the risks associated with costly 

failures during flight tests [6]. The authors have 

introduced a vehicle-in-the-loop (VIL) platform that 

integrates the real system into a simulation loop, 

providing a safe and effective solution for controller 

design. By hinging the multirotor UAV to a shaft that 

allows angular motion while restricting translational 

motion, the platform enables the learning of the drones' 

dynamics without the need for risky flight tests. The 

study demonstrates the effectiveness of the VIL 

platform by implementing a proportional-integral-

derivative (PID) and a brain emotional learning-based 
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intelligent controller (BELBIC) for tracking various 

flight trajectories, showing superior performance of 

BELBIC in the test. 

The quadrotor UAV is a Vertical Take-Off and 

Landing (VTOL) aircraft that utilizes four rotors to 

achieve a range of benefits such as increased payload 

capacity, inherent hover stability, and enhanced 

manoeuvrability. Compared to conventional aircraft, the 

quadrotor UAV boasts reduced mechanical complexity, 

making it an attractive option for various applications. Its 

range of movements includes precession motion, which 

is eliminated by designing the front and rear rotors to 

rotate opposite to the left and right propellers. This design 

removes reactive torque around the vertical coordinate 

axis. The quadrotor UAV can also perform hover motion 

by maintaining the same rotational velocity of each 

propeller. Roll and pitch motion can be achieved by 

varying the rotational velocity difference between the 

opposing rotors, causing the vehicle to tilt towards the 

slowest propeller. Yaw motion is produced by adjusting 

the rotational velocity of neighbouring rotors differently 

from the others, resulting in the vehicle tilting towards the 

two slower propellers. Vertical motion is acquired by 

adjusting the rotational velocity of all rotors by the same 

amount. In contrast, horizontal motion is achieved by 

initially rolling or pitching the vehicle to change the 

direction of the thrust vector and then generating a 

forward component [1]. 

Furthermore, in the field of unmanned aerial 

vehicles (UAVs), there has been significant research on 

vibration control and attitude stabilization of flexible 

spacecraft. Recently, a paper by [7] proposed a PID-based 

sliding mode fault-tolerant scheme to preserve the system 

against external disturbances, rigid-flexible body 

interactions, and partial actuator failures. The authors 

combined the advantages of PID and sliding mode control 

to enhance the robustness, reduce steady-state errors, and 

minimize the computational burden. Their study 

demonstrated the effectiveness of the sliding mode 

controller in accommodating various actuator fault 

scenarios and maintaining healthy behaviour. 

Additionally, an active vibration control (AVC) law 

utilizing a strain rate feedback (SRF) algorithm and 

piezoelectric (PZT) sensors/actuators was implemented 

to compensate for residual vibrations caused by attitude 

dynamics and actuator failures. Numerical simulations 

showcased the superiority of the proposed schemes in 

fault tolerance and robustness compared to conventional 

approaches. 

This paper focuses on a small quadrotor UAV's 

position and attitude-tracking control. In real-world 

missions, the stability of the aircraft can be easily 

disrupted by sudden changes in commands. Thus, 

developing a flight controller capable of providing 

precise and reliable control to the aircraft is crucial for the 

success of the flight process. For that purpose, we add an 

anomaly detection and prediction system on a small 

quadrotor UAV's position and attitude tracking control. 

Adding an anomaly detection system to a small quadrotor 

UAV's position and attitude tracking control can 

significantly enhance its safety and reliability. Anomaly 

detection is a process of identifying unexpected events or 

deviations from normal behaviour. By implementing an 

anomaly detection system, the quadrotor UAV can 

quickly detect anomalies caused by sensor failures, 

environmental changes, or unexpected disturbances and 

take appropriate action to prevent accidents. The process 

of implementing an anomaly detection system involves 

defining normal behaviour, choosing a detection method, 

implementing the system, testing it, and monitoring and 

maintaining it over time. Following these steps, the 

quadrotor UAV can operate safely and effectively in 

various conditions [8]. 

Several extended sliding mode control (SMC) 

methods have been proposed to design flight controllers 

for quadrotor aircraft [9-13]. In [9], a robust second-order 

sliding mode controller was proposed to stabilize the 

attitude of a quadrotor helicopter, overcoming the 

chattering phenomenon in classical (first-order) sliding 

mode control while preserving the invariance property of 

sliding mode. In [10], an SMC approach was proposed to 

stabilize a class of cascaded underactuated systems, with 

the quadrotor helicopter's dynamical model serving as an 

example to illustrate the proposed SMC. The use of SMC 

strategies in these works was necessary to compensate for 

external disturbances, with the wind as a specific 

disturbance taken into account to demonstrate the control 

algorithm's robustness in the quadrotor's flight process 

[9,15]. A second-order sliding mode control (2-SMC) 

was proposed to improve the performance of control 

systems for second-order uncertain plants using an 

equivalent approach [16]. In [17], an adaptive second-

order sliding mode (SOSM) controller with a nonlinear 

sliding surface was proposed. However, in the most 

existing literature on quadrotor UAV control, the 

coefficients of the defined sliding manifolds are taken as 

special values and given directly in simulations. To 

further explore information about the coefficients' 

characteristics, the condition of Hurwitz's stability can be 

used to calculate the coefficients of sliding manifolds. 

The dynamics model is decomposed into two 

subsystems to achieve good tracking control performance 

of a quadrotor aircraft using 2-SMC. The fully actuated 

subsystem can converge to its linear switching surfaces, 

but the underactuated subsystem requires the stabilization 

of a nonlinear sliding manifold or internal dynamics. 

