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Abstract 

The reliability analysis of multi-state phased mission systems (MS-PMS) is a crucial area of study in systems engineering and reliability 

engineering. An MS-PMS consists of multiple phases where the system can exist in different operational states in each phase. The 

system transitions from one phase to the next based on the success or failure of the current phase. The reliability of an MS-PMS depends 

on the reliabilities of each phase and the transition probabilities between system states across phases. By thoroughly analyzing the 

reliability of each phase and accurately estimating the probabilities of state transitions, the overall system reliability can be determined. 

Several methods are used for MS-PMS reliability analysis, such as Markov models, Universal Generating Function (UGF) technique, 

Petri nets, fault trees, etc. This study evaluated the reliability analysis of an MS-PMS with a combination of Markov and UGF 

techniques. This method is defined as a combined technique in the literature. The Markov modeling approach represents the system as 

a set of states with transitions between states based on the failure and repair of components. In addition, the UGF technique converts 

the Markov model into a set of algebraic equations that can be solved to obtain reliability metrics such as system availability, mean 

time to failure, etc. In this research, a three-phased multi-state repairable system was discussed. Transition diagrams were created based 

on components for all phases, and the resulting differential equations were solved. Then, the UGF method was applied according to 

the system structure of the phases, and the reliability metrics of the system were obtained. 

Keywords: Markov; Multi-state systems; Phased mission; Repairable; UGF.

1. Introduction 

Phased Mission System (PMS) is a reliability concept that 

has gained significant attention recently. It is based on 

dividing a mission into different phases, each with its 

requirements and objectives. The use of PMS is becoming 

increasingly popular in various industries, including 

aviation, space, defense, and automotive. It is believed to 

be an effective tool for enhancing system reliability by 

identifying potential issues early on and addressing them 

before they become significant problems. NASA first 

introduced the concept of PMS in the 1970s for space 

missions. Since then, it has been widely adopted and used 

in various industries. Several studies have been 

conducted to evaluate the effectiveness of PMS in 

increasing system reliability. Several methods are used in 

the literature to obtain reliability analysis of phased 

mission systems. [1] proposed a methodology for 

analyzing the reliability of phased mission systems. Its 

approach assumes that the system can be divided into 

independent phases, each with its own reliability 

parameters. The methodology proposed in [1] provides a 

useful framework for evaluating the reliability of 

complex systems that pass through multiple working 

phases. The model allows for identifying critical phases 

to improve the overall system reliability and optimize 

maintenance and repair activities. [2] conducted a study 

on the reliability analysis of phased mission systems 

using Binary Decision Diagrams (BDDs) and aimed to 

develop a new model that considers a system's different 

phases and dependencies during a mission. The proposed 

model uses BDDs to represent the possible states of the 

system and the transitions between them, which provides 

a more accurate estimation of the system's reliability. [3] 

proposed a new method for the reliability analysis of non-

repairable phased mission systems using Multiple-valued 

Decision Diagrams (MDDs) and aimed to evaluate the 

system's reliability more efficiently and accurately by 

considering the dependencies between system 

components and different phases of the mission. [4] has 

proposed a new reliability model that considers the 

dependencies between different phases of a mission and 

system components, allowing for the estimation of the 

system's reliability and error scope at each mission phase. 

https://www.ijrrs.com/article_174799.html
https://www.ijrrs.com/
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://orcid.org/0000-0002-2161-1981
https://orcid.org/0000-0001-7452-3240
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Additionally, it can be used to identify the system's 

critical components. [5] has proposed a non-

homogeneous Markov model for reliability analysis of 

phased mission systems. The model aims to more 

accurately estimate the reliability of a system by 

considering the changes in stress levels and failure rates 

of the system during different phases of a mission. The 

proposed model has been shown to effectively estimate a 

system's reliability at each phase of the mission and can 

be used to identify the system's critical components. 

