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Abstract 
Tail risk analysis plays a central strategic role in risk management and focuses on the problem of risk measurement in the tail regions 
of extreme risks. As one crucial task in tail risk analysis for risk management, the measurement of tail risk variability is less addressed 
in the literature. Neither the theoretical results nor inference methods are fully developed, which results in the difficulty of modeling 
implementation. Practitioners are then short of measurement methods to understand and evaluate tail risks, even when they have large 
amounts of valuable data in hand. In this paper, some nonparametric methods of estimation for the class of variability measures among 
proportional hazards models based on progressively Type-II censored data are derived. We showed some properties of these estimators. 
Simulation studies have been performed to see the effectiveness of the proposed methods, and a real data set has been analyzed for 
illustrative purposes. Some well-known variability measures, such as the Gini mean difference, the Wang right tail deviation and the 
cumulative residual entropy, are, up to a scale factor, in this class. 

Keywords: Cumulative residual entropy, Gini mean difference, Nonparametric estimation, Variability measure. 

1. Introduction 
In actuarial science, the study of large losses that 
occur with very small probability refers to the right 
tail risk analysis. In this framework, the value-at-
risk (VaR), one of the more popular risk measures, 
is still widely used by insurance companies and 
financial institutions due to its conceptual 
simplicity. However, VaR has been criticized 
because it is not (in general) subadditive, and 
hence it is not coherent. An approach to solve this 
problem is to use the conditional tail expectation 
(TCE), which is the conditional expectation of the 
losses above the VaR. This measure is coherent 
and is the expected size of losses exceeding the 
VaR. Since tail events are subject to variability, 
the attention in the actuarial and financial 
literature is combining tail-loss measures (such as 
VaR and TCE). [1] combine TCE and different 
versions of tail variances into a single measure 
and derive explicit expressions in the framework 
of multivariate elliptical distributions. [2] 
consider additional tail variability measures to 
produce the so-called Gini shortfall. [3] obtain a 
new risk measure by combining TCE and the 

shortfall deviation. Following this approach, we 
estimate a wide class of variability measures based 
on distances among proportional hazards models. 
This family, besides including some of the 
previously cited measures, also contains other 
variability measures that sometimes perform better, 
such as Wang's right tail deviation ([4]) and the 
cumulative residual entropy ([5]). [ 6 ]  constructed 
a distortion risk measure based on a loss variable and a 
benchmark variable in extreme scenarios to study the co-
movement of the two variables. [7] extended the tail Gini 
functional of a univariate random variable to a case of a 
bivariate random vector as a tail risk variability measure 
that incorporates both the marginal risk severity of the 
loss variable and the tail dependence structure of the two 
variables. We study the nonparametric estimations 
for these measures. 

Censoring schemes of statistical experiments 
occur naturally in survival and reliability and 
medical studies. Progressive Type II censoring 
scheme is one of the most generally popular 
censoring schemes. It has achieved great attention 
in the last decades. The progressive Type-II 
censoring scheme can be described as follows. 
Assume that ݊  identical units ܺ ଵ, ܺଶ, . . . , ܺ௡ are located 
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on a life testing experiment and each unit has lifetime 
distribution with pdf ݂ and cdf ܨ. Suppose the vector of 
censoring scheme is (݉; ܴଵ, ܴଶ, . . . , ܴ௠), where ௝ܴ 
demonstrates the number of units withdrawn from ݊ −∑ ܴ௜௝ିଵ௜ୀଵ − ݆ surviving units in the ݆-th (݆ = 1,2, . . . , ݉) 
stage of censoring and ݉ is the prefixed number of 
removals. Based on this progressive censoring scheme, 
the following order statistics ଵܺ:௠:௡, ܺଶ:௠:௡, . . . , ܺ௠:௠:௡ 
are derived. In such a life-testing experiment, we 
successively perceive the failure units, but at the ݆-th 
stage of observation, ܴ ௝ units are randomly chosen among 
the remaining units. In other words, the sample size is 
reduced progressively by ௝ܴ + 1 (one failed unit and ௝ܴ 
removed items). It is obvious that this type of censoring 
scheme contains the conventional type-II right censoring 
scheme (ܴଵ = ܴଶ =. . . = ܴ௠ିଵ = 0, ܴ௠ = ݊ − ݉) and 
the complete sampling scheme (ܴଵ = ܴଶ =. . . = ܴ௠ିଵ =0, ݊ = ݉). More details about progressive censoring are 
may be located in [8] for more details about the 
progressive censoring. Suppose ܨ( ௜ܺ:௠:௡) = ௜ܷ:௠:௡ be 
the ݅-th order statistic from uniform ܷ(0,1) distribution. 
Now, define ଵܸ = ଵି௎೘:೘:೙ଵି௎೘షభ:೘:೙ ,  ଶܸ = ଵି௎೘షభ:೘:೙ଵି௎೘షమ:೘:೙ , … , ௠ܸ = 1 − ଵܷ:௠:௡  