Previous work proposed a linear sliding manifold for an 

underactuated system [18,19], combining position and 

velocity tracking errors to obtain four coefficients. Using 

Lyapunov theory, the 2-SMC law guarantees the stability 

of the subsystem, but the sliding motion is complex and 

nonlinear. To simplify the design of the switching 
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surface, the nonlinear sliding manifold is linearized 

around desired equilibrium points, and coefficients are 

calculated using Hurwitz stability. This results in an 

equivalent linearized switching manifold that can be 

controlled through full-state linear feedback. 

This paper proposes a method based on the 

second-order sliding mode control (2-SMC) to design 

controllers for a small quadrotor UAV. Our approach 

builds on the work presented in the original paper on 

2-SMC control of quadcopters by En-Hui Zheng et al. 

[20], which proposed a sliding manifold design for 

position and attitude tracking control. To enhance the 

performance of the quadrotor system, we extend the 

sliding manifold approach by incorporating a fault 

detection system using a machine learning method. 

Specifically, we divide the dynamical model of the 

quadrotor into two subsystems, a fully actuated 

subsystem and an underactuated subsystem, and 

construct sliding manifolds for each subsystem with 

varying coefficients. To obtain the nonlinear 

coefficients of the sliding manifold, we use Hurwitz 

stability analysis during the solving process. Flight 

controllers are derived using Lyapunov theory to 

ensure all system state trajectories reach and remain on 

the sliding surfaces. Our proposed control method is 

validated through extensive simulation results, 

demonstrating its effectiveness in achieving position 

and attitude-tracking control with added fault detection 

capabilities. The original paper on 2-SMC control of 

quadcopters is also cited in this paper as a foundation 

for our work. 

The paper is organized as follows. It begins by 

presenting the dynamical model of the quadrotor. 

Then, the problem is formulated. Next, the quadrotor 

flight controller design based on 2-SMC is detailed. A 

machine learning approach for an anomaly detection 

and prediction system is added to a small quadrotor 

UAV's position and attitude tracking control. Finally, 

the paper concludes with a summary of the findings. 

2. Quadrotor dynamical model 

Figure 1 provides a detailed illustration of the 

quadrotor aircraft. The dynamical model of the 

quadrotor is formulated with respect to the body-frame 

𝐵(𝑂𝑥𝑦𝑧) and the earth-frame 𝑒(𝑂𝑥𝑦𝑧).  The position 

of the center of gravity of the quadrotor in the earth 

frame is represented by a vector [𝑥, 𝑦, 𝑧]′, while its 

linear velocity in the earth frame is represented by a 

vector [𝑢, 𝑣, 𝑤]′. The angular velocity in the body 

frame is represented by a vector [𝑝, 𝑞, 𝑟]′, and the total 

mass of the aircraft is denoted by  𝑚𝑠. The acceleration 

of gravity is denoted by 𝑔, and 𝑙 represents the distance 

from the centre of each rotor to the centre of gravity. 

 

Figure 1. Quadrotor Dynamics 

The quadrotor's orientation is described by the 

rotation matrix: 𝑒 → 𝐵, which is dependent on the three 

Euler angles [𝜙, 𝜃, 𝜓]′ that corresponds to the roll, pitch, 

and yaw angles, respectively. These angles have bounds 

of  (−𝜋/2 < 𝜙 < 𝜋/2)  for the roll angle, (−
𝜋

2
< 𝜃 <

𝜋

2
)for the pitch angle, and  (−𝜋 < 𝜓 < 𝜋) for the yaw 

angle. Compensation for the rotation of the quadrotor's 

body is necessary to achieve accurate position control. 

This compensation is achieved by using the transpose of 

the rotation matrix:  
𝑅 = 𝑅(𝜙, 𝜃, 𝜓) = 𝑅(𝑧, 𝜓)𝑅(𝑦, 𝜃)𝑅(𝑥, 𝜙) 

𝑅(𝑧, 𝜓) = [
cos𝜓 −sin𝜓 0
sin 𝜓 cos𝜓 0
0 0 1

], 

𝑅(𝑦, 𝜃) = [
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
], 

𝑅(𝑥, 𝜙) = [
1 0 0
0 cos𝜙 −sin 𝜙
0 sin 𝜙 cos𝜙

]. 

 

(1) 

The rotational and translational kinematic equations 

are derived using the rotation matrix. The translational 

kinematics equation is expressed as: 
𝑣𝑒 = 𝑅 ⋅ 𝑣𝐵     (2) 

where  𝒗𝒆 = [𝑢0, 𝑣0, 𝑤0]
′ and 𝑣𝐵 = [𝑢𝑏 , 𝑣𝑏 , 𝑤𝑏]

′  

represent the linear velocities of the centre of mass in the 

earth frame and body frame, respectively. 

The rotational kinematics relationship can be 

derived from the derivative of the rotation matrix and a 

skew-symmetric matrix [18]. 

Φ̇ = 𝐻−1Ω  

[

𝜙̇

𝜃̇
𝜓̇

] = [

1 sin 𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙
0 sin 𝜙 sec 𝜃 cos𝜙 sec 𝜃

] [
𝑝
𝑞
𝑟
]  

(3) 

The angular velocities in the body-frame, denoted by 

Ω = [𝑝, 𝑞, 𝑟]′, and the three Euler angles representing 

roll, pitch, and yaw, denoted by Φ = [𝜙, 𝜃, 𝜓]′, are 

related through the given equation. 