However, considering the non-homogeneous nature of 

the system it allows for a more comprehensive evaluation 

of its reliability.  

In Phased Mission Systems, each component can 

exhibit multiple performance levels or states between 

phases and within the same phase. These systems are 

called Multi-State Phased Mission Systems (MS-PMS). 

Reliability analysis methods for MS-PMS are used to 

evaluate the reliability of systems with multiple possible 

states and transitions between phases during a mission. 

These methods consider the possible transitions between 

different phases and states of the system to estimate its 

reliability. Various models and methods have been 

proposed for the reliability analysis of MS-PMS, 

including Binary Decision Diagrams (BDDs), Multi-

Valued Decision Diagrams (MDDs), Markov models, 

and other methods [6-9]. 

In addition to the methods used in calculating the 

reliability of multi-state systems in the literature, Markov 

and UGF methods are considered in combination. The 

combined method was first introduced in [10]. The 

universal generating function allows for the simple 

algebraic manipulation of the production functions of a 

multi-state system with components connected in series 

or parallel by obtaining the individual production 

function of the multi-state component [11]. This study 

applied the combined Markov and UGF technique to 

obtain reliability measures for repairable multi-state 

phased mission systems. The application of the combined 

method is demonstrated for a three-component, three-

phase, and three-state repairable system. 

2. Repairable Systems 

Systems can be classified as repairable and non-

repairable systems. The reliability analysis of repairable 

systems is an important research area for designing and 

developing critical systems used in engineering, aviation, 

defense, and transportation. A repairable system is one in 

which, after failing to perform at least one of its intended 

missions, it is possible to continue the system's operation 

by repairing the component that caused the failure instead 

of replacing the entire system [12]. The reliability of these 

systems depends on various factors, such as the frequency 

and duration of repair events, the effectiveness of the 

repair process, and the quality of the repair materials 

used. 

Different models and methods have been proposed 

in the literature for reliability analysis of repairable 

systems, including Renewal Theory, Markov Model, and 

Weibull Distribution. These methods estimate the 

system's reliability, identify critical components, 

optimize its structure to increase reliability, and ensure 

efficient operation. Renewal Theory is a probabilistic 

model used to analyze the behavior of a repairable 

system, especially the frequency, and duration of repair 

events. The model includes estimating the system's 

failure and repair rates and finding the probability 

distribution of the time between failures. Markov model 

is another method used in the reliability analysis of 

repairable systems, which involves representing the 

system as states and transitions and analyzing the 

probability of transitioning between these states. Weibull 

distribution is another method used in the reliability 

analysis of repairable systems, which is used to estimate 

the probability distribution of time between failures and 

identify the system's critical components. Reliability 

analysis of repairable systems is a way to ensure the safe 

and efficient operation of systems critical to mission 

success. By using these methods and models, repairable 

systems can be designed, developed, and sustained to the 

highest possible standards, reducing the risk of failure and 

improving system performance [13-15]. 

3. Multi-state Systems 

A set of related components designed for a specific 

purpose, working together or within a single unit, is 

defined as a system. Reliability, conversely, is the 

probability of a product/system performing its intended 

function adequately during the intended period under the 

encountered operating conditions. Reliability studies are 

divided into traditional binary reliability models, which 

allow for only two possible scenarios for a system and its 

components: perfect performance and complete failure. 

However, the increasing dependency on devices in 

today's changing and evolving world has led to a complex 

system situation [16]. Many real-world systems have 

been designed to perform their missions with various 

distinctive levels of efficiency called performance ratios. 

Systems with a finite number of performance ratios are 

called multi-state systems [17]. Multi-state systems 

consist of components that have different performance 

ratios, one after the other. In reliability systems, the 

system's operation depends on one or more components, 

and the reliability of these components determines the 

system's reliability. The most commonly used methods in 

the reliability calculations of multi-state systems in the 

literature are Markov and UGF methods. 

4. Phased Mission Systems (PMS) 

System structures have become more complex with the 

increasing demands and technological advancements. 