It is clear that ܸ ௜’is are independent random variables 
that follow ܽݐ݁ܤ൫݅ + ∑ ௝ܴ௠௝ୀ௠ି௜ାଵ , 1൯. It can be seen 
that: ௜ܷ:௠:௡ = 1 − ∏ ௝ܸ௠௝ୀ௠ି௜ାଵ   

and ܧ( ௜ܷ:௠:௡) = 1 − ∏ ௝௠௝ୀ௠ି௜ାଵߜ   

where ߜ௜ = ௜ା∑ ோೕ೘ೕస೘ష೔శభଵା௜ା∑ ோೕ೘ೕస೘ష೔శభ , ݅ = 1, . . . , ݉ such 

that ߜ௝ = ݆ ଵ ifߜ ≤ 1 and ߜ௝ = ݆ ௠ ifߜ ≥ ݉. 

The rest of the paper is structured as follows. 
Different nonparametric methods of estimation and some 
theoretical properties for a wide class of variability 
measures among proportional hazards models based on 
Type-II progressive censoring are developed in Section 2. 
Simulation experiments, as well as analyses of real data, 
are performed in Section 3. Section 4 contains 
conclusions. 

2. Nonparametric estimations of risk 
measures 

 [9] considered a non-negative random variable ෨ܺఈ,ఉ 
defined by the condition  ൣ ෨ܺఈ,ఉ| ఉܺ = ൧ݏ ≡௦௧ ሾܺఈ − ఈܺ|ݏ >   ሿݏ

with survival function ܨരఈ,ఉ(ݔ) = ܲ൫ ෨ܺఈ,ఉ > =൯ݔ − ∫ ቀிര(௫ା௦)ிര(௦) ቁఈஶ଴   (ݏ)രఉܨ݀

We focus on estimating the family risk measure 

(FRM) ܦఈ,ఉ(ܺ) = ଵఉ ൣܧ ෨ܺఈ,ఉ൧, where ߙ, ߚ > 0. This 

makes the measure symmetric with respect to the 
parameters. 

Now, we have the class of measures (ݔ)ߖ = ൛ܦఈ,ఉ(ܺ), ,ߙ ߚ > 0ൟ.  
Let ܺ be a random variable with distribution 

function ܨ . Given ߙ, ߚ > 0, we have ܦఈ,ఉ(ܺ) =ቐ ଵఈିఉ ൫∫ രఉஶ଴ܨ ݔ݀(ݔ) − ∫ രܨ ఈஶ଴ ,൯ݔ݀(ݔ) ߙ ≠ −ߚ ∫ രܨ ఈஶ଴ ,ݔ݀(ݔ)രܨlog(ݔ) ߙ =  (1)  .ߚ

Some particular members of this family have been 
recently considered in the literature. For example, for ߙ ߚ= = (ܺ)ଵ,ଵܦ ,1 =  equals the cumulative residual (ܺ)ߦ
entropy (CRE) proposed in reliability theory by [5], 
among others,[10],[11], and [12]. 

