LJRRS

Interuntions] Journal of Relisbility, Risk

Safley: Thesry and Applieation

Online I SSN: 2676-3346

Vol. 5/ Issue 1/ 2022/ pp. 1-8
DOI: 10.30699/1JRRS.5.1.1
Received: 2022.05.23, Accepted: 2022.07.11

Original Research Article

Analysis of Discrete Fix Up Limit Time of Two
Systems Prediction

Tijjani Ali Waziri®

1. School of Continuing Education, Bayero University Kano, Nigeria

" tijjaniw@gmail.com

Abstract

This paper studies a discrete fix-up limit policy for two systems. Because sometimes, a failed system cannot be completely fixed at
the optimal fix-up limit time due to some logistic issues. This paper provides a chance to complete fixing up a failed system within a
discrete fix-up limit time LT (L=1,2,3...) for a fixed T. The explicit expression of the expected long-term cost per unit time is
derived for the two systems based on the assumptions of the systems. Finally, a numerical example is given to illustrate the
theoretical results of the proposed model.
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1. Used notations and assumptions

1.1 Used notation

CSi(L)
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Lg,
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Cx(®)

Fix up limit function of formationsS;, fori =1,2

Optimal discrete fix up limit time of the series
formationS,

Optimal discrete fix up limit time of the parallel
formation S,

Mean failure time of formations;, fori = 1, 2

Probability of fix up for failed formations;, for
i=12

Probability of not fixing up failed formation S;, for
i=1,2

Probability of fix up for failed componentD;, for
i=1,23..,6

Fix up rate of afailed component D;, fori =
1,2,3,..,6

Cost of changing afailed formationS;, fori = 1, 2,
when the fix-up is not over within the discrete limit
timelLT, forafixedTandL = 1,2,3,...

Fix up cost of failed formationS;, for i =
1,2,during (0,LT], forafixed Tand L = 1,2, 3,...

1.2 Assumptions

1. Both the series-parallel (S;) and parallel-series (S,)
formations are subjected to a failure, rectified by
fix up.

2. The fix up rate for the failed series-parallel (S,)
and parallel-series (S,) formations follows the non-
homogeneous Poisson process, such that all fix up
rates areincreasing.

3. If the fix up for the failed series-parallel (S;) and
parallel-series (S,) formations is not completed
within the specified discrete limit time LT(L =
1,2,3,...) for afixed T, then it is replaced with a
new one.

4. The cost for the fix-up of the two formations is
proportional to time.

2. Introduction

The maintenance actions for multi-component systems
have been more serious issues in the last few decades
because the systems are becoming more complicated,
having many relating or dependent components.
Sometimes, a failed system cannot be fixed up entirely
at the exact optimal fix-up limit due to some issues, but
during idle periods, it can give the chance to finish
fixing up the failed device completely. Many researchers
have studied various repair limit problems in the
maintenance literature. Bai and Hoang (2005) applied a
quasi-renewal process to study a repair-limit risk free
warranty with athreshold point on the number of repairs
of a system, where replacement is deemed more cost-
effective after that. Aven and Castro (2008) presented a



2/ 1IRRS/Vol. 5/ Issue 1/ 2022

minimal repair replacement model for a single unit
system subjected to two types of failures under a safety
constraint. Niwas and Garg (2018) built a mathematical
model of a system based on the Markov process to
examine the properties of an industria plant under the
charge-free warranty policy and also derived various
reliability parameters. Xie et a. (2020) investigated the
implications of cascading failures of a particular system
and the effects of safety barriers on preventing failures.
Maihula et a. (2021) studied some reliability measures
such as reliability, mean time to failure availability, and
profit function for a solar serial system with four
subsystems to look for ways to improve the whole
reliability of the solar system. Sanusi and Yusuf
(2022)analyzed the reliability and profit of data center
network topology. Also, they came up with a suitable
maintenance technique to improve system performance,
which is vital for reliability and maintenance managers.
There are many maintenances, replacement, and
inspection models, and recent research has attempted to
unify some of them. Beichelt et a. (2006) proposed
some replacement policies for a system based on two
strategies. Strategy 1: after a failure, the repair cost is
estimated. If the repair cost exceeds a given limit, the
system is not repaired but replaced with a new one.
Strategy 2: the system is replaced as soon as the total
repair costs arising during its running time exceed a
given limit. Kapur et a. (2007) proposed some aliment
cost function of a unit subjected to two types of
breakdown under the idea of a fix-up charge limit as
listed : (i) the unit is replaced at the nth breakdown, or
when the estimated moderate fix-up charge exceeds a
particular limit c; (ii) a unit has two types of breakdown
and is replaced at the nth type 1 breakdown, or type 2
breakdown, or when the estimated repair cost of type 1
breakdown exceeds a limit c; (iii) the unit is replaced at
the nth type 1 breakdown, type 2 breakdown, or when
the estimated fix up-charge due to type 1 breakdown
exceeds a predetermined limit c. Chang et a. (2010)
considered a replacement model with minima repair
based on a cumulative repair-cost limit policy, where the
information of all repair costs is used to decide whether
the system is repaired or replaced. Chen and Chang
(2015) presented a charge function of a system
involving two levels of alarms, such that the system
undergoes precautionary care at a projected time T or
immediately after the nth level-l darm, and restorative
care a the projected timeT when the entire damage
exceeds a catastrophic limit or immediately after any
level-Il alarm, whichever comes first. Lewaherilla et al.
(2016) developed a minimal repair model for a fishing
vessel such that the failure rate follows Weibull and non
homogeneous Poisson process.