The quadrotor's translational movement is described 

by the following equation [22, 23]: 
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𝑚𝑆𝑃̈ + 𝑚𝑆𝑅𝑗,3 = 𝑓  (4) 

where 𝑃 = [𝑥, 𝑦, 𝑧]′ denotes the position of the 

quadrotor's centre of gravity in the earth-frame, 𝑓 = 𝑅𝑗,3 ⋅

𝑢1 + 𝑎 represents the total force applied to the quadrotor 

in the z-axis direction, 𝑚 is the mass of the aircraft, 𝑔 is 

the acceleration due to gravity, and 𝒂 = [𝐾1 ⋅ 𝑥̇, 𝐾2 ⋅
ẏ, 𝐾3 ⋅ 𝑧̇]

′  is the air drag matrix, where 𝐾1, 𝐾2, and 𝐾3 are 

the drag coefficients in the 𝑒𝑥 , 𝑒𝑦 and 𝑒𝑧 directions, 

respectively. The term  𝑅𝑗,3 represents the third column of 

the rotation matrix. 

{
 
 

 
 𝑥̈ =

1

𝑚𝑠
(cos 𝜙sin 𝜃cos 𝜓 + sin 𝜙sin 𝜓)𝑢1 −

𝐾1𝑥̇

𝑚𝑠

𝑦̈ =
1

𝑚𝑠

(cos 𝜙 sin 𝜃 sin𝜓 − sin 𝜙 cos𝜓)𝑢1 −
𝐾2𝑦̇

𝑚𝑠
    

𝑧̈ =
1

𝑚𝑠
(cos 𝜙cos 𝜃)𝑢1 − 𝑔 −

𝐾3𝑧̇

𝑚𝑠

  (5) 

Given that the quadrotor aircraft exhibits both 

rigidity and symmetry, its rotational kinetic equation can 

be formulated as follows: 
𝑑

𝑑𝑡
(𝐽Ω) = 𝑀  (6) 

The inertia matrix of the quadrotor is denoted by 𝑱 =

diag [𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧], where  𝐼𝑥 , 𝐼𝑦 and 𝐼𝑧 represent the inertia of 

the quadrotor. The total torque, 𝑴, is also represented 

within this equation. It is important to note that the 

torques generated by the four rotors provide the primary 

source of torque for the quadrotor. 

In accordance with the parameters that rely on the 

density of air, the radius of the propeller, the number of 

blades, and the blade's geometry, lift and drag coefficients 

[24], the thrust generated by rotor 𝑖 can be represented as 

𝐹𝑖 = 𝑏Ω𝑖
2, whereas the reactive torque caused by the rotor 

drag is expressed as 𝑀𝑖 = −𝑘Ω𝑖
2, where both 𝑘 and 𝑏 are 

positive parameters. It is worth noting that the drag is 

generated by rotor 𝑖 in free air. 
In the context of the four rotors, the rolling torque is 

determined by 𝑀𝜙 = 𝑙(−𝐹2 + 𝐹4), and the pitching 

torque is determined by 𝑀𝜃 = 𝑙(𝐹1 − 𝐹3). Additionally, 

the yawing torque generated by the four rotors can be 

expressed as 𝑀𝜓 = 𝐶(𝐹1 − 𝐹2 + 𝐹3 − 𝐹4), where 𝐶 

represents the proportional coefficient. Moreover, the 

gyroscopic torque produced by the motor rotor and the 

propeller can be expressed as 𝑀𝑔 = ΣΩ × 𝐻𝑖 . The 

rotational momentum moment, denoted by 𝐻𝑖 , is only 

observable in the 𝑧-axis, owing to the angular velocity 

generated by the motor's rotation. The rotational 

momentum moment 𝐻𝑖  can be expressed as  𝐻𝑖 =
[0,0, 𝐽𝑟Ω𝑖]

′, where 𝐽𝑟 refers to the inertia of the 𝑧-axis. 

Based on the preceding equations, the complete torque 

can be determined using the following: 

𝑀 = 𝑀g + [

𝑀𝜙

𝑀𝜃

𝑀𝜓

]  (7) 

The control inputs are computed as follows: 

[

𝑢1
𝑢2
𝑢3
𝑢4

] =

[
 
 
 
𝑇
𝑀𝜙

𝑀𝜃

𝑀𝜓]
 
 
 
= [

𝑏 𝑏 𝑏 𝑏
𝑙𝑏 0 −𝑙𝑏 0
0 −𝑙𝑏 0 𝑙𝑏
−𝑘 𝑘 −𝑘 𝑘

]

[
 
 
 
 
Ω1
2

Ω2
2

Ω3
2

Ω4
2]
 
 
 
 

  (8) 

In which 𝑢1 denotes the total body thrust along the 

𝑧-axis, 𝑢2 and 𝑢3 denote the roll and pitch torques, 

respectively, and 𝑢4 denotes the yawing torque. By 

utilizing equations  (7), and (8) and incorporating air drag, 

the second-order state-space form can be obtained as 

[𝜙̈, 𝜃̈, 𝜓̈]′ = [𝑝̇, 𝑞̇, 𝑟̇]′. 
 

{
 
 

 
 𝜙̈ = 𝑞𝑟

𝐼𝑦−𝐼𝑧

𝐼𝑥
+
𝐽𝑟

𝐼𝑥
𝑞Ω𝑟 +

𝑙

𝐼𝑥
𝑢2 −

𝐾4𝑙

𝐼𝑥
𝑝

𝜃̈ = 𝑝𝑟
𝐼𝑧−𝐼𝑥

𝐼𝑦
−
𝐽𝑟

𝐼𝑦
𝑝Ω𝑟 +

𝐼

𝐼𝑦
𝑢3 −

𝐾5𝑙5

𝐼𝑦
𝑞

𝜓̈ = 𝑝𝑞
𝐼𝑥−𝐼𝑦

𝐼𝑧
+

𝐶

𝐼𝑧
𝑢4 −

𝐾6

𝐼𝑧
𝑟

  (9) 

Here, 𝐾𝑖 represent positive drag coefficients and 

constant values. Additionally, Ω𝑟  is defined as the overall 

residual rotor angular velocity, which can be calculated 

as Ω𝑟 = −Ω1 + Ω2 − Ω3 + Ω4, Ω𝑟 , where Ω𝑖  represent 

the angular velocities of the rotors. 