[13] proposed the classical Gini mean difference 
measure. Here for ߙ = 1, ߚ = 2 we have ܦଵ,ଶ(ܺ) = ଵଶ ܺ|ሾܧ − ܺ′|ሿ= ଵଶ   ,(ܺ)ܦܯܩ

where ܦܯܩ(ܺ) is the mean difference, which means 

the classical Gini mean difference ܦଵ,ଶ(ܺ) = ଵଶ  .(ܺ)ܦܯܩ

For ߙ = 1, ߚ = 0.5, we attain Wang deviation as ܦଵ,଴.ହ(ܺ) = 2ܹ(ܺ)  

where ܹ(ܺ) = න ටܨര(ݔ)ஶ
଴ ݔ݀ − න രஶܨ

଴  .ݔ݀(ݔ)
Generally, propounded ܦఈ,ఉ(ܺ) with ߙ = 1 and ߚ > 0, 
under the name of quantile-based dynamic cumulative 
residual Tsallis entropy of order ߙ. 

We develop various nonparametric estimates for ܦఈ,ఉ(ܺ) 
quantity based on Type-II progressively censored 
samples.  [9] represented ܦఈ,ఉ(ܺ) as: ܦఈ,ఉ(ܺ)

= ۔ۖەۖ
ۓ ߙ1 − ߚ න ଵଵିܨ

଴ 1)ߚൣ(ݔ) − ఉିଵ(ݔ − 1)ߙ − ,ݔఈିଵ൧݀(ݔ ߙ ≠ ߚ
න ଵଵିܨ

଴ 1)(ݔ) − ఈିଵሾ1(ݔ + 1)݃݋݈ߙ − ,ݔሿ݀(ݔ ߙ =  .ߚ
(2) 

Also, it can be easily seen that ܦఈ,ఉ(ܺ,  can be (݌
expressed as 

(ܺ)ఈ,ఉܦ =ቐ ଵఈିఉ ∫ ൣ(1 − ఉ(ݔ − (1 − ఈ൧ଵ଴(ݔ ݀൫ିܨଵ(ݔ)൯, ߙ ≠ −ߚ ∫ (1 − ఈଵ଴(ݔ 1)݃݋݈ − ,൯(ݔ)ଵିܨ൫݀(ݔ ߙ =  (3)  .ߚ
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2.1 Moment approximation method 
 
In this method, the difference operator proposed by [15] 
for estimating the entropy is operated. This method was 
also used when estimating the extropy by [16] and [17]. 
This method is mainly based on the following fact: 
 

ௗௗ௨ (ݑ)ଵିܨ ≈ ௑೔శೢ:೘:೙ି௑೔షೢ:೘:೙ி(௑೔శೢ:೘:೙)ିி(௑೔షೢ:೘:೙),  
Where the window size ݓ ≤ ݉/2, ௜ܺ:௠:௡ = ଵܺ:௠:௡ 

if ݅ < 1, ௜ܺ:௠:௡ = ܺ௠:௠:௡ if ݅ > ݉, and ଵܺ:௠:௡ ≤ܺଶ:௠:௡ ≤. . . ≤ ܺ௠:௠:௡ be a progressively Type-II 
censored sample of size ݉. It can be seen that (3) is 
approximately equal to: 

(ܺ)ఈ,ఉܦ ≈
۔ۖۖەۖۖ
ۓ ଵ(ఈିఉ)௠ ∑ ቂ൫1 − )ܨ ௜ܺ:௠:௡)൯ఉ − ൫1 − )ܨ ௜ܺ:௠:௡)൯ఈቃ௠௜ୀଵ ௑೔శೢ:೘:೙ି௑೔షೢ:೘:೙ி(௑೔శೢ:೘:೙)ିி(௑೔షೢ:೘:೙) , ߙ ≠ ߚ

