
 
  
 
 
 
Online ISSN:  2676-3346 

 
 

Vol. 5/ Issue 2/ 2022/ pp. 1-7 

DOI: 10.30699/IJRRS.5.2.1 

Received: 2022.09.14, Accepted: 2022.12.20 

Original Research Article 

 

Implementation of AI for The Prediction of 
Failures of Reinforced Concrete Frames 

Sasan Motaghed1*, Mohammad Sadegh Shahid Zadeh1, Ali khooshecharkh1, Mehdi Askari1 

1. Department of Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of 
Technology, Behbahan, Iran 

* motaghed@bkatu.ac.ir 

Abstract 
Reinforced concrete tall building failure, in residual areas, can cause catastrophic disaster if they can’t survive during the destructive 
earthquakes. Hence, determining the damage of these buildings in the earthquake and detecting the probable mechanism formation are 
necessary for insurance purposes in urban areas. This paper aims to determine the failure modes of the moment resisting concrete 
frames (MRFs) according to the damage of the beam and column.  To achieve this goal, a 15-storey moment resisting reinforced 
concrete frame is modeled via IDARC software, and nonlinear dynamic time history analysis is performed through 60 seismic 
accelerograms. Then the collapse and non-collapse vectors are constructed obtaining the results of dynamic analysis in both modes. 
The artificial neural network is used for the classification of the obtained modes. The results show good agreement in failures classes. 
Hence it is possible to introduce the simple weight factor for frame status identification. 
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1. Introduction 
Seismic prone regions have frequently suffered from 
injuries and financial losses, especially in the densely 
populated urban and industrial areas.  In these areas, the 
only possible choice is to make the buildings safe against 
this phenomenon. Despite the application of different 
criteria and factors in the design and construction of a 
structure, different modes of damage and loss are possible 
during an earthquake. Hence, fully trusted structures can’t 
be designed. The seismic damage evaluation of a 
structure is the first step in building strengthening [1-3]. 
The results can determine all plausible failure modes. 
Providing the criteria for avoiding failure modes can, to 
some extent, ensure structural safety [4]. In this method, 
we will look for structural modes of collapse when 
earthquakes occur [5]. Also, it is important to determine 
the main earthquake damage to the structure which can 
bring it to the brink of destruction in aftershocks [6,7]. 
Along with these issues, it is also important to pay 
attention to uncertainties [8].   

Haselton et al. evaluated the Safety of Reinforced 
Concrete buildings in seismic zones [9]. They conclude 
that the code provisions delay, but do not prevent, column 
yielding and the formation of story collapse mechanisms. 
Goulet et al. considered seismic hazards to collapse safety 
and economic losses for this type of structures [10]. 

Classification of failure mode and prediction of 
strength for reinforced concrete structures based on 
machine learning techniques is considered in many 
researches [11]. Nguyen et al. used an evolutionary 
algorithm to optimize artificial intelligence for predicting 
of the axial capacity of rectangular concrete filled steel 
tubes under compression [12].  Ly, Hai-Bang, et al hired 
computational hybrid machine learning to predict the 
shear capacity of steel fiber reinforced concrete beams 
[13].   

In this research, the damage of the tall frames, on the 
verge of collapse, will be evaluated by IDARC software 
through the nonlinear dynamic time history analysis. The 
results of these analyses were used to train a neural 
network to improve the possibility of decision making 
and to state structural conditions and modes of failure 
based on nodes’ status. 

2. Review of Artificial Intelligence 
and Machine Learning in 
Earthquake Engineering 

The topic area of damage detection is broadly defined as 
a group of studies that develop AI and ML models to 
recognize, classify, and assess seismic damage to civil 
structures. The existing literature in this area possesses a 
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large range of attributes in ML method, data resources, 
and analysis scale. To be consistent, data resource is used 
as the main trait to subdivide the relevant studies herein. 
First, several studies relied on post-earthquake linguistic 
or photographic records to predict seismic damage. A 
major challenge in this area lies in addressing the damage 
information in linguistic forms. To this end, De Stefano 
et al. [14] used ANN and Bayesian classification to 
predict seismic damage mechanisms of historic churches. 
Fuzzy logic models have been utilized in a collection of 
studies that transform physical descriptions of seismic 
damage into mathematical model parameters [15-20]. 
Recently, the linguistic damage records from the 2014 
South Napa earthquake have been used to develop a DL-
based method that classifies the building damage [21]. On 
the contrary, the damaged RC column images collected 
after the 2010 Haiti earthquake have been used by 
German et al. [22] to develop a procedure that 
automatically detects spalled regions on the column 
surface and measures the properties of the spalling. The 
multi-step procedure measures the area of spalled 
concrete, the area of the reinforcement, as well as the 
sizes of exposed reinforcing bars. This damage detection 
procedure was further incorporated into a comprehensive 
framework that links the column damage with the 
residual drift capacity and post-earthquake fragility 
curves of RC structures [23, 24]. Besides, ML methods 
have been implemented in dealing with satellite imagery 
and digital maps to detect and classify building damage 
[25, 26]. Gao and Mosalam [27] have also constructed an 
image database called ‘‘Structural ImageNet,’’ from 
which two DL technologies such as transfer learning (TL) 
and visual geometry group (VGGNet) were applied to 
recognize structural damage caused by earthquakes and 
other natural hazards. 