3. Control problem formulation 

This study aims to achieve asymptotic position and 

attitude tracking of the quadrotor by developing flight 

controllers based on the second-order sliding mode 

technique. Specifically, the controllers aim to ensure that 

P→Pd and Φ→Φd. To accomplish this, the control 

system, as described by Eqs. (3), (5), and (9) are 

partitioned into multiple subsystems. These subsystems, 

which include a fully actuated subsystem consisting of 𝑧̈ 

and 𝜓̈ and an underactuated subsystem comprised of 𝑥̈ ,𝑦̈ 

,𝜙̈ , and 𝜃̈ , are inspired by the sliding mode control 

approach [25]. For each subsystem, a switching sliding 

surface is constructed using a linear combination of the 

position and velocity tracking errors of one (or two) state 

variable(s). The resulting tracking errors are driven to 

zero by an independent controller to achieve the desired 

output tracking performance. 

4. Controller design for fully actuated 

and underactuated subsystem 

subsystems 

The primary focus of this section is to present the second-

order sliding mode control (2-SMC) method used to 

design the flight controller for the quadrotor illustrated 

Figure 2. 

The fully actuated subsystem of the quadrotor is 

controlled using the 2-SMC approach to ensure that the 

state variables [𝑧, 𝜓] converge to their respective desired 

values [𝑧𝑑 , 𝜓𝑑]. Additionally, since the quadrotor is a 

rigid body, the symmetry condition  𝐼𝑥 = 𝐼𝑦 is taken into 

account[19]. 

The sliding manifolds for the fully actuated 

subsystem are defined as follows: 

 

𝑠1 = 𝑐𝑧(𝑧𝑑 − 𝑧) + (𝑧̇𝑑 − 𝑧̇)  (10) 

𝑠2 = 𝑐𝜓(𝜓𝑑 − 𝜓) + (𝜓̇𝑑 − 𝜓̇)  (11) 
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Figure 2. Flight Control Architecture 

Where the coefficients 𝑐𝑧 and 𝑐𝜓 are both greater 

than zero. To design the corresponding control laws, the 

sliding surface dynamics are defined as  𝑠̇𝑖 =
−𝜀𝑖sgn (𝑠𝑖) − 𝜂𝑖𝑠𝑖(𝑖 = 1,2). 

𝑢1 = 𝑚𝑠 ⋅
𝑐𝑧(𝑧̇𝑑−𝑧̇)+𝑧̈𝑑+𝑔+𝑑1+𝜀1sgn (𝑠1)+𝜂1𝑠1

cos 𝜙cos 𝜃
  (12) 

𝑢4 =
𝐼𝑧

𝐶
[𝑐𝜓(𝜓̇𝑑 − 𝜓̇) + 𝜓̈𝑑 + 𝑑2 + 𝜀2sgn (𝑠2) + 𝜂2𝑠2]  (13) 

The coefficients of the exponential approach laws, 

namely 𝜀1, 𝜀2, 𝜂1 and 𝜂2 are all greater than zero. In 

addition, the disturbance terms are defined as follows: 

𝑑1 =
𝐾3𝑧̇

𝑚𝑠
 and 𝑑2 =

𝐾6𝑟

𝐼𝑧
. 

The underactuated subsystem of the quadrotor is 

controlled using 2-SMC to ensure that the state variables 

[𝑥, 𝜃] and [𝑦, 𝜙] converge to their respective desired 

values  [𝑥𝑑 , 𝜃𝑑] and [𝑦𝑑 , 𝜙𝑑]. 
The sliding manifolds are defined as given by [18]: 

𝑠3 = 𝑐1(𝑥̇𝑑 − 𝑥̇) + 𝑐2(𝑥𝑑 − 𝑥) + 𝑐3(𝜃̇𝑑 − 𝜃̇) +

𝑐4(𝜃𝑑 − 𝜃)  
(14) 

𝑠4 = 𝑐5(𝑦̇𝑑 − 𝑦̇) + 𝑐6(𝑦𝑑 − 𝑦) + 𝑐7(𝜙̇𝑑 − 𝜙̇) +

𝑐8(𝜙𝑑 −𝜙)  
(15) 

where the coefficients 𝑐𝑖(𝑖 = 1,… ,8) will be 

obtained later from the Hurwitz stability analysis. The 

time derivatives of the two sliding manifolds are given 

by: 

𝑠̇3 = 𝑐1(𝑥̈𝑑 − 𝑥̈) + 𝑐2(𝑥̇𝑑 − 𝑥̇) + 𝑐3(𝜃̈𝑑 − 𝜃̈) +

𝑐4(𝜃̇𝑑 − 𝜃̇)  
(16) 

𝑠̇4 = 𝑐5(𝑦̈𝑑 − 𝑦̈) + 𝑐6(𝑦̇𝑑 − 𝑦̇) + 𝑐7(𝜙̈𝑑 − 𝜙̈) +

𝑐8(𝜙̇𝑑 − 𝜙̇)  
(17) 

The corresponding control laws are obtained by 

setting 𝑠̇𝑖 = −𝜀𝑖sgn (𝑠𝑖) − 𝜂𝑖𝑠𝑖(𝑖 = 3,4), resulting in: 