− ଵ௠ ∑ ൫1 − )ܨ ௜ܺ:௠:௡)൯ఈ௠௜ୀଵ 1)݃݋݈ − )ܨ ௜ܺ:௠:௡)௑೔శೢ:೘:೙ି௑೔షೢ:೘:೙ி(௑೔శೢ:೘:೙)ିி(௑೔షೢ:೘:೙) , ߙ =  .ߚ
 Now, the moments-based estimate is proposed by 

replacing ௜ܷା௪:௠:௡ = )ܨ ௜ܺା௪:௠:௡) and ௜ܷି௪:௠:௡ = )ܨ ௜ܺି௪:௠:௡) by their expected values ܧ( ௜ܷ:௠:௡) as given 
in [6]. This leads to the following estimate of ܦఈ,ఉ(ܺ) 

(ܺ)෡ଵ,ఈ,ఉܦ =
۔ۖۖەۖۖ
ۓ ଵ(ఈିఉ)௠ ∑ ቂ൫1 − )ܧ ௜ܷ:௠:௡)൯ఉ − ൫1 − )ܧ ௜ܷ:௠:௡)൯ఈቃ௠௜ୀଵ ௑೔శೢ:೘:೙ି௑೔షೢ:೘:೙ா(௎೔శೢ:೘:೙)ିா(௎೔షೢ:೘:೙) , ߙ ≠ ߚ

− ଵ௠ ∑ ൫1 − )ܧ ௜ܷ:௠:௡)൯ఈ௠௜ୀଵ ൫1݃݋݈ − )ܧ ௜ܷ:௠:௡)൯௑೔శೢ:೘:೙ି௑೔షೢ:೘:೙ா(௎೔శೢ:೘:೙)ିா(௎೔షೢ:೘:೙) , ߙ =  .ߚ
 Based on [16], here, ܦ(ܺ) is a variability measure 

if it satisfies the following intuitive properties: 
ܺ)ܦ .1 + ܿ) =  ,ܿ for all constant (ܺ)ܦ
(ܺܿ)ܦ .2 = ܿ for all (ܺ)ܦܿ > 0, 
(ܿ)ܦ .3 = 0 for any degenerate random variable 

at ܿ, 
(ܺ)ܦ .4 ≥ 0 for all risk X. 

Proposition 2.1.        
1. For all risk ܺ, we have ܦ෡ଵ,ఈ,ఉ(ܺ) ≥ 0. 
2. Let ܻ = ܽܺ + ܾ, ܽ > 0 then, ܦ෡ଵ,ఈ,ఉ(ݕ)  .(ܺ)෡ଵ,ఈ,ఉܦܽ=
(ܺ)෡ଵ,ఈ,ఉܦ .3 =  (ܺ)෡ଵ,ఉ,ఈܦ

Proposition 2.2. Under the progressive Type-II 
censoring scheme ܴଵ = ܴଶ =. . . = ܴ௠ିଵ = 0, and ܴ௠ =݊ − ݉, which presents the conventional Type-II 
censoring at ݉. We have: ܦ෡ଵ,ఈ,ఉ(ܺ) =

۔ۖۖەۖۖ
ۓ ଵ(ఈିఉ) ∑ ൤ቀ௡ି௜ାଵ௡ାଵ ቁఉ − ቀ௡ି௜ାଵ௡ାଵ ቁఈ൨௠௜ୀଵ(௡ାଵ)(௑೔శೢ:೘:೙ି௑೔షೢ:೘:೙)ଶ௪ , ߙ ≠ ߚ

−∑ ቀ௡ି௜ାଵ௡ାଵ ቁఈ௠௜ୀଵ ݃݋݈ ቀ௡ି௜ାଵ௡ାଵ ቁ(௡ାଵ)(௑೔శೢ:೘:೙ି௑೔షೢ:೘:೙)ଶ௪ , ߙ =   .ߚ
Proof. It can be seen that under the conventional 

Type-II censoring with ܴଵ = ܴଶ =. . . = ܴ௠ିଵ = 0, and ܴ௠ = ݊ − ݉, ઼ܑ = ௜ା௡ି௠௜ାଵା௡ି௠ for all ݅ = 1, . . . , ݉. Now, by 

substituting this value in ܦ෡ଵ,ఈ,ఉ(ܺ), the result is obtained.  

