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Abstract 

The high risk of operational facilities and processes in strategic industries has made the continuous effort of operations managers to 

improve system reliability an undeniable necessity. The existing knowledge in fuzzy sets limits the sum of degrees of membership and 

non-membership of each element to more than one. However, in the real world, many ill-defined or highly complex situations require 

more consideration that is careful. Unlike normal fuzzy sets, the spherical fuzzy set pays attention to the degree of uncertainty of each 

element in decision-making situations and the degree of membership and non-membership. In addition, to help generalize the decision 

set, it considers the sum of squares of each membership function to be less than or equal to one. Achieving the success function is 

determined by maximizing the degree of membership and minimizing the degree of non-membership and uncertainty of each objective 

function in the spherical fuzzy set. Therefore, this paper develops a new algorithm based on the spherical fuzzy set called the spherical 

fuzzy geometric programming problem in system reliability. To evaluate the performance of the proposed algorithm, a descriptive 

example in the field of the rolling process of aluminum products is modeled in the form of a dual-objective problem, including 

maximization of reliability and minimization of cost. 

Keywords: Reliability; Spherical fuzzy set; Geometric programming; Aluminum industry.

1. Introduction 

The concept of reliability was born in the late 1940s and 

early 1950s. Reliability was first used in communication 

and transportation [1]. However, the aerospace industry 

and military applications were the first applications for 

reliability. However, reliability is particularly important 

for other industries, such as the nuclear, steel, and 

aluminum industries, due to the limited supply of 

electrical energy and the financial damage and 

environmental pollution caused by the cessation of their 

activities [2]. 
Reliability and durability are the first criteria for 

defining product quality [3]. Reliability is the extension 

of quality in the time domain [4] and is interpreted as the 

probability of no failure or break during a certain time 

interval [5]. Reliability can be seen as the successful 

operation of the system in a specified and predetermined 

period and conditions. Since the reliability of a system is 

defined in terms of probability, it directly means that 

uncertainty must be managed to assess the reliability of 

any system. More or less, all reliability assessment 

methods follow different types of probability 

distributions to account for failure and repair rates. 

However, real-world systems rarely follow these 

probability distributions to fail or be repaired. Therefore, 

to evaluate the reliability of a system, the fuzzy set theory 

approach is used. 
Recently, in the theory of fuzzy sets, various types 

of uncertainty (degree of membership, non-membership, 

and uncertainty of elements) have been considered [6]. 

The basic theory of fuzzy sets was based on membership 

(or degree of belonging) and non-membership (or degree 

of non-belonging) with the sum of one. Degrees of 

membership and non-membership can be considered 

positive (success) and negative (failure) characteristics of 

a situation, respectively. Generally, the degree of 

membership is the same as the degree of success 

(acceptance/favorability), and the degree of non-

membership is the same as the degree of failure 

(rejection/opposition). 
Duffin and his colleagues introduced geometric 

programming in 1967 [7]. Various techniques have been 

developed to optimize geometric planning based on 

ordinary [8], intuitive [9], and neutrosophic [10] fuzzy 
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sets [11-13]. Ahmad et al. (2020) developed a modified 

Neutrosophic approach for multi-objective planning 

problems [14]. Decision problems can be separated into 

two general states, discrete and continuous. Multi-

indicator and multi-criteria decision-making problems are 

analyzed in a discrete mode. For the geometric 

programming problem in continuous mode, Kutlu 

Gündo˘gdu and Kahraman (2019) extended the ordinary, 

intuitive, and Pythagorean fuzzy set [15] to the spherical 

fuzzy set [16]. The naming of the spherical fuzzy set is 

based on the different degrees of membership of the 

elements of the set (i.e., positive, neutral, and negative). 

An example can explain intuitionistic fuzzy sets and 

Pythagorean fuzzy sets more clearly. For example, if in a 

multi-criteria decision problem, the degree of choosing an 

option is 0.6, rejecting an option is 0.7, and neutrality 

towards choosing/rejecting an option is 0.8, the 

uncertainty above sets cannot cover this situation. To deal 

with such cases, the spherical fuzzy set is a powerful 

decision-making tool (see [17]) and allows decision-

makers to enter neutral thoughts into decision-making 

processes. 

The biggest challenge facing system designers and 

employers is increasing system reliability without 

significantly increasing costs. In this article, a model has 

been developed that will have the ability to establish the 

desired balance of the system designer, employer, or 

contractor, and from the point of view that the 

improvement of system reliability by emphasizing the 

reliability of its components is considered at the same 

time as the system costs. It is a practical model. 

The rest of the paper is organized as follows: Section 

2 studies the spherical fuzzy geometric programming 

problem and the solution algorithm. Section 3 discusses 

the case study. Conclusion and future suggestions are also 

presented in Section 4. 