𝑢3 =
𝐼𝑦

𝑙
{
𝑐1

𝑐3
(𝑥̈𝑑 − 𝑥̈) +

𝑐2

𝑐3
(𝑥̇𝑑 − 𝑥̇) + 𝜃̈𝑑 +

𝑐4

𝑐3
(𝜃̇𝑑 −

𝜃̇) + 𝑑3 +
1

𝑐3
[𝜀3sgn (𝑠3) + 𝜂3𝑠3]}  

(18) 

𝑢2 =
𝐼𝑥

𝑙
{
𝑐5

𝑐7
(𝑦̈𝑑 − 𝑦̈) +

𝑐6

𝑐7
(𝑦̇𝑑 − 𝑦̇) + 𝜙̈𝑑 +

𝑐8

𝑐7
(𝜙̇𝑑 − 𝜙̇) + 𝑑4 +

1

𝑐7
[𝜀4sgn (𝑠4) + 𝜂4𝑠4]}  

(19) 

The exponential approach laws' coefficients, namely 

𝜀3, 𝜀4, 𝜂3, and 𝜂4, are all greater than zero. Moreover, the 

disturbance terms are also present: 

𝑑3 = −
𝑝𝑟(𝐼𝑧−𝐼𝑥)

𝐼𝑦
+
𝐽𝑟𝑝Ω𝑟

𝐼𝑦
+
𝐾5𝑙𝑞

𝐼𝑦  
  (20) 

𝑑4 = −
𝑞𝑟(𝐼𝑦−𝐼𝑧)

𝐼𝑥
−
𝐽𝑟𝑞Ω𝑟

𝐼𝑥
+
𝐾4𝑙𝑝

𝐼𝑥
  (21) 

Theorem: The present study establishes the stability 

of the nonlinear system for the quad-rotor's dynamical 

model under the flight controller design presented in Eqs. 

(12), (13), (18), and (19). Theorem results demonstrate 

the effectiveness of the designed controllers in achieving 

system stability. 

Proof: To demonstrate the effectiveness of the 

control laws 𝑢𝑖 (𝑖 = 1,2,3,4) in achieving sliding mode 

control, we consider the Lyapunov function candidates: 

𝑉𝑖 =
1

2
𝑠𝑖
2 (𝑖 = 1,2,3,4)  (22) 

Using Eqs. (10) and (12), (11) and (13), (16) and 

(17), (19b) and (20b), we obtain the time derivatives of 

𝑉𝑖: 
𝑉̇𝑖 = 𝑠𝑖 ⋅ 𝑠̇𝑖 = −𝜀𝑖|𝑠𝑖| − 𝜂𝑖𝑠𝑖

2 ≤ 0  (23) 

Therefore, all the system state trajectories can reach 

and remain on the corresponding sliding surfaces as 

desired [20]. 

To avoid repetition of the same steps, we illustrate 

the solving process for the coefficients 𝑐𝑖(𝑖 = 1,2,3,4) by 

considering the example of 𝑠3 and 𝑠4 sliding manifolds, 

which are obtained using the same condition on Hurwitz 

stability. 

Firstly, we set 𝑠̇3 = 0and replace 𝑢3 with 𝜃 in Eq. 

(19a), resulting in: 

𝜃̈𝑑 − 𝜃̈ = −
𝑐1

𝑐3
(𝑥̈𝑑 − 𝑥̈) −

𝑐2

𝑐3
(𝑥̇𝑑 − 𝑥̇) −

𝑐4

𝑐3
(𝜃̇𝑑 − 𝜃̇)  (24) 

If  𝑠3 = 0: 
𝑥̇𝑑 − 𝑥̇ = −

𝑐2

𝑐1
(𝑥𝑑 − 𝑥) −

𝑐3

𝑐1
(𝜃̇𝑑 − 𝜃̇) −

𝑐4

𝑐1
(𝜃𝑑 − 𝜃), 

𝜃̈𝑑 − 𝜃̈ = −
𝑐1

𝑐3
(𝑥̈𝑑 − 𝑥̈) +

𝑐2
2

𝑐1𝑐3
(𝑥𝑑 − 𝑥) + (

𝑐2

𝑐1
−

𝑐4

𝑐3
) (𝜃̇𝑑 − 𝜃̇) +

𝑐2𝑐4

𝑐1𝑐3
(𝜃𝑑 − 𝜃)  

(25) 

We define the variables 𝑦1 = 𝜃𝑑 − 𝜃, 𝑦2 = 𝜃̇𝑑 − 𝜃̇, 

and 𝑦3 = 𝑥𝑑 − 𝑥. By rearranging the system equations, 

we obtain the cascaded form: 

𝑦̇1 = 𝑦2  

𝑦̇2 = −
𝑐1

𝑐3
(𝑥̈𝑑 − 𝑥̈) +

𝑐2
2

𝑐1𝑐3
(𝑥𝑑 − 𝑥) + (

𝑐2

𝑐1
−
𝑐4

𝑐3
) (𝜃̇𝑑 − 𝜃̇) +

𝑐2𝑐4

𝑐1𝑐3
(𝜃𝑑 − 𝜃)  

𝑦̇3 = −
𝑐2

𝑐1
(𝑥𝑑 − 𝑥) −

𝑐3

𝑐1
(𝜃̇𝑑 − 𝜃̇) −

𝑐4

𝑐1
(𝜃𝑑 − 𝜃). (26) 

As the state variables approach their equilibrium 

points, namely 𝜃 → 𝜃𝑑, 𝜃̇ → 𝜃̇𝑑, 𝑥 → 𝑥𝑑 , and 𝑥̇ → 𝑥̇𝑑 , the 

variables 𝑦1, 𝑦2, and 𝑦3 tend towards zero. 