Furthermore, they also made some comparative
analyses of their proposed model with other related
existing models. Laia et a. (2017) developed a bivariate
(n,k) replacement policy with a cumulative repair cost
limit for a two-unit system is studied, in which the
system is subjected to a shock damage interaction
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between units. Each unit 1 failure causes random
damage to unit 2, and these damages are additive. Unit 2
will fail when the total damage of unit 2 exceeds a
failure level K, and such a faillure makes unit 1 fail
simultaneoudly, resulting in atotal failure.

Several authors present various specia preventive
maintenance models. Safaei et a. (2018) explored a
system's best precautionary aliment actions based on
some stated terms. Wang et a. (2019) considered a
repairable system with one repairman. When the system
fails, the repairman fixes it immediately, and they derive
an explicit expression of the long-run average cost rate
function C(T,N) for the system based on some
assumptions. Sheu et a.(2019) proposed precautionary
replacement charge functions of a system prone to
particular distress, in which the system is either replaced
with the latest one or fixed up when distress occurs.
Sudheeshet a. (2019) looked at the discontinuous
replacement charge function before looking at the
features of a system's mean time to failure (MTTF).
Wang et a. (2019) obtained the charge function C(T, N)
for afixable system with one repair worker, such that, as
the system meets up a specified time T, the repairman
will fix up the unit precautionary, and it will return to
operation as soon as the fixing is completed. Mirjalili
and Kazempoor (2020) presented three replacement
plans for a system consisting of independent
components with arising failure rate. Safaei et al. (2020)
used the copula framework to provide two optimal age
replacement policies based on the expected cost and
maximum availability functions. The chalenge of
adopting the best aliment strategy among three charge-
effective aliment planning approaches was investigated
by Rebaiaia and Ait-kadi (2020). Sanoubaret al. (2020)
considered a time replacement strategy for a system,
which is replaced a the breakdown or a specific
replacement time, whichever comes first, and
replacement charges are estimated to be non-decreasing.
Wu et al. (2021) established corresponding replacement
models for a deteriorating repairable system with
multiple vacations of one repairman. Al-Chalabi (2022)
developed a cost minimization model to optimize the
lifetime of adrill rig used in the Tara underground mine
in Ireland. The model can estimate the economic
replacement time of fixable instruments applied in the
mining and other production industries. In trying to
optimize the repair plan for some systems, Bi et d.
(2022) proposed a method for the enhancement of repair
efficiency for systems such as gas and water networks
system. Waziri (2021) offered a discontinuous projected
replacement charge function for a unit subjected to three
forms of breakdown involving fix-up. Also, Waziri and
Yusuf (2021) came up with a discontinuous projected
replacement charge model for a multi-component
system involving two levels of breakdown.

Nakagawa (2005) explained that sometimes
functional units could not be changed at the precise
optimum times due to some issues. a shortage of spare
units, lack of money or workers, or inconvenience of
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time required to complete the replacement, units may be
instead replaced in idle times, e.g., weekend, month-end,
or year-end. However, the author of this paper did not
come across any existing work presenting a discrete fix-
up limit model. This reason motivated the author of this
paper to convert the continuous fix-up a limit model of
some two systems to a discrete one. Additionally, the
paper will explore the characteristics of the model
presented.

The subsequent sections of this paper are arranged
in this order: Section 2 presents the used notations and
assumptions. Section 3 presents the description of the
system. Section 4 presents the formulation of the model.
Section 5 presents the numerical example. Section 6
presents the general discussion of the results. Section 7
presents the significance of the results obtained. Finally,
section 8presents the conclusion.