2. Spherical fuzzy geometric 

programming model 

The spherical fuzzy set results from developing and 

improving various classical fuzzy sets, such as ordinary 

fuzzy sets, intuitive fuzzy sets, and Pythagorean fuzzy 

sets. The difference between the spherical and other fuzzy 

sets is in introducing the degree of neutrality in decision-

making processes to reflect reality. The objective 

functions are evaluated with three different membership 

functions, i.e., membership functions, indeterminate or 

neutral, and non-membership, respectively. Therefore, if 

it is necessary to adopt the degree of uncertainty, using a 

spherical fuzzy set is crucial for decision-making. The 

importance of developing geometric programming in the 

spherical fuzzy environment is quite noticeable because 

it is impossible to model many engineering and 

management problems without considering the uncertain 

aspects of the decision scenarios. Therefore, the 

formulation of geometric programming problems in the 

spherical fuzzy environment is necessary to achieve 

optimal answers in various optimization fields, such as 

the reliability of production systems. 
 

2.1 The problem of geometric programming 

The geometric programming problem is one of the 

nonlinear programming problems and a special case of 

them. The geometric programming problem's 

characteristic is related to how the decision variables are 

displayed or involved. The following sentences are 

provided to determine the geometric type of the objective 

functions. It is easy to show the problem of geometric 

programming with the help of these technical terms. 

2.1.1 One-term geometric programming (Monomial) 

Any algebraic expression that consists of only one term is 

defined as a monomial. The one-sentence expression used 

in geometric programming has the same meaning, with 

the difference that in algebraic calculations, the variable 

cannot have a negative or fractional power. However, in 

geometric programming, variable power can be any real 

number (including fractional and negative). If x1, x2, ..., 

xn represent n real positive variables, equation 1 can be 

written to represent a monomial function with real value 

G of x. 

(1) 𝐺(𝑥) = 𝑐𝑥1
𝑎1𝑥2

𝑎2 … 𝑥𝑛
𝑎𝑛  

where c>0 and 𝑎𝑛 ∈ 𝑅. 

2.1.2 Polynomial geometric programming 

(polynomial) 

Any algebraic expression consisting of several terms is 

called a multi-sentence or polynomial. Hence, the sum of 

one or more monomials, i.e., any real-valued function G 

of x, is written as a polynomial function in equation 2. 

(2) 𝐺(𝑥) = ∑ 𝑐𝑖𝑥1
𝑎𝑖1𝑥2

𝑎𝑖2 … 𝑥𝑛
𝑎𝑖𝑛𝑚

𝑖=1   

2.1.3 positive polynomial geometric programming 

(posynomial)  

It is a real function of a posynomial's value G(x) if all 

coefficients ci>zero. Therefore, the sum of one or more 

monomials with ci>zero represents the posynomial 

(Equation 3). 

 (3) 𝐺(𝑥) = ∑ 𝑐𝑖𝑥1
𝑎𝑖1𝑥2

𝑎𝑖2 … 𝑥𝑛
𝑎𝑖𝑛𝑚

𝑖=1   

The formulation of the geometric programming 

problem based on the previous definitions is presented in 

Equation 4. 

 

(4) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐺0(𝑥) = ∑ 𝑐0𝑙 ∏ 𝑥
𝑗

𝜆0𝑙 𝑗

𝐽

𝑗=1

𝐾0

𝑙=1

                                      

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                                                  

𝑔𝑟(𝑥) = ∑ 𝑐𝑟𝑙 ∏ 𝑥
𝑗

𝜆𝑟𝑙 𝑗 ≤ 1    𝑥𝑗 > 0,

𝐽

𝑗=1

𝐾𝑟

𝑙=1+𝐾𝑟−1

 

𝑗 = 1,2, … , 𝐽 
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Where crl>zero and λrlj are real numbers. The 

problem included in equation 4 is a constrained 

polynomial geometric programming problem. Each of the 

polynomial constraints includes a different number of 

conditions and is denoted by Kr for all r=0, 1, 2, ..., l. 

2.2 The multi-objective geometric 

programming problem 

Real-world optimization problems rarely have a 

single objective. In fact, it is very common to have 

multiple goals in everyday life. For example, the 

transportation problem seeks to simultaneously optimize 

conflicting objectives such as cost, time, profit, etc. 

Therefore, multi-objective optimization techniques are 

one of the main concerns for solving this group of 

problems. Searching for a general solution that satisfies 

different objective functions is very challenging. 