Applications in fields such as aviation, nuclear energy, 

electronics, and transportation often involve several 

missions or phases that must be carried out sequentially. 

These systems are referred to as phased mission systems 
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[18]. Analyzing phased mission systems is complex 

compared to single-phase systems due to the system 

structure changing between phases and the different 

component failures in different phases being 

interdependent. These systems' mission processes can be 

divided into several consecutive phases that include 

different subsystems or components. For example, an 

aircraft system must go through takeoff, climb, level 

flight, descent, and landing phases [19]. During each 

mission phase, the system must perform a specific 

mission with different reliability requirements. To 

analyze the reliability of phased mission systems, it is 

necessary first to examine and understand previous 

periods of the system. Afterward, reliability metric 

variables are defined, and these metric variables are 

calculated using one of the existing reliability calculation 

methods. The reliability of phased mission systems can 

be generally defined as the probability of successfully 

achieving the targeted mission in all phases [20]. Figure 

1 below shows a practical and simple example of a phased 

system structure consisting of three phases and 

components. 

 
 

Figure 1. Example of a Three Phase and Three Component 

Phased Mission System  

5. Methods Used in Reliability 

Calculations 

The most commonly used system reliability analysis 

methods include fault tree analysis, binary decision 

diagram, Markov method, UGF method, combined 

Markov and UGF method, etc. 
 

5.1 Fault Tree Analysis 

The fault tree analysis is usually used in the design phase 

of a system to emphasize the improvement areas in the 

reliability of the system and its use by operators. The fault 

tree analysis was first developed at Bell Telephone 

Laboratories in 1962 to facilitate the intercontinental 

Minuteman missile launch control system analysis. Later, 

it was developed and implemented by Boeing. Fault tree 

analysis is currently a logical analytical technique in 

system reliability studies, especially in nuclear power 

plants, aviation, and defense systems. 

In the fault tree analysis, first, an unwanted event is 

defined. For system reliability analysis, the unwanted 

event is generally the failure of the system or subsystem. 

Then the system is analyzed regarding its environment 

and operation to find all basic event combinations that 

could lead to previously defined unwanted events. The 

basic event mentioned here is the events that could cause 

an unwanted event or failure, such as component failures 

or human or environmental failures. The logical 

relationship between the basic event and the unwanted 

event is graphically represented using the fault tree 

analysis, and a logical inference is made to understand 

how a system can fail [18]. 

5.2 Binary Decision Diagram 

When applied to complex or large systems, the analysis 

methods used for decision trees can become inefficient. 

Instead of analyzing the system in this way, converting 

fault trees to binary decision diagrams and then analyzing 

them is more effective and efficient. Binary decision 

diagrams were originally used as compact encodings in 

circuit design and verification instead of logical 

expressions known as Boolean expressions. It is difficult 

to obtain results from binary decision diagrams in their 

original form, so they are usually compared to fault trees 

to obtain results. Binary decision diagrams and fault tree 

models can be solved without excessive computational 

complexity or time. Therefore, their use is effective in 

large decision tree models. A binary decision diagram 

consists of nodes where an event starts or ends, connected 

by branches. Events start from the top of the diagram and 

end in a node representing the occurrence or non-

occurrence of an event, represented by 1 or 0 nodes, 

respectively [21]. 

5.3 Markov Method 

A system's development is represented by a continuous-

time discrete-state stochastic process [22]. Stochastic 

process theory provides an advanced probabilistic 

framework for formulating general failure models for real 

systems, obtaining explicit formulas for various 

calculation reliability indices, and determining optimal 

maintenance plans in complex situations [11]. The 

Markov method is used when a system's components 

have strong dependencies. Markov modeling is a 

mathematical model known as the "Markov approach," 

named after mathematician Andrei Markov (1856-1922). 