Proposition 2.3. ܦ෡ଵ,ఈ,ఉ(ܺ) is consistent estimator 

for ܦఈ,ఉ(ܺ), i.e, ܦ෡ଵ,ఈ,ఉ(ܺ) →௣ ݉ ఈ,ఉ(ܺ) whenܦ → ݊, ݊ ݓ ,∞→ → ∞, 
௪௠ → 0. 

Proof. Since when ݉ → ݊, the progressively Type-
II censored sample becomes the complete sample. 
According to ܦ෡ଵ,ఈ,ఉ(ܺ) converges to the ܦఈ,ఉ(ܺ) which 
were proved to be consistent.  

2.2 Kernel-based method 
Suppose that መ݂(ݔ) is estimated by kernel function K as 
follows: መ݂(ݔ) = ଵ௠௛ ∑ ௠௝ୀଵܭ (௫ି௫ೕ:೘:೙௛ ),  

Where ℎ > 0 is a bandwidth, K is the kernel function 
that is a smooth and symmetric function that satisfies ∫ ݔ݀(ݔ)݇ = 1, ∫ ݔ݀(ݔ)݇ݔ = 0. Our estimate is proposed 
assuming the kernel function to be the standard normal 
density function ݇(ݔ) = ଵ√ଶగ ݁ିೣమమ   

and the bandwidth has chosen to equal, which attains 
the optimal smoothing formula, where m is the number of 
points. Now, we have the estimation of the survival 
function as ܨര෠(ݔ) = ∫ መ݂ஶ௫   ݕ݀(ݕ)

therefore, the estimate of ܦఈ,ఉ(ܺ) becomes ܦ෡ଶ,ఈ,ఉ(ܺ) = ቐ ଵఈିఉ ቀ∫ ര෠ఉஶ଴ܨ ݔ݀(ݔ) − ∫ ര෠ఈஶ଴ܨ ቁݔ݀(ݔ) ߙ ≠ −ߚ ∫ ര෠ఈஶ଴ܨ ݔ݀(ݔ)ര෠ܨ݃݋݈(ݔ) ߙ =   ߚ
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Where ܨ෠(ݔ) = ଵ௠௛ ∑ ௠௝ୀଵܭ ቀ௫ି௫ೕ:೘:೙௛ ቁ , ܭ(௫) =∫ ݇௫ିஶ  .ݕ݀(ݕ)
Proposition 2.4. 
(ܺ)෡ଶ,ఈ,ఉܦ .1 ≥ 0 for all risk ܺ. 
2. suppose ܻ = ܽܺ + ܾ, ܽ > 0 then, ܦ෡ଶ,ఈ,ఉ(ݕ, (݌ =  .(ܺ)෡ଶ,ఈ,ఉܦܽ
(ܺ)෡ଶ,ఈ,ఉܦ .3 =   (ܺ)෡ଶ,ఉ,ఈܦ

Proof. The result can be obtained by using ௒݂෡ (ݕ) =ଵ|௔| ௑݂෡   .(ݔ)

Proposition 2.5. ܦ෡ଶ,ఈ,ఉ(ܺ) is a consistent estimator 
for ܦఈ,ఉ(ܺ), i.e, ܦ෡ଶ,ఈ,ఉ(ܺ) →௣   (ܺ)ఈ,ఉܦ

when ݉ → ݊, ݊ → ݓ ,∞ → ∞, 
௪௠ → 0 

Proof. The consistency of the kernel pdf, መ݂(ݔ) (ܺ)෡ଶ,ఈ,ఉܦ implies that (ݔ)݂→ →௣    (ܺ)ఈ,ఉܦ

2.3 Monte Carlo estimation method 
The third estimator of ܦఈ,ఉ(ܺ) (2) is proposed as follows 
based on Monte Carlo estimation ܦ෡ଷ,ఈ,ఉ(ܺ) =ቐ ଵఈିఉ ଵ௠ ∑ ௜ܺ:௠:௡௠௜ୀଵ ቂܨߚര෠ఉିଵ( ௜ܺ:௠:௡) − )ര෠ఈିଵܨߙ ௜ܺ:௠:௡)ቃ ߙ ≠ ଵ௠ߚ ∑ ௜ܺ:௠:௡௠௜ୀଵ ቀܨര෠( ௜ܺ:௠:௡)ఈିଵቁ ቂ1 + )ര෠ܨ݃݋݈ߙ ௜ܺ:௠:௡)ቃ ߙ =   ߚ

where ܨ෠( ௜ܺ:௠:௡) = )ܧ ௜ܷ:௠:௡). 