However, a compromise solution is somewhat 

acceptable. However, the development of various multi-

objective optimization techniques is a foundation for 

future research in this field. The nature of multi-objective 

geometric planning problems is often trivial. It exists in 

various real-world problems such as inventory control, 

system reliability, etc., with multiple objectives such as 

quality, time, cost, etc. Many researchers in MOGPP have 

made significant research contributions. Das et al. (2000) 

used the geometric programming technique to solve the 

multi-option inventory model [18]. Mahapatra and Roy 

(2009) used the multi-objective geometric programming 

technique to solve a single-container and multi-container 

maintenance model under uncertainty [19]. Islam and 

Roy (2006) used fuzzy multi-objective geometric 

programming techniques in the transportation problem 

[20]. 

The multi-objective geometric programming 

problem is mathematically formulated in Equation 5. 

 

(5) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐺𝑘(𝑥) = ∑ 𝑐𝑘𝑖
0 ∏ 𝑥𝑥

𝜆𝑘𝑖𝑟
0

𝑛
𝑟=1

𝑇𝑘
0

𝑖=1   

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑔𝑘(𝑥) = ∑ 𝑐𝑘𝑠 ∏ 𝑥𝑟
𝜆𝑘𝑠𝑟 ≤ 1        𝑥 > 0,   𝑘 =𝑛

𝑟=1
𝑇𝑘
𝑠=1

1,2, … , 𝑚  

Where 𝑐𝑗𝑖
0 > 𝑧𝑒𝑟𝑜, 𝑐𝑘𝑠 > 𝑧𝑒𝑟𝑜, 𝑎𝑗𝑖𝑟

0 , and 𝑎𝑗𝑖𝑟  are real 

numbers. Gk (x) is the kth objective function. The 

function gk (x) is a real-valued function, and x= (x1, x2, ..., 

xr) represents a set of decision variables. 
It should be noted that a spherical fuzzy geometric 

planning problem is discussed in the spherical fuzzy 

decision-making environment. In the spherical fuzzy set 

with three membership functions of correctness, 

indeterminacy, and incorrectness, the sum of squares of 

all three degrees of membership should be between [0,1]. 

Nevertheless, the spherical fuzzy geometric 

programming problem is a more complete and convenient 

optimization tool than other geometric programming 

optimization techniques due to the presence of an 

indefinite membership degree when dealing with multi-

objective decision problems. 

According to Bellman and Zadeh (1970), a fuzzy 

decision-making set (D) consists of objectives (Z) and 

constraints (C) in a fuzzy environment [8]. The decision-

making set is often used in various decision-making 

processes, and it can be expressed as equation 6: 
 (6) 𝐷 = (𝑍 ∩ 𝐶)  

Therefore, the spherical fuzzy decision set can be 

adapted based on the fuzzy set theory for the spherical 

fuzzy environment. With this account, the spherical fuzzy 

decision set (Dsf), including spherical fuzzy objectives 

(Zo) and spherical fuzzy constraints (Co), is presented in 

equation 7. 

(7) 
𝐷𝑠𝑓 = (⋂ 𝑍𝑜

𝑂
𝑜=1 )(⋂ 𝐶𝑗

𝐽
𝑗=1 ) =

(𝑥, 𝑇𝐷(𝑥), 𝐼𝐷(𝑥), 𝐹𝐷(𝑥))  

Where TD (x) is the correct membership function, ID 

(x) is the indeterminate membership function, and FD (x) 

is the incorrect membership function in the spherical 

fuzzy decision set Dsf (Equations 8 to 10). 
 (8) 𝑇𝐷(𝑥) = {

𝑇𝐷1(𝑥), 𝑇𝐷2(𝑥) , 𝑇𝐷3(𝑥), … , 𝑇𝐷(𝑥) 

𝑇𝐶1(𝑥), 𝑇𝐶2(𝑥) , 𝑇𝐶3(𝑥), … , 𝑇𝐶𝐽(𝑥) 
}     ∀𝑥 ∈ 𝑋  

(9) 𝐼𝐷(𝑥) = {
𝐼𝐷1(𝑥), 𝐼𝐷2(𝑥) , 𝐼𝐷3(𝑥), … , 𝐼𝐷𝑜(𝑥) 

𝐼𝐶1(𝑥), 𝐼𝐶2(𝑥) , 𝐼𝐶3(𝑥), … , 𝐼𝐶𝐽(𝑥) 
 }       ∀𝑥 ∈ 𝑋  

(10) 𝐹𝐷(𝑥) = {
𝐹𝐷1(𝑥), 𝐹𝐷2(𝑥) , 𝐹𝐷3(𝑥), … , 𝐹𝐷𝑜(𝑥) 