It analyzes the future behavior of any system based on its 

past behavior, depending solely on the previous state's 

behavior, and is used in situations where a system's 

components have strong dependencies. This modeling 

can be done due to the "memoryless" feature of the 

Markov approach, and the approach mentioned above 

assumes that the transition time from one state to another 

is constant, making the method suitable for reliability 

calculations. In a Markov model, there are two sections: 

states and transitions. While defining the states as the 

working or malfunctioning of the components in the 

system, transitions represent the transition time from one 

state to another. There are no transitions between some 

states; thus, the transitions are not connected. These states 

are called absorbing states [23]. It is assumed that the 

failure and repair times of the components are associated 
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with exponential distributions due to stochastic process 

theory [24]. In Markov modeling, state-space matrices are 

first created for the system, and transitions between all 

states are defined. Then, the Markov state differential 

equations obtained are solved using the Laplace 

transformation to find state probabilities. The 

disadvantage of this method is the high-dimensional 

problem, and it requires large computational resources. 

Therefore, it is more useful for smaller systems. 

A popular type of Markov process used in reliability 

analysis is the Continuous Time Markov Chain (CTMC). 

CTMC models systems that can transition between 

multiple states over time with transition rates specified by 

a set of parameters. It has been used to analyze the 

reliability of various systems, including communication 

networks, production systems, and power systems. 

Another Markov process commonly used in reliability 

analysis is the semi-Markov process. Semi-Markov 

processes are similar to CTMCs but allow for transitions 

at non-exponential times. They are particularly useful for 

modeling systems with complex repair or maintenance 

programs where the duration between transitions may 

depend on the system's current state. In addition to 

CTMCs and semi-Markov processes, other types of 

Markov processes, such as hidden Markov models and 

Bayesian Networks, have also been used in reliability 

analysis. Hidden Markov models are used to model 

systems where the true state of the system cannot be 

directly observed. In contrast, Bayesian networks can be 

used to model dependencies between components of a 

system [17]. 

 

The Markov transition diagram shown schematically 

in Figure 2 depicts a single repairable component with 

working and failed states. 

 

Figure 2. Markov Transition Diagram for One Component 

Figure 3 below shows a simple representation of the 

transition from any state s to state m for a multi-state 

repairable component using a Markov process. For 

𝑠,𝑚 = 1,2, … , 𝑘; the failure rate is defined 𝜆𝑠𝑚 as  when 

m<s and the repair rate is defined as 𝜇𝑠𝑚 when m>s for 

this multi-state component. 

 

Figure 3. Markov Transition Diagram for a Multi-State Component 

5.4 Universal Generating Function (UGF) 

Technique 

 UGF is a powerful mathematical tool used to analyze the 

probability distribution of the total number of failures that 

occur in a system within a certain period of time, taking 

into account the failure rates of individual components 

within the system. UGF was first introduced by Ushakov 

(1986, 1987) in system reliability studies. This method is 

highly effective for high-dimensional combinatorial 

problems [11]. The universal generating function 

technique allows for determining the performance 

distributions of a system's components using algebraic 

procedures. This allows for determining the performance 

distribution of the entire system based on these 

distributions. One of the most significant benefits of the 

UGF approach is that it allows for a more quantitative and 

rigorous analysis of system reliability, providing valuable 

insights into the behavior of complex systems over time. 

Equation 1 below shows the instantaneous performance 

distribution. 

𝑈(𝑧, 𝑡) = ∑ 𝑝𝑖(𝑡)
𝐾
𝑖=1 𝑧𝑔𝑖   (1) 

A multi-state component i can have states 

representing different levels of performance. In this case, 

the performance set for this component is represented by 

Equation 2. 

𝑔𝑖 = {𝑔𝑖0, 𝑔𝑖1, 𝑔𝑖2, … , 𝑔𝑖𝑚}  (2) 

 

The availability of a system for any multi-state 

system with 𝑡 > 0 and a given demand w is calculated 

using the following Equation 3. 