Proposition 2.6. 

(ܺ)෡ଷ,ఈ,ఉܦ .1 ≥ 0 for all risk ܺ. 
2. suppose ܻ = ܽܺ + ܾ, ܽ > 0 then, 
,ݕ)෡ଷ,ఈ,ఉܦ  (݌ =  .(ܺ)෡ଷ,ఈ,ఉܦܽ
(ܺ)෡ଷ,ఈ,ఉܦ .3 =  (ܺ)෡ଷ,ఉ,ఈܦ

3. Simulation study 
In this Section, we present some results of the Monte 
Carlo simulation study to assess the performances of the 
estimates for risk measures under different censoring 

schemes. We consider different censoring schemes in this 
study, including: 

 One-Step from left with (ܴଵ = ݊ − ݉, ܴଶ =. . . = ܴ௠ = 0). 
 One-Step almost from the middle with ൫ܴଵ =. . . = ܴሾ௠/ଶሿିଵ = 0, ܴሾ௠/ଶሿ = ݊ −݉, ܴሾ௠/ଶሿାଵ =. . . = ܴ௠ = 0൯. 
 One-Step from right, the conventional Type-II 

censoring with (ܴଵ = ܴଶ =. . . = ܴ௠ିଵ =0, ܴ௠ = ݊ − ݉). 
 Mixed with almost equal removals with ቀܴଵ =ܴଶ =. . . = ܴ௠ ∼ ௡ି௠௠ ቁ 

We compare the performances of the proposed 
estimates ܦ௜ 's in terms of the mean square error (MSE) 
based on a Monte Carlo simulation study with 10000 
iterations. Estimates depending on the window size ݓ 
were computed assuming ݓ = ൣ√݉ + 0.5൧, which was 
used for extropy estimates by [15]. For a particular ݊, ݉, 
and a censoring scheme, we generate a progressively 
censored sample from the exponential distribution (ߠ)݌ݔܧ with ߠ = 1. In each case, we compute all the 
estimates ܦ෡௜,ఈ,ఉ ݅ = 1,2,3 of the risk measures ܦ௜,ఈ,ఉ. We 
replicate the process 10000 times and compute the MSE 
associated with each estimate. It can be seen from Table 
1 that risk measure estimates are affected, at different 
levels, by the sample size, censoring scheme, and the 
parent distribution of the data. As expected, when the 
sample size ݊ increases, the MSE decreases for all 
estimates. For the exponential distribution, one can see 
from Table 1 that all risk measure estimates are 
satisfactory and perform almost the same under the MSE 
criterion except for ܦଷ. It is clear that the kernel-based 
estimates produce high MSE values under one step from 
the right and mixed with equal removals censoring 
schemes and produces the lowest MSE values among all 
risk estimates almost under all censoring schemes except 
for one-step from left censoring schemes, in which ܦଵ 
produces slightly lower MSE values. Accordingly, one 
might observe that if the data comes from an exponential 
distribution, then ܦଵ,  ଶ mostly perform better thanܦ ݀݊ܽ 
the other estimates. 

Table 1. Simulated risk measure estimator for the exponential distribution. 