3. Systemsdescription

Consider six components D;,D,,... andD,, arranged in
two different formations to form two systems, which are
series-parallel formation(S;)and parallel-series
formation(S,).S; formation has three subsystems (which
are D, D,, D;D, and DsDg), while S, formation is having
two subsystems (which are D;D,D;and D,DsDy). It
assumed that al the six components are subjected to a
particular failure, rectified by minor fix up. The series
formation fails due to the failure if at least one of the six
component(s) fails due to the particular failure, and the
failure isrectified by fix up the failed component(s). For
the parallel formation, the formation fails due to the
failure if dl the components fail due to the particular
failure, and such failure is rectified by fixing up dl the
six failed components. When a formation fails, its fix up
is started immediately. When the fix up is not completed
within the specified discrete limit time projected time
LT (L=1,2,3,..) for afixed T, it is replaced with a
new one. Let C, be the replacement cost of a failed
formation that includes all costs caused by failure and
replacement. Let C,(LT) be the expected charge of
minor fix up during(0, LT], forL = 1,2, 3, ... and a fixed
T, which includes al charges incurred due to fix up and
downtime during and be bounded on a finite interval.
Due to insufficient fund, fix up man or difficulty of time
required to complete the fix up of the failed system, the
failed system sometimes cannot be fix up completely
within the exact optimum fix up limit times. The
formation may be fix up in discrete limit time LT (L =
1,2,3,...) for afixed T.S; formation fails if at least one
of the three subsystems fails, whileS, formation fails if
a least one component fails from both the two
subsystems fail.

{ D1]_[ Dz}[ Dq}
D, D, D

Figure 1. Reliability block diagram of S, formation
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Figure 2. Reliability block diagram of S, formation.

4. Formulation of the model

The probability that series-parallel(S;)formation
will be fixed up within the discrete fix up limit time
LT(L =1,2,3,..) forafixed Tinonecycleis
Hg, (LT) = (1 - (1 —R;(LT))(1 — R3(LT))) x

(1 - (1= R3(LT)(A — R(LTY)) @
X (1= (1=Ri(LT))(1 —Ry(LT)))
While, the probability that paralel-

series(S,)formation will be fixed up within the discrete
fix up limit time LT(L = 1, 2,3, ...) for afixed T in one
cycleis

Hg,(LT) = 1 — (1 — R{(LT)R3(LT)R3(LT)) X

2
(1— Ry(LT)RL(LT)RY(LT)) @
where
Hy(LT) = e~ o 1i®at gor 3
i=123,..,n.

The probability that series-parallel(S;) and parallel-
series (S,) formations will be not fix up within the
discrete fix up limit timeLT (L = 1,2,3,...) for afixed
Tinonecycleis
Hg,(LT) = 1 — Hy,(LT), fori = 1,2. )

The cost of replacement for the faled series-
parallel (S;) and parallel-series (S,) formations that is
not fix up within the discrete fix up limit time LT (L =
1,2,3,...) forafixed T in onecycleis
Costofreplacement = (C, + C,(LT))Hs,(LT),
. l (5)
or i=1,2

The cost of fix up for the failed series-parallel (S,)
and pardle-series (S,) formations within the periodic
fix up limit timeLT (L = 1,2,3,...) for afixed T in one
cycleis
Costofminorfixup = fOLT C(t)dHs, (1), ©
fori = 1,2.

Using equations (5) and (6), the cost for the series-
parallel (S;) and paralle-series (S,) formations within
the discrete fix up limit timeLT (L =1,2,3,...) for a
fixed T inonecycleis
(€, + C(LT)H5,(LT) + [} C,(6)dHs,(6) =
C,Hs,(LT) + [} Hy,()dC, (2), @
for i =1,2.
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The mean failure time for the series-parallel (S;)
and parallel-series (S,) formations within the discrete fix
up limit time LT (L =1,2,3,...) for afixed T in one
cycleis
Meantime = p + fOLT Hg,(t)dt, fori = 1,2. (8)

Using equations (7) and (8), the fix up limit
function for the series-parallel (S;) and paralé-series
(S,) formations within the discrete fix up limit time
LT (L =1,2,3,...) forafixed T in onecycle, is
Cs.(L) = CrHs,(LT)+ [y Hs,()ACx(t)

) f | =
p+f0LTH5i(t)dt ort (9)
1,2.

Note following observations:

1. Observed that, as L approaches zero, we have

€S;(0) = lim,_, CS;(L) = % for i =1,2. (10)
2. Observed that, as L approaches infinity, we
have

- g
CS;(0) =lim;, CS;(L) = W Hs,(0dt RGN
i=1,2.