𝐴(𝑡, 𝑤) = 𝛿𝐴(𝑈(𝑧, 𝑡), 𝑤) = ∑ 𝑃𝑖̇(𝑡)𝛿(𝑔𝑗 ≥
𝐾

𝑖=1

𝑤)  
(3) 

In the study conducted in [25], space systems were 

modeled analytically by dividing them into phases. In 

[26], the propulsion system of an ion propulsion system 

sent to the outer solar system for a scientific mission is a 
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phased mission system consisting of seven phases. In the 

study, the time-dependent reliability of the mentioned 

propulsion system was aimed to be determined during the 

planned mission period. [27] evaluated the reliability of 

the attitude and orbit control system (AOCS), which is 

responsible for keeping the spacecraft in the correct 

position and orbit throughout its lifetime, using a phased 

mission system and Markov renewal equation-based 

method. [28] evaluated the reliability of a critical system 

used to adjust the direction and orbit in a spacecraft, the 

propulsion system, in their study. In [29], the risk 

elements of the Mars Smart Lander project (MSL-09) 

were effectively calculated with the fault decision tree 

method approach based on expert data. [30] introduced 

the power generation system as a phased mission system 

and showed that the existing epidemiological uncertainty 

due to the lack or inaccuracy of data increases over time, 

and the system usability decreases when transmission loss 

is taken into account based on the study conducted on 

twenty-four bus power generation systems. 

6. Multi-state Phased Mission System 

(MS-PMS) 

MS-PMS is an innovative concept that has emerged in the 

field of reliability analysis. It is an extension of the 

Phased Mission System (PMS), which is based on the 

idea of dividing a mission into different phases, each with 

its requirements and objectives. MS-PMS takes PMS one 

step further by allowing for multiple states within a phase, 

which can be particularly useful for complex systems or 

missions involving multiple phases. MS-PMS can enable 

a more comprehensive understanding of system 

performance by allowing for the analysis of each state 

within a phase. Various methods are used for reliability 

analysis of multi-state phased mission systems, including 

Markov models, UGF method, combined Markov and 

UGF method, Petri nets, fault trees, Bayesian networks, 

and simulation models. In this study, the combined 

Markov and UGF method will be used for the example of 

the multi-state phased mission system addressed. 

7. Combined Markov and UGF 

Method 

The combined Markov and UGF method is a proposed 

approach for analyzing the reliability of Multi-State 

Phased Mission Systems (MS-PMS). This method 

combines the use of Markov models with UGF to provide 

a more comprehensive analysis of system performance. 

Markov models are commonly used to analyze the 

reliability of systems with discrete states. They allow for 

estimating the probability of a system being in a certain 

state at a specific time. UGF, on the other hand, is used to 

analyze the reliability of systems with continuous states. 

The Combined Markov and UGF method allows for 

the analysis of MS-PMS systems with both discrete and 

continuous states. This approach can provide a more 

accurate understanding of system performance by 

considering all possible states and transitions. The 

following are the steps involved in the Combined 

Method: 

1. Represent the system using a Markov model with 

states corresponding to the status of components. 

2. Convert the Markov model into a set of differential 

equations based on transition rates between states. 

3. Convert the differential equations into algebraic 

equations by applying the UGF technique. 

4. Solve the algebraic equations to obtain the reliability 

metrics of interest. 

8. Combined Markov and UGF 

Method for Repairable Three-state 

Three Component and Three 

Phased Mission Systems 

This study will show how the combined Markov and UGF 

technique for multistate systems can be applied to a three-

phase, three-component, and three-state repairable 

phased mission system. The system's structure and the 

method's application steps are given in Figure 4.  

 

Figure 4. Phased mission system with three phases, three 

components, and three states 

Assumptions made for the phased mission system 

are listed below: 

1. The system consists of a three-state, three-

component, and three-phase mission system. 

2. The transition time between two consecutive phases 

is not important. 