𝐹𝐶1(𝑥), 𝐹𝐶2(𝑥) , 𝐹𝐶3(𝑥), … , 𝐹𝐶𝐽(𝑥) 
 }    ∀𝑥 ∈ 𝑋  

For the marginal evaluation of each objective, first, 

the upper and lower bound are calculated separately for 

each objective function. If X1, X2, ..., and Xo are the 

decision variables obtained from solving the problem, the 

resulting matrix is according to Table 1. 
Table 1.  Payoff matrix 

𝒁𝒐 …  𝐙𝟐  𝒁𝟏   

𝑍𝑜(𝑋1) …  𝑍2(𝑋1)  𝑍1(𝑋1)  𝑿𝟏 

𝑍𝑜(X2) …  𝑍2(X2)  𝑍1(X2)  𝑿𝟐 

… …  …  …  … 

𝑍𝑜(X𝑜) …  𝑍2(X𝑜)  𝑍1(X𝑜)  𝑿𝒐 

Equations 11 and 12 obtain the upper bound and 

lower bound mathematical expressions if these values are 

substituted in each objective function. 
 (11) 𝑈𝑜 = 𝑚𝑎𝑥{𝑍𝑜(𝑋𝑜)}   ∀𝑜 = 1, 2, … , 𝑂 

(12) 𝐿𝑜 = 𝑚𝑖𝑛{𝑍𝑜(𝑋𝑜)}   ∀𝑜 = 1, 2, … , 𝑂 

Where Uo and Lo represent the upper and lower 

bound of the Oth objective, respectively, the upper and 

lower bound for membership functions of correctness, 

non-determination, and incorrectness of each target in the 

spherical fuzzy environment is obtained using Equation 

13. 
 𝐿𝑜

𝑇 = 𝐿𝑜                         

𝐿𝑜
𝐼 = 𝐿𝑜

𝑇                          
  

𝑈𝑜
𝑇 = 𝑈𝑜                               

𝑈𝑜
𝐼 = 𝐿𝑜

𝑇 + 𝑝𝑜(𝑈𝑜
𝑇 − 𝐿𝑜

𝑇)  
                             

  

(13) 𝑈𝑜
𝐹 = 𝑈𝑜

𝑇 𝐿𝑜
𝐹 = 𝐿𝑜

𝑇 + 𝑞𝑜(𝑈𝑜
𝑇 − 𝐿𝑜

𝑇) 

Where po and qo are real numbers and are 

predetermined by the decision maker so that po, qo ∈ (0, 

1). 

First case) Suppose the objective function is of the 

maximization type. In that case, the membership 

functions of correctness, indeterminacy, and 

incorrectness for each objective in the spherical fuzzy 

environment are obtained by equations 14, 15, and 16, 

respectively. 
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(14) 𝑇𝐷(𝑥) = {

1                                  𝑖𝑓   𝑍𝑜(𝑥) ≤ 𝐿𝑜
𝑇

1 −
𝑍𝑜(𝑥)−𝐿𝑜

𝑇

𝑈𝑜
𝑇−𝐿𝑜

𝑇   ,               𝑖𝑓  𝐿𝑜
𝑇 ≤ 𝑍𝑜(𝑥) ≤ 𝑈𝑜

𝑇

 0                                𝑖𝑓  𝑍𝑜
𝑇 ≥ 𝑈𝑜

𝑇  

  

(15) 𝐼𝐷(𝑥) = {

1                                     𝑖𝑓   𝑍𝑜(𝑥) ≤ 𝐿𝑜
𝐼

1 −
𝑍𝑜(𝑥)−𝐿𝑜

𝐼

𝑈𝑜
𝐼 −𝐿𝑜

𝐼   ,                𝑖𝑓  𝐿𝑜
𝐼 ≤ 𝑍𝑜(𝑥) ≤ 𝑈𝑜

𝐼

 0                                  𝑖𝑓  𝑍𝑜
𝐼 ≥ 𝑈𝑜

𝐼   

  

(16) 𝐹𝐷(𝑥) = {

1                                  𝑖𝑓   𝑍𝑜(𝑥) ≥ 𝑈𝑜
𝐹

1 −
𝑈𝑜

𝐹−𝑍𝑜(𝑥)

𝑈𝑜
𝐹−𝐿𝑜

𝐹   ,                 𝑖𝑓  𝐿𝑜
𝐹 ≤ 𝑍𝑜(𝑥) ≤ 𝑈𝑜

𝐹

 0                               𝑖𝑓  𝑍𝑜
𝑇 ≤ 𝐿𝑜

𝑇   

  

Second case) If the objective function is of the 

minimization type, the membership functions of 

correctness, non-determination, and incorrectness for 

each objective in the spherical fuzzy environment are 

obtained by equations 17, 18, and 19, respectively. 