A large part of the existing literature uses simulated 
and test data to detect the seismic damage of building 
structures. In particular, an ANN model is first trained 
with respect to the reference system in its undamaged 
state, whereas the response data from the damaged state 
of the same system are fed into the same model. As a 
result, the variation in the level of prediction error 
between the two states can serve as a reference to quantify 
the structural damage in a nonparametric manner [28, 29]. 
Similar studies have considered using innovative metrics 
such as Bayes factors, natural modes, and coefficients of 
autoregressive models for damage detection [30-35. 
Following the same logic, a couple of studies have 
improved the approach to enable parametric 
quantification of structural damage (e.g. damage 
quantified through the change of stiffness values) [36, 
37]. In a broader context, ANN models have been 
developed to predict the seismic response for a variety of 
structures so as to infer their damage conditions. Related 
studies in this area include (1) quick earthquake damage 
estimation on ordinary wooden framed houses in Japan 
[38]; (2) seismic vulnerability assessment of chemical 
industrial plants with various topologies [39]; (3) damage 
index prediction of RC frames [40-42]); (4) seismic 

damage evaluation of concrete shear walls [43] and 
cantilever structures [44]; and (5) global damage 
classification of RC slab-column frames by combining 
ANN with SVM [45]. ML has also been utilized by 
Burton and his coworkers [46-48] to link the seismic 
damage patterns of buildings to the residual structural 
capacity indices (i.e. the median capacity ratio between 
the intact and damaged buildings). Their proposed 
framework integrates seismic demand analysis, 
component damage simulation, and residual collapse 
capacity estimation on both intact and damaged 
structures. The applied ML algorithms involve CART 
and RF for safety classification, LASSO and SVM for 
capacity index prediction. 

3. Structural Modeling 
The fifteen-story / four-bay frames are modeled 
according to the ACI code based on the median ductility 
[49, 50]. We assume that the building is located in a high 
risk seismic area with soil type 2 [51, 52]. According to 
UBC Code, concrete pressure strength and steel yield 
stress in beams and columns are 25 MPa and 400 MPa 
respectively. Frame geometrical properties are shown in 
figures 1 and 2 and Tables 1 and 2.  

 

Figure 1. building plan 

 

Figure 2. Frame Elevation 
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Frame analysis is performed using IDARC software 
which can model RC frames and conduct nonlinear 
dynamic time history analysis [50-52]. 

Table 1.  beams details 

Group  
Width 
(cm) 

 
Depth 
(cm) 

 top bars  bottom bars 

B1  30  30  4Φ16, 1Φ12  3Φ14 

B2  30  35  4Φ18, 1Φ12  3Φ16 

B3  30  40  4Φ18, 1Φ12  2Φ16, 1Φ18 

B3  30  40  4Φ18, 1Φ14  2Φ16, 1Φ18 

B4  35  40  4Φ18, 1Φ12  2Φ16, 1Φ18 

B5  40  40  4Φ20, 1Φ12  4Φ16, 1Φ12 

B6  40  45  4Φ20, 1Φ12  4Φ16, 1Φ12 

B7  40  50  4Φ20, 1Φ16  4Φ16, 1Φ12 

B8  40  50  4Φ20, 1Φ18  4Φ16, 1Φ12 

Table 2. Columns details 

colu
mn 

Dimensi
ons 

bars 
colu
mn 

Dimen
sions 

bars 

C1 30X30 8Φ14 C10 40X40 8Φ18 

C2 30X30 10Φ14 C11 40X40 10Φ8 

C3 30X30 12Φ14 C12 45X45 8Φ18 

C4 30X30 14Φ14 C13 45X45 8Φ18 

C5 35X35 8Φ14 C14 45X45 10Φ18 

C6 35X35 10Φ14 C15 45X45 14Φ18 

C7 35X35 12Φ14 C16 50X50 8Φ20 

C8 35X35 16Φ14 C17 50X50 10Φ20 

C9 40X40 6Φ18 C18 50X50 12Φ20 

Experience from past earthquakes shows that the 
behavior of reinforced concrete structures during an 
earthquake is not elastic, but is nonlinear and follows the 
hysteresis model (figure 3). According to different 
experimental concrete hysteresis behaviour, different 
models have been proposed, such as bilinear models, 
models with no loss of strength, stiffness reduction 
model, the model based on energy reduction and tri-
linear model [50-53]. In this paper, the tri-linear model 
was selected, which is the most complete model for the 
hysteresis and nonlinear behaviour of concrete. In this 
model, the degradation in stiffness and strength, 
pinching, and asymmetric slip for different values of 
model parameters is applicable. The values of the 
parameters of this model are selected empirically [54-
56]. 