3. All components work perfectly at the beginning. 

4. Components are three-state (perfectly working (2)- 

working (1)- failed (0)) and repairable. 

5. There is only one repairman in the system. 

6. The repair can only be done when the system is 

working. After being repaired, each component is 

"as good as new." 

7. The repair and failure rates of the components are 

independent random variables and are exponentially 

distributed. 
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9. Application of Combined Method 

First, state transition matrices are created for each 

component in Markov modeling, and transitions between 

all possible states are defined. Then, differential 

equations are established to determine the probabilities of 

each component state. Figure 5 shows the transition 

diagram for a 3-state component, and Table 1 provides 

the parameter table for the components. 

 

Figure 5. State Transition Diagram for a 3-state component 

 

Table 1. The Parameters of Components in the System 

 

Differential equations for component X1, 

{
 
 

 
 
ⅆ𝑝0

𝑋1(𝑡)

ⅆ𝑡
= −𝜇0,1𝑃0

𝑋1(𝑡) + 𝜆1,0𝑃1
𝑋1(𝑡)                                         

ⅆ𝑝1
𝑋1(𝑡)

ⅆ𝑡
= 𝜇0,1𝑃0

𝑋1(𝑡) − (𝜇1,2 + 𝜆1,0)𝑃1
𝑋1(𝑡) + 𝜆2,1𝑃2

𝑋1(𝑡)

ⅆ𝑝2
𝑋1(𝑡)

ⅆ𝑡
= 𝜇1,2𝑃1

𝑋1(𝑡) − 𝜆2,1𝑃2
𝑋1(𝑡)                                              

  

(4) 

for component X2, 

{
  
 

  
 

 

ⅆ𝑝0
𝑋2(𝑡)

ⅆ𝑡
=  −𝜇0,1𝑃0

𝑋2(𝑡) + 𝜆1,0𝑃1
𝑋2(𝑡)                                                                            

ⅆ𝑝1
𝑋2(𝑡)

ⅆ𝑡
= 𝜇0,1𝑃0

𝑋2(𝑡) − (𝜇1,2 + 𝜆1,0)𝑃1
𝑋2(𝑡) + 𝜆2,1𝑃2

𝑋2(𝑡)                                  

 
ⅆ𝑝2

𝑋2(𝑡)

ⅆ𝑡
= 𝜇1,2𝑃1

𝑋2(𝑡) − 𝜆2,1𝑃2
𝑋2(𝑡)                                                                               

 

(5) 

for component X3, 

 

{
  
 

  
 

 

ⅆ𝑝0
𝑋3(𝑡)

ⅆ𝑡
=  −𝜇0,1𝑃0

𝑋3(𝑡) + 𝜆1,0𝑃1
𝑋3(𝑡)                                                                            

ⅆ𝑝1
𝑋3(𝑡)

ⅆ𝑡
= 𝜇0,1𝑃0

𝑋3(𝑡) − (𝜇1,2 + 𝜆1,0)𝑃1
𝑋3(𝑡) + 𝜆2,1𝑃2

𝑋3(𝑡)                                  

 
ⅆ𝑝2

𝑋3(𝑡)

ⅆ𝑡
= 𝜇1,2𝑃1

𝑋3(𝑡) − 𝜆2,1𝑃2
𝑋3(𝑡)                                                                               

 

 (6) 

The differential equations obtained from equations 

(4), (5), and (6) were solved by the Runge-Kutta method 

in Matlab program by updating the initial parameters for 

each phase according to the probabilities of the 

components in the previous phase. For Phase 1, the initial 

condition of each component is taken as 𝑃0
𝑋𝑖(0)=0,  

𝑃1
𝑋𝑖(0)=0,  𝑃2

𝑋𝑖(0)=1, i=1,2,3, and the time intervals for 

each phase are equal (0, t1=2, t2=4, t3=6). 

In Equation 7 below, UGF transformation is shown 

for the relevant example according to the relevant 

performance values on a component basis. 