 

 
 β = 0.5   β = 1   β = 2  

  

m, R 
 

D1 
 

D2 
 

D3 
 

D1 
 

D2 
 

D3 
 

D1 
 

D2 
 

D3 

 

10 
 

5,R=(5,...,0) 
 

0.99820 
 

0.92517 
 

1.12968 
 

0.25821 
 

0.25188 
 

0.69677 
 

0.08882 
 

0.06956 
 

0.071625 

 5,R=(0,0,5,0,0) 1.1277 0.9941 1.2650 0.30532 0.28841 0.7622 0.08508 0.07163 0.09891 

 5,R=(0,...,5) 1.2858 1.3593 1.3910 0.47128 0.63378 0.87573 0.07005 0.13921 0.34421 

 5,R=(1,...,1) 1.20061 1.09873 1.53646 0.35338 0.41258 0.95858 0.06034 0.08522 0.25787 

10 8,R=(2,...,0) 0.93746 0.82104 0.97279 0.19334 0.16926 0.63854 0.06766 0.04701 0.068690 
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 β = 0.5   β = 1   β = 2  

  

m, R 
 

D1 
 

D2 
 

D3 
 

D1 
 

D2 
 

D3 
 

D1 
 

D2 
 

D3 

 8,R=(0,...,2,...,0) 1.08595 0.86840 1.06623 0.19014 0.17689 0.64914 0.05968 0.04506 0.059467 

 8,R=(0,. ... ,2) 1.17263 1.1249 1.37952 0.21730 0.31544 0.78829 0.03686 0.05965 0.30175 

 8,R=(1,0,0,0,1,0,0,0) 1.05180 0.88044 0.98239 0.19202 0.17649 0.64640 0.06487 0.04449 0.092107 

20 10,R=(10,0,...,0) 0.8926 0.7003 0.9178 0.1604 0.1426 0.2449 0.0521 0.0385 0.0725 

 10,R=(0,...,10,...,0) 0.90980 0.83941 0.92429 0.20485 0.16174 0.28681 0.04374 0.03767 0.076127 

 10,R=(0,...,10) 1.02294 0.96804 1.25204 0.47897 0.63046 0.65538 0.06583 0.13765 0.33145 

 10,R=(1,...,1) 0.93604 0.74987 0.98345 0.30546 0.33566 0.55620 0.04167 0.06695 0.14378 

20 17,R=(3,0,...,0) 0.59157 0.49126 0.63327 0.11884 0.08991 0.44615 0.03991 0.02394 0.08216 

 17,R=(0,...,3,...,0) 0.74455 0.53724 0.80376 0.11119 0.09371 0.42873 0.03291 0.02168 0.099267 

 17,R=(0,...,3) 0.9599 0.67845 0.94068 0.15362 0.24217 0.44123 0.01877 0.04016 0.046570 

 17,R=(1,0,0,0,1,...,0) 0.68060 0.52209 0.93911 0.11467 0.09324 0.096598 0.03537 0.02271 0.045347 

30 15,R=(15,0,...,0) 0.66519 0.53397 0.89533 0.12601 0.10074 0.23454 0.03848 0.02673 0.080107 

 15,R=(0,...,15,...,0) 0.71184 0.69737 0.94298 0.17358 0.11889 0.25944 0.02973 0.02580 0.04246 

 15,R=(0,...,15) 0.92059 0.88000 0.96844 0.47448 0.63240 0.71648 0.06362 0.13813 0.32830 

 15,R=(1,,...,1) 0.91147 0.71660 0.95576 0.27749 0.30438 0.51542 0.03446 0.06153 0.07890 

30 25,R=(5,0,...,0) 0.4581 0.3787 0.5394 0.09458 0.06445 0.27923 0.02964 0.01695 0.1512 

 25,R=(0,...,5,...,0) 0.63057 0.42380 0.79130 0.07366 0.06692 0.075869 0.02220 0.01462 0.03399 

 25,R=(0,...,5) 0.84902 0.77402 0.932764 0.15558 0.26522 0.27398 0.01518 0.04413 0.028371 

 25,R=(1,0,0,0,1,0,...0) 0.60753 0.44449 0.74058 0.08916 0.06922 0.10841 0.02568 0.01368 0.06206 

 