(17) 𝑇𝐷(𝑥) = {

0,                                  𝑖𝑓   𝑍𝑜(𝑥) ≤ 𝐿𝑜
𝑇

1 −
𝑈𝑜

𝑇−𝑍𝑜(𝑥)

𝑈𝑜
𝑇−𝐿𝑜

𝑇   ,               𝑖𝑓  𝐿𝑜
𝑇 ≤ 𝑍𝑜(𝑥) ≤ 𝑈𝑜

𝑇

 1,                                   𝑖𝑓  𝑍𝑜
𝑇 ≥ 𝑈𝑜

𝑇  

  

(18) 𝐼𝐷(𝑥) = {

0,                                    𝑖𝑓   𝑍𝑜(𝑥) ≤ 𝐿𝑜
𝐼

1 −
𝑈𝑜

𝐼 −𝑍𝑜(𝑥)

𝑈𝑜
𝐼 −𝐿𝑜

𝐼   ,                𝑖𝑓  𝐿𝑜
𝐼 ≤ 𝑍𝑜(𝑥) ≤ 𝑈𝑜

𝐼

 1,                                    𝑖𝑓  𝑍𝑜
𝐼 ≥ 𝑈𝑜

𝐼   

  

(19) 

𝐹𝐷(𝑥) = {

0,                                        𝑖𝑓   𝑍𝑜(𝑥) ≤ 𝑈𝑜
𝐹

1 −
𝑍𝑜(𝑥)−𝐿𝑜

𝐹

𝑈𝑜
𝐹−𝐿𝑜

𝐹   ,                 𝑖𝑓  𝐿𝑜
𝐹 ≤ 𝑍𝑜(𝑥) ≤ 𝑈𝑜

𝐹

1,                                        𝑖𝑓  𝑍𝑜
𝑇 ≤ 𝐿𝑜

𝑇   

  

Where the preservation of 𝑼𝒐
(𝟎)

≠ 𝑳𝒐
(𝟎)

 is required for 

all purposes. If the relationship 𝑼𝒐
(𝟎)

= 𝑳𝒐
(𝟎)

 holds for each 

objective, then the membership value will be one. 

Intuitively, our motivation is to maximize the degree of 

correct membership and not determine and minimize the 

degree of incorrect membership for spherical fuzzy 

objectives and constraints. The general formula of the 

spherical fuzzy geometric programming model for multi-

objective problems is equation 20. 

(20) 

𝑀𝑎𝑥  𝑚𝑖𝑛
𝑜=1,2,…,𝑂

𝑇𝑜(𝑍𝑜(𝑥))
2

  

𝑀𝑖𝑛  𝑚𝑎𝑥
𝑜=1,2,…,𝑂

𝐼𝑜(𝑍𝑜(𝑥))
2

  

𝑀𝑖𝑛  𝑚𝑎𝑥
𝑜=1,2,…,𝑂

𝐹𝑜(𝑍𝑜(𝑥))
2

  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝑔𝑖(𝑥) ≤ 𝑏𝑖 , ∀ 𝑖 = 1,2, … , 𝐼1,  

𝑔𝑖(𝑥) ≥ 𝑏𝑖 , ∀ 𝑖 = 𝐼1 + 1, 𝐼1 + 2, … , 𝐼2,  

𝑔𝑖(𝑥) = 𝑏𝑖 , ∀ 𝑖 = 𝐼2 + 1, 𝐼2 + 2, … , 𝐼  

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑗)  ∈ 𝑋, 𝑥 ≥ 0 

𝑇𝑜(𝑍𝑜(𝑥))
2

≥ 𝐼𝑜(𝑍𝑜(𝑥))
2
𝑇𝑜(𝑍𝑜(𝑥)) و

2
≥

𝐹𝑜(𝑍𝑜(𝑥))
2

  

0 ≤ 𝑇𝑜(𝑍𝑜(𝑥))
2

+ 𝐼𝑜(𝑍𝑜(𝑥))
2

+ 𝐹𝑜(𝑍𝑜(𝑥))
2

≤ 1  

The above mathematical model (equation 11) can be 

formulated as equation 21 by using auxiliary variables. 

𝑀𝑎𝑥  𝛼2  
𝑀𝑖𝑛  𝛽2  

𝑀𝑖𝑛  𝛾2  
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  
𝑇𝑜(𝑍𝑜(𝑥))

2
≥ 𝛼2, 𝐼𝑜(𝑍𝑜(𝑥))

2
≤ 𝛽2, 𝐹𝑜(𝑍𝑜(𝑥))