𝑢𝑖(𝑧) = ∑ 𝑝𝑖
𝑗
0 𝑧𝑔𝑗

𝑖

        𝑖 = 1,2,3 ; 𝑗 = 0,1,2  (7) 

For Phase 1: 

 

Let's consider the completion of the Phase 1 phase 

of the system between t1=0-2. According to the 

performance output of the system structure, the demand 

constant that Phase 1 must meet is determined as w1=1.5. 

The u transformations for each component are shown in 

Equation 8. 

{
 

 𝑢1(𝑧) = 𝑝0
𝑋1(𝑡)𝑧𝑔0

𝑋1

+ 𝑝1
𝑋1(𝑡)𝑧𝑔0

𝑋1

+ 𝑝2
𝑋1(𝑡)𝑧𝑔0

𝑋1

𝑢2(𝑧) = 𝑝0
𝑋2(𝑡)𝑧𝑔0

𝑋2

+ 𝑝1
𝑋2(𝑡)𝑧𝑔0

𝑋2

+ 𝑝2
𝑋2(𝑡)𝑧𝑔0

𝑋2

 

𝑢3(𝑧) = 𝑝0
𝑋3(𝑡)𝑧𝑔0

𝑋3

+ 𝑝1
𝑋3(𝑡)𝑧𝑔0

𝑋3

+ 𝑝2
𝑋3(𝑡)𝑧𝑔0

𝑋3  

   (8) 

In the system structure in Phase 1, X2 and X3 

components are in parallel (P) structure, and the X1 

component is connected to them in series (S). In this case, 

for the system; 
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  𝑈𝑠𝑦𝑠 = (𝑢2(𝑧) ⊗∅𝑃 𝑢3(𝑧)) ⊗∅𝑆 𝑢1(𝑧)  (9) 

Phase 1 system availability for constant demand 

w1=1.5 is 

𝐴(𝑡, 𝑤1) = ∑ 𝑃𝐽̇(𝑡)𝛿(𝑔𝑗 ≥ 𝑤1 = 1.5 )
4

𝑗=0
≅ 0.98   

For Phase 2: 

 

Let's consider the completion of the Phase 2 phase of the 

system at t2=2-4. According to the performance output of 

the system structure, the demand constant that Phase 2 

must meet is determined as w2=3.5. The u transformations 

for each component are shown in Equation 10. 

{
 

 𝑢1(𝑧) = 𝑝0
𝑋1(𝑡)𝑧𝑔0

𝑋1
+ 𝑝1

𝑋1(𝑡)𝑧𝑔0
𝑋1
+ 𝑝2

𝑋1(𝑡)𝑧𝑔0
𝑋1

𝑢2(𝑧) = 𝑝0
𝑋2(𝑡)𝑧𝑔0

𝑋2
+ 𝑝1

𝑋2(𝑡)𝑧𝑔0
𝑋2
+ 𝑝2

𝑋2(𝑡)𝑧𝑔0
𝑋2
 

𝑢3(𝑧) = 𝑝0
𝑋3(𝑡)𝑧𝑔0

𝑋3
+ 𝑝1

𝑋3(𝑡)𝑧𝑔0
𝑋3
+ 𝑝2

𝑋3(𝑡)𝑧𝑔0
𝑋3   

  (10) 

 

In the system structure in Phase 2, X1 and X3 

components are in series, and the X2 component is 

connected in parallel to the serial structure. In this case, 

for the system; 

𝑈𝑠𝑦𝑠 = (𝑢1(𝑧) ⊗∅𝑆 𝑢3(𝑧)) ⊗∅𝑃 𝑢2(𝑧)  (11) 

Phase 2 system availability for constant demand 

w2=3.5 is 

𝐴(𝑡, 𝑤2) = ∑ 𝑃𝐽̇(𝑡)𝛿(𝑔𝑗 ≥ 𝑤2 = 3.5 )
10

𝑗=0
≅ 0.96   

For Phase 3: 

Let's consider the completion of the Phase 3 phase 

of the system in time between t3=4-6. According to the 

performance output of the system structure, the demand 

constant that Phase 3 must meet is determined as w3=7.5. 