4. Numerical Example 
To illustrate the ideas discussed above, we consider a data 
set presented by [17] (p. 156). The amounts presented in 
the following are inflation-adjusted (to 1981 using the 
U.S. Residential Construction Index) hurricane losses 
from 35 hurricanes that occurred between 1949 and 1980 
and resulted in losses in excess of 5,000,000. The 
numbers shown are the amounts in excess of 5 million in 
units of 1,000. We treat the numbers in the following 
Tabas as the outcomes of the independent and identically 
distributed non-negative random variables ଵܺ, . . . ,  ܺଷହ. 
The data set is given by 1766 14030 42905 98217 356200 
2123 20304 44397 118680 416680 5562 24112 47600 
135136 508586 9474 25146 54917 187013 540778 10351 
28727 58123 193446 745389 11983 35596 72809 222338 
858881 13383 36409 97942 324511 1633000  

The lognormal distribution adequately fits the data. 
When we use the lognormal model, the MLEs of the 
lognormal distribution parameters are ̂ߤ = 11.0447 and ߪො = 1.6828. Using the MLE of parameters, it follows 
that the MLEs of the risk measures of X are estimated 
depending on the complete data as 

(ܺ)௠௟ߦ  = (ܺ)ଵ,ଵ௠௟ܦ = 2.5161, (ܺ)௠௟ܦܯܩ  (ݔ)ଵ,ଶ௠௟ܦ2= = 4.5105, ܹ௠௟(ܺ) = ௠௟(ଵ,.ହ)ܦ0.5 (ݔ) =1.2594.  

The risk measures are estimated in this section by 
using the proposed nonparametric estimates under 
various Type-II progressive censoring schemes with ݉ =15 assuming the window size ݓ = ൣ√15 + 0.5൧ = 4. The 
following progressive Type-II censoring schemes are 
implemented in this example: 

 Scheme 1:(ܴଵ = 20, ܴଶ =. . . = ܴଵହ = 0). 
 Scheme 2: (ܴଵ =. . . = ܴ଻ = 0, ଼ܴ = 20, ܴଽ =. . . = ܴଵହ = 0). 
 Scheme 3: (ܴଵ =. . . = ܴଵସ = 0, ܴଵହ = 20) . 
 Scheme 4: (ܴଵ =. . . . = ܴହ = 1, ܴ଺ =. . . =ܴଵ଴ = 2, ܴଵଵ =. . . = ܴଵହ = 1). 
The results for estimating the risk measures are 

obtained using the proposed estimates under the above-
mentioned censoring schemes are summarized in Table 2. 
Table 2 shows that its results are consistent with the ones 
concluded from the simulation studies for moderate and 
large samples. That is, the kernel-based method performs 
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better than the other estimates when the data comes from 
Log-Normal distribution. Yet, other estimates also 
provide satisfactory results in some cases. 

Table 2. risk measure estimator for n=35 

 ξ̂i   GM̂ Di   Ŵi  

m, R 1 2 3 1 2 3 1 2 3 

Scheme1 2.44 2.48 2.33 4.908 4.474 4.315 1.24 1.25 1.25

Scheme2 2.43 2.44 2.26 4.63 4.62 4.23 1.22 1.23 1.32

Scheme3 2.61 2.41 2.10 4.72 4.93 4.84 1.16 1.21 1.42

Scheme4 2.54 2.43 2.59 4.34 4.36 4.60 1.39 1.37 1.52

5. Discussion and conclusions 
In this paper, we have considered the estimation problem 
of the class of risk measures based on Type-II progressive 
censoring samples. Nonparametric-based methods 
involving moments approximation, Kernel-based, and 
monte Carlo methods have been discussed. It is evident 
that the best estimates of the risk measures depend on the 
parent model of the data, sample size, and censoring 
scheme. Generally, the estimates based on the kernel-
based method compete with the other estimates in most 
of the considered cases. In our future work, we examine 
the nonparametric methods to investigate tail variability 
measure estimators in the case of multiple variables to 
capture the risk exposure caused by the co-movement of 
these financial variables. How to estimate tail variability 
while incorporating a tail dependence structure is a very 
challenging and interesting task. 
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