2
≤

𝛾2  
𝑔𝑖(𝑥) ≤ 𝑏𝑖 , ∀ 𝑖 = 1,2, … , 𝐼1,  
𝑔𝑖(𝑥) ≤ 𝑏𝑖 , ∀ 𝑖 = 𝐼1 + 1, 𝐼1 + 2, … , 𝐼2,  
𝑔𝑖(𝑥) = 𝑏𝑖 , ∀ 𝑖 = 𝐼2 + 1, 𝐼2 + 2, … , 𝐼  
𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑗)  ∈ 𝑋, 𝑥 ≥ 0  
𝛼2 ≥ 𝛽2, 𝛼2 ≥ 𝛾2 , 0 ≤ 𝛼2 + 𝛽2 + 𝛾2 ≤ 1  

(21) 𝑇𝑜(𝑍𝑜(𝑥))
2

≥ 𝐼𝑜(𝑍𝑜(𝑥))
𝑇𝑜(𝑍𝑜(𝑥)) و2

2
≥ 𝐹𝑜(𝑍𝑜(𝑥))

2 

By solving the optimization model presented above 

(Equation 21), the optimal solution for the spherical fuzzy 

geometric programming problem is obtained. 

The step-by-step algorithm designed to solve the 

spherical fuzzy geometric programming problem 

(SFGPP) is displayed in Figure 1. 

 

Figure 1. SFGP problem-solving process 

3. A case study 

The case study of this research is related to a company 

producing aluminum sheets and foil. This company 

operates in Hamadan province under the "Razan-Saaf 

Aluminum Company" brand name. Razan-Saaf Company 

was established in 2016. The company's products 

(aluminum foils) are produced in different alloys for 

industrial use and composite multi-layer wrappers for 

packing all kinds of food, medicine, cosmetics, and 

construction. As the only foiling company in the country's 

west, Razen-Saaf Group plays a key role in Iran's 

downstream aluminum industries. In 2022, Razan-Saaf 

had 28% of the market share (www.razan-saaf.com). 

Aluminum foil is a type of flat-rolled aluminum. The 

thickness of the aluminum foil is from 5 to 150 

micrometers (from 0.005 to 0.15 mm). Flat-rolled 

aluminum products more than 0.15 mm thick include 

aluminum tape, sheets, and plates. The production of 

aluminum foil can be done in four main stages: (1) 

foundry, (2) hot rolled, (3) cold rolled, and (4) cut and 

rolling, summarized. 

Preparation of the result matrix

Determination of upper and lower bounds 
for positive, neutral and negative 

membership functions

Converting spherical fuzzy membership 
functions to linear membership functions

Formulating SFGPP

Solve the SFGPP model and get the results
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The usual technology for producing flat aluminum 

rolled products (such as sheet, strip and foil) begins with 

casting molten aluminum into large trapezoidal molds 

(aluminum slabs) by special vertical casting machines. 

Aluminum ingots are cooled directly from cold casting to 

room temperature. The ingot is then transferred to the 

pressure furnace to be heated above the recrystallization 

temperature (about 500℃) and ready for the hot rolling 

stage. This process is called annealing, and it is done to 

distribute and distribute the compounds of different alloys 

evenly on the surface of the ingot so that the ingot has a 

homogeneous structure. After finishing the hot rolling 

stage, the coils enter the cold rolling stage to reduce the 

thickness. Cold aluminum strips can be rolled in all kinds 

of rolling factories. 
2
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Figure 2. Types of mills for aluminum strip rolling 

For rolls weighing 10 to 15 tons, one-way (non-

reversible) rolling rollers are usually used (Figure 2-a). A 

single-cage reversible roller is used for small coils 

weighing up to 5 tons (Figure 2-b). For large rolls 

weighing more than 25 tons and for a large volume of 

production, several rollers are used in series (back to 

back) in the rolling mill (Figure 2-p). 

Razan-Saaf Company is engaged in a continuous 

improvement program targeting its aluminum cold rolling 

performance to achieve maximum customer satisfaction 

and compete in the market. In this regard, it is 

implementing the backup mill model and has targeted an 

increase in market share by 35% for the 1404 horizon by 

increasing production reliability. Therefore, upgrading 

the cold rolling process to increase the production volume 

and reduce the production time is on the agenda of the 

company's managers. Creating a corporate competitive 

advantage can happen with the right support mill. 

Management was interested in this as part of their 

mission. 

In the following, the proposed spherical fuzzy 

geometric programming model is used in solving the 

reliability optimization problem of the cold rolling 

system. First, the problem is written in the AMPL 

language and solved using Knitro 0.5.0 global 

optimization solvers "online facility provided by the 

University of Wisconsin" [21]. 

The aluminum cold rolling process in the case study 

with three support cages in series is considered a system 

reliability optimization problem. In fact, the aluminum 

cold rolling unit follows a reliability series system with 

three components. Suppose that Ri (i=1,2,3) represents 

the individual reliability of mill i of the series system. 

Similarly, Rs (R1, R2, R3) and Cs (C1, C2, C3) are the 

reliability and costs of all three mills in the series system. 