The u transformations for each component are shown in 

Equation 12. 

{
 

 𝑢1(𝑧) = 𝑝0
𝑋1(𝑡)𝑧𝑔0

𝑋1

+ 𝑝1
𝑋1(𝑡)𝑧𝑔0

𝑋1

+ 𝑝2
𝑋1(𝑡)𝑧𝑔0

𝑋1

𝑢2(𝑧) = 𝑝0
𝑋2(𝑡)𝑧𝑔0

𝑋2

+ 𝑝1
𝑋2(𝑡)𝑧𝑔0

𝑋2

+ 𝑝2
𝑋2(𝑡)𝑧𝑔0

𝑋2

 

𝑢3(𝑧) = 𝑝0
𝑋3(𝑡)𝑧𝑔0

𝑋3

+ 𝑝1
𝑋3(𝑡)𝑧𝑔0

𝑋3

+ 𝑝2
𝑋3(𝑡)𝑧𝑔0

𝑋3   

 (12) 

In the system structure in Phase 3, X1, X2, and X3 

components are connected in parallel. In this case, for the 

system; 

𝑈𝑠𝑦𝑠 = (𝑢1(𝑧) ⊗∅𝑃 𝑢3(𝑧)) ⊗∅𝑃 𝑢2(𝑧)  (13) 

Phase 3 system availability for constant demand 

w3=7.5 is 

𝐴(𝑡, 𝑤3) = ∑ 𝑃𝐽̇(𝑡)𝛿(𝑔𝑗 ≥ 𝑤3 = 7.5 )
15

𝑗=0
≅ 0.81  

Also, Table 2 was prepared to see how the 

availability changed for different failure and repair rates. 

Table 2. The Different Performance, Failure, and Repair Rates of Components  

 

For Phase 1: 

Phase 1 system availability for constant demand 

w1=1.2 is 

𝐴(𝑡, 𝑤1) = ∑ 𝑃𝐽̇(𝑡)𝛿(𝑔𝑗 ≥ 𝑤1 = 1.5 )
1.5

𝑗=0
≅ 0.99   

For Phase 2: 

Phase 2 system availability for constant demand 

w2=3 is 

𝐴(𝑡, 𝑤2) = ∑ 𝑃𝐽̇(𝑡)𝛿(𝑔𝑗 ≥ 𝑤2 = 3)
3.3

𝑗=0
≅ 0.98  

 

For Phase 3: 

Phase 3 system availability for constant demand 

w3=6.8  is 

𝐴(𝑡, 𝑤3) = ∑ 𝑃𝐽̇(𝑡)𝛿(𝑔𝑗 ≥ 𝑤3 = 6.8 )
7.3

𝑗=0
≅ 0.92  

When we change the failure, repair, and 

performance rates for each component according to Table 

2 and apply the proposal combined method, we observe 

that the system's availability decreases due to each phase, 

as expected. Also, the system availability for these rates 

in Table 2 is higher than in Table 1.  
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10. Results 

There are numerous studies on the analysis of reliability 

metrics of multi-state systems, which are widely used in 

the field of engineering, using combined Markov and 

UGF methods. However, no study has been found on 

applying this combined method to repairable multi-state 

phased mission systems. This method provides easy 

application in cases where the number of components and 

states is high. 

In this study, for a three-phase, three-component, 

and three-state repairable phased mission system, when 

the probabilities of the components are considered in 

relation to the phase times, it is observed that the 

availability values, one of the metrics of system 

reliability, decrease as expected. Also, different 

performance, failure, and repair rates for each phase were 

obtained, and comparisons were interpreted. In the 

continuation of this study, calculations will be made with 

different time intervals. 
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