After the frame analysis, different response 
parameters such as period, story shear, relative 
displacement, displacement, velocity, acceleration, and 
overall structural damage index can be used, some of 
which have been used in previous research [54, 55].  

4. Earthquake Database 
Earthquakes are selected from peer databases in such a 
way that is compatible with the building site condition. 
Table 3 shows the names and Peak Ground Accelerations 
(PGA) of the selected earthquakes. 

Table 3. Earthquakes pga 

seismic pga 

A41-2BZ000_AT2 0.188
A42-2BZ270_AT2 0.143
A43-2BZ-UP_AT2 0.207
A44-2IZT090_AT2 0.219
A45-2IZT180_AT2 0.176
A46-2IZT-UP_AT2 0.154
A47-2LCN000_AT2 0.777
A51-2LCN275_AT2 0.677
A52-2LCN-UP_AT2 0.678
A53-2TCU046-N_AT2 0.111
A54-2TCU046-V_AT2 0.119
A85-TAP103-W_AT2 0.128
A86-TCU046-N_AT2 0.111
A87-TCU046-V_AT2 0.119
A88-TCU046-W_AT2 0.128
A91-A-RN180_AT2 0.316
A92-A-RN180_AT2-1 0.316
A93-A-RN180_AT2-2 0.304
A94-A-RN270_AT2 0.205
A95-A-RN270_AT2-1 0.205
A55-2TCU046-W_AT2 0.128
A56-2TCU046-W_AT2 0.208
A57-2TCU046-W_AT2 0.443
A61-ABY000_AT2 0.119
A62-ABY090_AT2 0.148
A63-ABY-UP_AT2 0.089
A64-01-UP_AT2 0.068
A65-01090_AT2 0.51 
A66-01230_AT2 0.104
A67-01320_AT2 0.143
A71-BZ000_AT2 0.188
A96-A-RN270_AT2-2 0.205
A97-A-RN270_AT2-2 0.226
A101-A-RN-UP_AT2-1 0.226
A102-A-RN-UP_AT2- 0.226
A103-A-MTW000_AT2 0.122
A104-A-TW000_AT2-1 0.122
A105-A-TW000_AT2-2 0.122
A106-A-MTW090_AT2 0.179
A107-A-TW090_AT2-1 0.179
A72-BZ270_AT2 0.143
A73-BZ-UP_AT2 0.207
A74-IZT090_AT2 0.219
A75-IZT180_AT2 0.176
A76-IZT-UP_AT2 0.154
A77-LCN000_AT2 0.777
A81-LCN275_AT2 0.677
A82-LCN-UP_AT2 0.678
A83-TAP103-N_AT2 0.182
A84-TAP103-V_AT2 0.027
A111-A-TW090_AT 0.179
A112-A-MTW-_AT2 0.113
A113-A-MTW-AT2- 0.113
A114-A-MTW-AT2- 0.113
A115-ARM270_AT2 0.111
A116-ARM270_AT2- 0.111
A117-ARM360_AT2 0.128
A121-ARM360_AT2- 0.128
A122-ARM-UP_AT2 0.07 
A123-ARM-P_AT2-1 0.07 
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Figure 3. Sample of hysteresis pattern 

5. Data processing and results 
After non-linear dynamic analysis, the output data 
including the damage status at the ends of members will 
be displayed in the vector format. The number of 
members of this vector will be equal to 2m, for a frame 
with m members. For example, in the above frame which 
contains 75 columns and 60 beams, the array will have 90 
members. 

For each end, four states are considered, namely, no 
damage (0), cracking (1), the plastic hinge (2), and local 
failure (3). It can be seen that the total number of possible 
collapse – non-collapse scenarios are equal to, which 
would constitute the sample space.  

An artificial neural network (ANN) is a parallel-
structured information processing system that has certain 
functionality similar to the biological neural networks of 
the human brain, in that knowledge is the product of a 
learning process and finding the best weights for different 
connections between cells of a separate nerve. The neural 
network is characterized by its architecture, which 
represents the pattern of communication between nodes, 
as well as by its method for determining the relationships 
of weights and their active function. ANN consists of 
several nodes that are positioned according to a specific 
order. 