The company's management intends to maximize the 

reliability of the aluminum cold rolling system and 

minimize the total cost associated with all three 

components. Degree of membership (aR), degree of 

uncertainty (dR), and degree of non-membership (rR) are 

conditions of system reliability. At the same time, the 

degree of membership (ac), degree of indeterminacy (dc), 

and degree of non-membership (rc) are the constraints of 

the system cost, respectively. The satisfaction objective 

value for system reliability and cost is denoted by R0 and 

C0, respectively. Table 2 presents the data related to the 

problem. 
 

Table 2.  Input data 

𝑅0  𝑟𝑅  𝑑𝑅  𝑎𝑅  

0.3 0.5 0.24 0.3 

𝐶0  𝐶1  𝐶2  𝐶3  

100 40 40 45 

𝑑𝑐  𝑟𝑐  𝑎𝑐   

18 40 24  

Therefore, the geometric programming problem can 

be formulated as equation 22. 

(22) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐺1 = ∏ 𝑅𝑖 = 𝑅1𝑅2𝑅3
3
𝑖=1  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐺2 = ∏ 𝐶𝑖𝑅𝑖
𝑎𝑖3

𝑖=1  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

0 < 𝑅𝑖 ≤ 1 ; 𝑖 = 1,2,3  

The correct membership functions for reliability 

objective functions and spherical fuzzy cost are obtained 

as equations 23 and 24, respectively. 

(23) 

𝑇𝐷(𝐺1(𝑥)) =

{

1,                    𝑖𝑓   𝐺1(𝑥) ≤ 0.3

1 −
𝐺1(𝑥)−0.3

0.3
  ,   𝑖𝑓 0.3 ≤ 𝐺1(𝑥) ≤ 0.3 + 0.3

 0,                       𝑖𝑓  𝐺1(𝑥) ≥ 0.3 + 0.3 

  

(24) 

𝑇𝐷(𝐺2(𝑥)) =

{

1,                    𝑖𝑓   𝐺2(𝑥) ≤ 100

1 −
𝐺2(𝑥)−100

24
  ,    𝑖𝑓 100 ≤ 𝐺2(𝑥) ≤ 100 + 24

 0,                     𝑖𝑓  𝐺2(𝑥) ≥ 100 + 24 

  

 

http://aluminium-guide.ru/wp-content/uploads/2015/11/nereversnyy-prokatnyy-stan2.jpg
http://aluminium-guide.ru/wp-content/uploads/2015/11/stan-goryachey-prokatki-nereversnyy.jpg
http://aluminium-guide.ru/wp-content/uploads/2015/11/tandemnyy-prokatnyy-stan.jpg
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The uncertainty membership functions are obtained 

as Equations 25 and 26 for the objective functions of 

reliability and spherical fuzzy cost, respectively. 

(25) 

𝐼𝐷(𝐺1(𝑥)) =

{

0,            𝑖𝑓   𝐺1(𝑥) ≤ 0.24

1 −
0.3−𝐺1(𝑥)

0.24
  ,   𝑖𝑓  0.3 ≤ 𝐺1(𝑥) ≤ 0.3 + 0.24

               1,         𝑖𝑓  𝐺1(𝑥) ≥ 0.3 + 0.24  

  

(26) 

𝐼𝐷(𝐺2(𝑥)) =

{

0,               𝑖𝑓   𝐺2(𝑥) ≤ 100

1 −
100−𝐺2(𝑥)

18
  ,     𝑖𝑓  100 ≤ 𝐺2(𝑥) ≤ 100 + 18

     1,               𝑖𝑓  𝐺2(𝑥) ≥ 100 + 18  

  

The incorrect membership functions for reliability 

objective functions and spherical fuzzy cost are obtained 

as equations 27 and 28, respectively. 

 

(27) 

 

𝐹𝐷(𝐺1(𝑥)) =

{

1,                    𝑖𝑓  𝐺1(𝑥) ≥ 0.3

1 −
0.3−𝐺1(𝑥)

0.5
  ,   𝑖𝑓  0.3 ≤ 𝐺1(𝑥) ≤ 0.3 + 0.5

            0,        𝑖𝑓  𝐺1(𝑥) ≤ 0.3 + 0.5  

  

(28) 

𝐹𝐷(𝐺2(𝑥)) =

{

1,                 𝑖𝑓  𝐺2(𝑥) ≥ 100

1 −
100−𝐺2(𝑥)

40
  , 𝑖𝑓  100 ≤ 𝐺2(𝑥) ≤ 100 + 40

  0,                𝑖𝑓  𝐺2(𝑥) ≤ 100 + 40  

  