Following linearization around the equilibrium 

points, the cascaded form can be expressed in a new form: 

𝑦̇1 = 𝑦2, 

𝑦̇2 = −
𝑐1

𝑐3
[𝑥̈𝑑 − (−𝑦1cos 𝜙cos 𝜓 + sin 𝜙sin 𝜓)

𝑢1

𝑚𝑠
+ 𝑑1]  

+
𝑐2
2

𝑐1𝑐3
(𝑥𝑑 − 𝑥) + (

𝑐2

𝑐1
−
𝑐4

𝑐3
) (𝜃̇𝑑 − 𝜃̇) +

𝑐2𝑐4

𝑐1𝑐3
(𝜃𝑑 − 𝜃)  

+𝜉1𝑦1 + 𝜉2𝑦2 + 𝜉3𝑦3  

𝑦̇3 = −
𝑐2

𝑐1
(𝑥𝑑 − 𝑥) −

𝑐3

𝑐1
(𝜃̇𝑑 − 𝜃̇) −

𝑐4

𝑐1
(𝜃𝑑 − 𝜃)  (27) 

We define the column vector 𝑌 = [𝑦1 𝑦2 𝑦3]′, 
which allows us to represent the system in matrix form as 
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𝑌̇ = 𝐴𝑌 + 𝐵𝑌, where A and B are appropriately sized 

matrices. 

𝐴 = [
0 1 0
𝐴21 𝐴22 𝐴23
𝑎 𝑏 𝑐

] and 𝐵 = [
0 0 0
𝜉1 𝜉2 𝜉3
0 0 0

] (28) 

The parameters 𝜉𝑖(𝑖 = 1,2,3) are assumed to be 

small and constant. The term 𝜆left (𝐴) denotes the real part 

of the leftmost eigenvalue of matrix A in the negative 

half-plane. When 𝜆left (𝐴) ≪ 0, or in other words, when 

𝐴 is Hurwitz, the system is asymptotically stable in the 

vicinity of the equilibrium points [18]. As a result, it is 

only necessary to investigate the stability of 𝑌̇ = 𝐴𝑌. 

If we assume 𝑐1 ≠ 0, 𝑐3 ≠ 0, we can obtain the 

parameters: 

𝐴21 = −
𝑐1

𝑐3

𝑢1

𝑚𝑠
cos 𝜙cos 𝜓 +

𝑐2𝑐4

𝑐1𝑐3
,  𝐴22 =

𝑐2

𝑐1
−
𝑐4

𝑐3
, 

𝐴23 =
𝑐2
2

𝑐1𝑐3
,  𝑎 = −

𝑐4

𝑐1
,  𝑏 = −

𝑐3

𝑐1
,  𝑐 = −

𝑐2

𝑐1
  

Let |𝜆𝐼 − 𝐴| = 0,   i.e.,  |
𝜆 −1 0

−𝐴21 𝜆 − 𝐴22 −𝐴23
−𝑎 −𝑏 𝜆 − 𝑐

| =

0 

(29) 

The equation is expressed as 

𝜆3 − (𝐴22 + 𝑐)𝜆
2 + (𝑐𝐴22 − 𝐴21 − 𝑏𝐴23)𝜆 +

𝑐𝐴21 − 𝑎𝐴23 = 0  (30) 

By letting the characteristic equation be (𝜆 + 1)(𝜆 +
2)(𝜆 + 3) = 0 and comparing the resulting coefficients 

with the original equation, we can obtain the values of the 

coefficients 𝑐𝑖(𝑖 = 1, 2,3,4). 

{
 
 

 
 
𝑐4

𝑐3
= 6

𝑐1

𝑐3

𝑢1

𝑚𝑠
cos 𝜙cos 𝜓 = 11.

𝑐2

𝑐3

𝑢1

𝑚𝑠
cos 𝜙cos 𝜓 = 6

  (31) 

To obtain the coefficients of the sliding manifolds, 

we assume that 𝑐3 = 1 and solve for the remaining 

coefficients using a similar approach. Specifically, we 

first set up the characteristic equation and solve for the 

coefficients using the eigenvalues of the matrix 𝐴. For 

example, we can set 𝑐1 = 11𝑚𝑠/(𝑢1cos 𝜙cos 𝜓), 𝑐2 =
6𝑚𝑠/(𝑢1cos 𝜙cos 𝜓), and 𝑐4 = 6. 

It is important to note that the linearization around 

the state equilibrium points introduces deviation terms 𝜉𝑖, 
which can result in uncertain deviations from the 

coefficient of 𝑢1 in the first equation of (5). However, we 

address this issue using the SMC laws' switching gain 

(18). 

Similarly, we obtain the coefficients 𝑐5, 𝑐6, 𝑐7, and 

𝑐8 using the same approach with the simplified values of 

𝑐5 = −11𝑚𝑠/(𝑢1cos 𝜓), 𝑐6 = −6𝑚𝑠/(𝑢1cos 𝜓), 𝑐7 = 1, and 

𝑐8 = 6. 

The initial position and angle values of our quadrotor 

for simulation are [0, 0, 0] m and [0, 0, 0] rad, other 

parameters of our tested quadrotor are listed in Table 1. 

Control parameters are listed in Table 2. 