ANNs are divided into single-layer, double-layer, 
and multi-layer based on the number of layers. ANN The 
network is divided into forward and backward 
movements based on the direction of data entry and 
processing. Among these combinations, the multilayer 
forward motion networks known as multilayer 
perceptrons (MLPs) with the training post-diffusion 
learning algorithm provide the best performance with 
respect to the approximation of the input-output function 
as predictions. An MLP can have multiple layers. A 
typical MLP with a hidden layer used in this research is 
shown in Figure 4. 

The processor elements in each layer are called 
nodes or units or neurons. The first layer communicates 
between input variables called the input layer, and its 
constituent elements are called information-receiving 
neurons. The last layer communicates between the output 
variables, which are called the output layer, and its 
constituent elements are called output information 
neurons. The layer between these two layers is called the 

hidden layer, in which we may have more than one hidden 
layer in an MLP. Each node is associated with 
neighboring layer nodes. The parameters associated with 
each of these relationships are called weights [57]. The 
inputs in the neural network move from the input layer to 
the middle layer (hidden layer) and then to the output 
layer. When the network modifies its connection weights, 
the correction process begins with the output units and 
spreads back through the middle layers, and this process 
is repeated over and over again. The term post-release has 
been chosen according to this modification process [58]. 
Analysis of the frame, containing 60 analyses of the 
failure mode and 60 analyses of the non-failure mode, 60 
seismic acceleration time series has been used to train an 
artificial neural network.  

 

Figure 4. Sample of tree layer artificial neural network 

Therefore, we have 60 vectors for failure mode and 
60 vectors for the non - failure mode. The number of 
vectors increases for training the neural network using the 
Taguchi method [49]. The accuracy of predictions is 
shown in Table (3) in terms of the number of training 
samples.  As can be seen, with 100 samples an acceptable 
precision is achieved. The precision values for different 
sets of 100 data are shown in Table (4). 

Table 3.  Results of failure prediction 

precision Number of train and test 
samples (70% to 30%)

num

87.6 100 1
98.45 500 2
98.70 1000 3
98.90 1500 4
99.40 2000 5
99.60 2500 6
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Table 4.  Prediction results for 100 data samples 

precision Number of train and test 
samples (70% to 30%) 

num

88.3 100 1 
90.01 100 2 
88.65 100 3 

 

It is clear that with about 500 data samples 15-storey 
concrete structures condition can be predicted accurately 
[59]. 

Regarding to each of the categories of damage which 
Consists of no damage, cracking, hinge formation, and 
local collapse the weights 0, 1, 2, and 3 are assigned 
respectively. The total weight wcollaps of the collapse 

mode is equal to:  

. 2

wcollapsw ave collaps m
  

The weight of the above mentioned frame is 
obtained as follows. It should be noted that this weight 
means a collapse of the building. 

16.2
270

583
.

270





collapswave

wcollaps

 
Thus a very simple model is achieved, which 

determines the status of the structure and can be 
generalized to other frames. The frame is stable if its 
weight is lower than this number, and the structure will 
collapse otherwise. 

6. Conclusion 
This study proposes utilizing artificial intelligence for the 
prediction of failure in high-rise buildings. The existence 
of numerous structural elements in tall buildings results 
in inefficient and time-consuming nonlinear dynamic 
analyses using various seismic records to determine 
structural failure. The proposed method can rapidly 
predict the failure state of a structure using the results of 
dynamic analysis. According to the results of nonlinear 
dynamic analysis processing in the neural network 
algorithm, the following points can be concluded: 

1. Reinforced concrete frames are subject to 
certain patterns of failure. It means that certain 
compounds of the no-damage, cracking 
formation and local collapse can be used to 
determine the structural condition, as is shown 
in [59]. This finding is compatible with the 
previous work [55]. 

2. Processing the results in a neural network 
showed that the average weight of the structural 
failure can be obtained and used for all the cases. 

3. Using the Methods or algorithms like a neural 
network, models can be produced for engineers 
to identify the structural condition. 

Prediction of failure modes is one of the critical 
components in seismic design and rehabilitation of 
engineering structures. However, in order to achieve a 
general framework, it is necessary to consider portfolios 
of structures with significant variations in the structural 
parameters. Thus, this study must be diversified by 
considering the analysis of archetype structures or groups 
of representative structures to derive general conclusions. 
The following work may include regional portfolios of 
structures with multiple predictors that reflect the 
variation across a portfolio and consequently 
multidimensional prediction models. Namely, the 
proposed method can be tailored to structures across a 
region since they are dependent on not only earthquake 
characteristics, but also other significant uncertain 
parameters such as material, geometry, and aging 
parameters of the structure. 
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