Now the spherical fuzzy geometric optimization 

model for the research problem is formulated as equation 

29. 
𝑀𝑎𝑥(𝛼2 − 𝛽2 − 𝛾2)  
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝑇1(𝐺1(𝑥))
2

≥ 𝛼2, 𝐼1(𝐺1(𝑥))
2

≤ 𝛽2, 𝐹1(𝐺1(𝑥))
2

≤ 𝛾2  

𝑇2(𝐺2(𝑥))
2

≥ 𝛼2, 𝐼2(𝐺2(𝑥))
2

≤ 𝛽2, 𝐹2(𝐺2(𝑥))
2

≤ 𝛾2  

0 < 𝑅𝑖 ≤ 1; 𝑖 = 1,2,3  

(29) 𝛼2 ≥ 𝛽2 , 𝛼2 ≥ 𝛾2 , 0 ≤ 𝛼2 + 𝛽2 + 𝛾2  ≤ 1  

In addition to the spherical fuzzy geometric 

programming problem technique, the present problem 

was also solved with two other methods, including (1) the 

intuitive fuzzy geometric programming problem and (2) 

the neutrosophic fuzzy geometric programming problem. 

The problem-solving results using three techniques, 

SFGPP, IFGPP, and NFGPP, are summarized in Table 3. 

The results presented in Table 3 show that the proposed 

SFGPP approach's performance is better than the 

previous two approaches. 
Table 3.  Optimal solution based on IFGPP, NFGPP, and 

SFGPP methods 

Method   
IFGPP NFGPP SFGPP   

0.523472 0.613664 0.618454 𝑹𝒔 
Objective 

functions 

78.766 80.372 81.254 𝑪𝒔  

0.771292 0.824809 0.835402 𝑹𝟏 

 
Decision 

variables 

0.875617 0.863345 0.862134 𝑹𝟐  

0.775105 0.861773 0.858712 𝑹𝟑  

The results of this study show that reliability and 

system costs have a direct relationship with each other. 

This means that improving the reliability of the system 

requires more money. The lowest cost is related to the 

IFGPP approach, with a value of 78.766, which has lower 

reliability (0.523) than other approaches. However, the 

highest cost (81.254) has been made for the SFGPP 

approach, which has reached a reliability of 0.618. To 

explain the obtained results further, it can be said that 

various types of incorrect human tasks in the process-

based system can lead to the failure of production 

machinery, interruption of the production chain, and even 

catastrophic events. Therefore, for decision-makers in 

system safety and reliability analysis, it is vital to evaluate 

human system reliability concerning the interaction 

between humans, the environment, and machines; 

meanwhile, minimizing the related uncertainty is an 

important task. Therefore, the advanced SFGPP method 

can sufficiently identify the reliable index of a complex 

system (human-environment-machine) and help 

decision-makers to prioritize critical items. Figure 3 

displays the results of the solution approaches for easier 

understanding. 

 

Figure 3. Comparison of system reliability and cost in solution 

approaches 

4. Conclusion 

There are different methods to solve mathematical 

optimization problems. However, for non-linear 

mathematical problems, the geometric programming 

method is generally more efficient compared to other 

mathematical programming methods, such as non-linear 

programming. The geometric programming problem's 

structure differs from other general mathematical 

programming problems, and they include polynomial 

expressions in their objective functions. In an uncertain 

environment, a different formulation of geometric 

planning in decision-making processes can be beneficial 

due to considering the degree of uncertainty for the set 

elements. Recently, the spherical fuzzy set has 

significantly contributed to decision-making problems by 

creating enough opportunities to obtain false and 

contradictory information. Therefore, this paper 

examines the spherical fuzzy geometric programming 

problem under a spherical fuzzy environment, which 

includes maximizing the positive (correct) membership 

function and minimizing the neutral (indeterminate) and 
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negative (incorrect) membership functions in the 

spherical fuzzy decision set. The sum of squares less than 

or equal to one is a constraint that applies to all 

membership functions. The cold rolling process in 

producing aluminum sheets and foil was studied to 

demonstrate the application of the spherical fuzzy 

geometric programming problem. In optimizing the 

reliability of the aluminum cold rolling system, the 

performance of the SFGPP technique was better than 

IFGPP and NFGPP techniques. This result is related to 

the greater adaptation of the proposed approach to the 

actual decision-making conditions. 
Many real-world problems, such as product pricing, 

inventory control, system reliability, etc., are put into the 

geometric programming model. In addition, the proposed 

algorithm based on the spherical fuzzy set provides 

special flexibility while solving the geometric 

programming problem with polynomial objectives. In 

addition, the designed optimization framework can help 

decision-makers handle the degree of uncertainty while 

solving various real-life problems. Therefore, many 

engineering and management problems can be 

formulated as spherical fuzzy geometric programming 

problems. 
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