Table 1. Quadrotor Model Parameters 

Variables Values Units 

𝒎𝒔 1.1 𝐤𝐠 

𝒍 0.21 𝐦 

𝐼𝑥 = 𝐼𝑦 1.22 Ns2/rad 

𝐼𝑧 2.2 Ns2/rad 

𝐼𝑟 0.2 𝐍𝐬𝟐/𝐫𝐚𝐝 

𝑲𝒊(𝒊 = 𝟏, 𝟐, 𝟑) 0.1 𝐍𝐬/𝐦 

𝑲𝒊(𝒊 = 𝟒, 𝟓, 𝟔) 0.12 𝐍𝐬/𝐦 

𝒈 9.81 𝐦/𝐬𝟐 

𝒃 5 𝐍𝐬𝟐 

𝒌 2 𝐍/𝐦𝐬𝟐 

𝑪 1  

Table 2. Controller Parameters 

Variables Values Variables Values 

𝑐𝑧  1 𝑐𝜓  1 

𝜀1 0.8 𝜀2 0.8 

𝜂1 2 𝜂2 2 

𝑐1 11𝑚𝑠/(𝑢1cos 𝜙cos 𝜓)  𝑐5 −11𝑚𝑠/(𝑢1cos 𝜓)  

𝑐2 6𝑚𝑠/(𝑢1𝑐𝑜𝑠 𝜙𝑐𝑜𝑠 𝜓) 𝑐6 −6𝑚𝑠/(𝑢1𝑐𝑜𝑠 𝜓) 

𝑐3 1 𝑐7 1 

𝑐4 6 𝑐8 6 

𝜀1 0.5 𝜀4 0.5 

𝜂3 5 𝜂4 5 

5. Anomaly detection and prediction 

system 

To enhance the safety and reliability of position and 

attitude tracking control of a small quadrotor UAV, In the 

context of Industry 4.0 and the increasing integration of 

digital, physical, and human aspects, reliability 

engineering needs to adapt it highlights the importance of 

machine learning methods, such as Autoencoder, in 

addressing reliability concerns. The paper suggests new 

research directions in areas [26]; we propose using the 

Autoencoder method for implementing anomaly 

detection. The Autoencoder is a type of neural network 

that can learn to encode and decode data, and it can be 

trained on normal data to detect any deviations from it. In 

our approach, we use the Autoencoder to identify any 

unexpected behaviour of the quadrotor in real time. This 

allows the quadrotor to take corrective actions in case of 

anomalies, significantly improving its safety and 

reliability. Our proposed approach can find applications 

in various domains, such as surveillance, inspection, and 

search and rescue [8]. 

We used a deep Autoencoder with multiple hidden 

layers to encode and decode the input data. The encoder 

and decoder are fully connected layers with ReLU and 

Softmax activation functions. We trained the 

Autoencoder on a large dataset of normal motion data 

from Angular Velocity, Euler angle and Velocity data 
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from simulation and used it to reconstruct the input data. 

We calculated the reconstruction error as the MSE 

between the input and reconstructed data. We set a 

threshold value for the reconstruction error based on the 

error distribution on the training data. An input data point 

with a reconstruction error above the threshold was 

considered an anomaly [28]. 
For testing the system, we use the Control algorithm 

failure approach on our system. This fault can occur due 

to software bugs, incorrect parameter tuning, or 

limitations in the control system's algorithms and models. 

Table 3. Positions and angles reference 

Variables Values Time (s) 

[𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑] [0.6,0.6,0.6]m 0 

 [0.3,0.6,0.6]m 10 

 [0.3,0.3,0.6]m 20 

 [0.6,0.3,0.6]m 30 

 [0.6,0.6,0.6]m 40 

 [0.6,0.6,0.0]m 50 

[𝜙𝑑 , 𝜃𝑑, 𝜓𝑑] [0.0,0.0,0.5]rad 10 

 [0.0,0.0,0.0]rad 60 

 

From simulations, Fig. 3 illustrates the trajectory of 

the quadrotor, which follows a set-point position and 

angle control. Table 3 lists reference positions and angles 

during the quadrotor's flight at various intervals. 

 

Figure 3. Quadrotor's path in set point position and angle 

control 

After 60 seconds of tracking desired trajectories system 

adapts and learns from data produced by the control 

subsystem, and the system can identify the anomalies. 

 

Figure 4. Euler angle 

 

Figure 5. Angular Velocity 

 

Figure 6. Velocity 

We evaluated our method's performance on a real-

world flight data dataset. We split the dataset into training 

and testing sets and trained the Autoencoder on the 

training data. We tested the method's performance on the 

testing data by comparing the reconstruction error of each 

data point with the threshold value. Our results show that 

the Autoencoder model could detect anomalies in the 

flight data with an overall MSE of 0.95 for velocity, 0.98 

for angular velocity, and 0.84 for Euler angles. The high 

accuracy of the method demonstrates its potential for 

detecting anomalies in-flight data. 

Our results show that the Autoencoder model is an 

effective approach for anomaly detection in-flight data. 

The high accuracy of the method indicates that it can be 

used to identify anomalies in various aspects of flight 

data. The approach can be applied to various aviation 

applications, such as aircraft maintenance, safety 

monitoring, and incident investigation. One limitation of 

our method is that it requires a large amount of training 
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data to achieve high accuracy. Future work can explore 

ways to reduce the required training data or improve the 

method's performance with smaller datasets. 

In this paper also, we propose an effective approach 

for enhancing the safety and reliability of position and 

attitude tracking control of a small quadrotor UAV by 

using the VAR method to predict true future values. The 

VAR model is a statistical model that can forecast future 

values of a time series based on its past values. In our 

approach, we use the VAR method to predict the future 

values of the quadrotor's position and attitude, enabling it 

to take corrective actions in advance if necessary. Our 

proposed approach can significantly improve the safety 

and reliability of the quadrotor UAV, making it suitable 

for various applications, such as surveillance, inspection, 

and search and rescue [27]. 

The VAR model is a system of p linear equations 

that express each variable 𝑦𝑡 as a linear combination of 

its past values and the past values of other variables in the 

system. The VAR(p) model can be written as follows: 

[25] 
𝑦𝑡 =  𝑐 +  𝛷1𝑦(𝑡 − 1) +  𝛷2𝑦(𝑡 − 2) + … +
 𝛷𝑝 ∗ 𝑦(𝑡 − 𝑝) +  𝜀𝑡  

(32) 

Where yt is a p x 1 vector of variables at time t, c is 

a p x 1 vector of intercepts, Φi is p x p matrices of 

coefficients for the i-th lag of the variables, and 𝜀𝑡 is a 

𝑝 ×  1 vector of error terms that are assumed to be 

independently and identically distributed with mean zero 

and covariance matrix Σ. 

The VAR model can be estimated using ordinary 

least squares (OLS) or maximum likelihood estimation 

(MLE), and the predicted values can be obtained by 

recursively using the estimated coefficients and past 

values of the variables. The forecasted values for the 

horizon h can be obtained by multiplying the lagged 

values of the variables with the estimated coefficients and 

summing them up. The formula for the forecasted values 

for horizon h is: 
𝑦(𝑡 + ℎ|𝑡) =  𝑐 +  𝛷1𝑦(𝑡 + ℎ − 1|𝑡) +
 𝛷2𝑦(𝑡 + ℎ − 2|𝑡) + … +  𝛷𝑝 ∗ 𝑦(𝑡 + ℎ − 𝑝|𝑡)  

(33) 

where y(t+h|t) is the forecasted value of the variable 

y for horizon h, based on the information available up to 

time t. 

In this article, we use the VAR method to predict the 

velocity, angular velocity, and Euler angles of a small 

quadrotor UAV to enhance the safety and reliability of its 

position and attitude tracking control. We use the VAR 

model to forecast future values of the time series data 

based on its past values. The predicted values are then 

compared with the actual values using the mean squared 

error (MSE) metric to evaluate the performance of the 

proposed method. 

Our simulation results demonstrate that the proposed 

VAR-based prediction method can effectively predict the 

velocity, angular velocity, and Euler angles of the 

quadrotor UAV. The MSE values obtained for the 

predicted values were low, indicating the high accuracy 

of the prediction method. Moreover, the predicted values 

closely matched the actual values, confirming the 

effectiveness of the proposed method in enhancing the 

safety and reliability of the quadrotor UAV's position and 

attitude-tracking control. 

As we can see, the result for prediction in the next 

hour of each sensor data can be like below: 

 

Figure 7. Euler angle prediction 

 

Figure 8. Velocity prediction 

The performance of the proposed VAR-based 

prediction method is evaluated using the mean squared 

error (MSE) metric, which measures the difference 

between the predicted and actual values. The results show 

that the VAR model could accurately predict future 

values of the flight data with an overall MSE of 0.0021 

for velocity, 0.00022 for angular velocity, and 0.0016 for 

Euler angles. These low MSE values indicate that the 

VAR model effectively predicted the flight data's future 

values. Our simulation results demonstrate that the 

proposed VAR-based prediction method effectively 

accurately predicts the velocity, angular velocity, and 

Euler angles of the quadrotor UAV. The MSE values 
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obtained for the predicted values were low, indicating a 

near-zero error. This result confirms the effectiveness of 

the proposed method in enhancing the safety and 

reliability of the quadrotor UAV's position and attitude-

tracking control. The low and near zero MSE values 

obtained for the VAR prediction are promising results, 

indicating that the proposed method can potentially 

improve the performance of small quadrotor UAVs in 

various applications, such as surveillance, inspection, and 

search and rescue. 

The combination of the Autoencoder anomaly 

detection system and the VAR prediction model has 

shown promising results in detecting anomalies and 

predicting the future values of the quadrotor's position 

and attitude. However, to further test the overall system's 

effectiveness, future plans include conducting real-world 

experiments with a small quadrotor UAV equipped with 

the developed system. The experiments will involve 

various flight scenarios with different levels of 

disturbances and external factors, such as wind and 

obstacles, to evaluate the system's robustness and 

reliability. Additionally, performance metrics, such as 

accuracy, sensitivity, and specificity, will be used to 

evaluate the system's effectiveness further. Overall, the 

plan is to demonstrate the practicality and usefulness of 

the developed system for enhancing the safety and 

reliability of small quadrotor UAVs. 

 

Figure 9. Angular velocity prediction 

6. Conclusion 

In summary, this paper has presented several key 

conclusions. Firstly, the system's state variables converge 

to their respective reference values, even when these 

values are abruptly changed at different times. Secondly, 

adjusting reference positions can vary the quadrotor's 

path, while different reference angles lead to varied 

attitudes. Thirdly, the system's position and velocity 

tracking errors approach zero, indicating convergence of 

the sliding variables to their sliding surfaces. Lastly, the 

designed controller is robust, and the proposed control 

scheme has been proven effective. Overall, the simulation 

results presented in this paper are highly promising. 

In addition to the above conclusions, the paper 

demonstrates the effectiveness of using an Autoencoder 

model for anomaly detection in-flight data, achieving low 

MSE results of velocity, angular velocity, and Euler 

angles data. Moreover, the paper presents a novel 

approach for predicting anomalies using a VAR model, 

which further enhances the safety and reliability of the 

quadrotor. The high accuracy and robustness of the 

proposed control scheme, coupled with the advanced 

anomaly detection and prediction capabilities, make it a 

highly promising approach for designing safe and reliable 

controllers for quadrotor UAVs. The results of this paper 

open up new avenues for applying advanced machine 

learning and control techniques in autonomous systems. 
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