5. Numerical example
In this section, two numerical examples were provided
to illustrate the proposed replacement cost model's
characteristics. Let the fix up rate of the fixable failure
for the six components obeys the Weibull distribution:
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r(t) = 2; o; t<i71 fori =1,2,3,4,5,6, (12
Whereo;> 1 and t = 0.
For illustration purposes, let us consider a simple
numerical example based on the assumptions. Suppose
1 =4, x,=2, o3=3,,=2, xz=2, and
Xg= 3.
2. 1, =0.03,4, =0.002, A; = 0.03, 4, = 0.001
, A5 =0.02and A, = 0.01.
3. C,=30,u=2andC, = 2t
By substituting the parameters for the fix up rate in
equation (12), the following equations below are
obtained as follows:

i (t) = 0.12¢3 (13)
r,(t) = 0.06t ; (14)
r3(t) = 0.09t2 ; (15)
7, (t) = 0.002t2 ; (16)
r5(t) = 0.02t3; 17
75(t) = 0.03t2. (18)

Table 1 and Table 2 below are obtained by
substituting the assumed costs of replacement and fix up
(C, = 30, u = 2andC, = 2t?) and fix up rate for the six
components(equations (13), (14), (15), (16), (17) and
(18)) in equation (9). Noting that in the continuous case,
the optima repair limit time for parale formation is
larger than that of the series formation, that is why the
choice of values of T for €S, (L) is larger than that of
CS;(L).

Table 1.Values of CS;(L) with various values of T versus L.

L CSi(L)as | CSy(L)as | CSy(L)as | CSy(L)as | CSy(L)as | CSy(L)as | CSy(L)as
T=0.2 T=04 T=0.6 T=0.8 T=1 T=15 T=2
1 9.94 9.82 9.61 9.28 8.78 6.71 3.84
2 9.82 9.28 8.10 6.17 3.84 0.57 0.47
3 9.61 8.10 5.01 1.88 0.57 0.52 0.67
4 9.28 6.17 1.88 0.46 0.47 0.67 0.84
5 8.78 3.84 0.57 0.47 0.57 0.80 1.00
6 8.10 1.88 0.44 0.55 0.67 0.92 1.14
7 7.22 0.81 0.49 0.63 0.76 1.04 1.27
8 6.17 0.46 0.55 0.70 0.84 1.14 1.39
9 5.01 0.44 0.61 0.77 0.92 1.24 1.50
10 3.84 0.47 0.67 0.84 1.00 1.33 1.60
11 2.77 0.51 0.72 0.91 1.07 142 1.69
12 1.88 0.55 0.77 0.97 1.14 1.50 1.78
13 1.23 0.59 0.83 1.03 1.21 1.58 1.86
14 0.81 0.63 0.88 1.09 1.27 1.65 1.93
15 0.57 0.67 0.92 1.14 1.33 171 2.00
16 0.46 0.70 0.97 1.20 1.39 1.78 2.06
17 0.43 0.74 1.01 1.25 1.45 1.84 2.13
18 0.44 0.77 1.06 1.30 1.50 1.89 2.18
19 0.45 0.81 1.10 1.35 1.55 1.95 2.24
20 0.47 0.84 1.14 1.39 1.60 2.00 2.29
21 0.49 0.88 1.18 1.44 1.65 2.05 2.33
22 0.51 0.91 1.22 1.48 1.69 2.10 2.38
23 0.53 0.94 1.26 1.52 1.74 2.14 2.42
24 0.55 0.97 1.30 1.56 1.78 2.18 2.46
25 0.57 1.00 1.33 1.60 1.82 2.22 2.50
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Table 2. Vaues of CS,(L)with various values of T versusL.

L [ CS(L)as CS(L)as CSi(L)as CS(L)as CS(L)as | CS(L)as | CS(L)as
T=1 T=10 T=20 T=30 T=40 T=50 T=60
1 10.000 9.982 9.892 9.738 9.513 9.224 8.883
2 10.000 9.892 9.513 8.883 8.101 7.273 6.477
3 10.000 9.738 8.883 7.687 6.477 5.432 4.596
4 10.000 9.513 8.101 6.477 5.130 4.146 3.460
5 9.999 9.224 7.273 5.432 4.146 3.325 2.814
6 9.998 8.883 6.477 4.596 3.460 2.814 2.456
7 9.995 8.504 5.757 3.950 2.989 2.501 2.268
8 9.992 8.101 5.130 3.460 2.670 2.317 2.182
9 9.988 7.687 4.596 3.090 2.456 2.215 2.158
10 9.982 7.273 4.146 2.814 2.317 2.168 2.172
11 9.976 6.867 3.771 2.608 2.230 2.158 2.211
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L [ CS()as CSi(L)as CS(L)as CS(L)as CSy(L)as CS(L)as | CSy(L)as
T=1 T=10 T=20 T=30 T=40 T=50 T=60
12 9.969 6.477 3.460 2.456 2.182 2.172 2.264
13 9.961 6.106 3.202 2.346 2.160 2.203 2.327
14 9.953 5.757 2.989 2.268 2.159 2.245 2.394
15 9.944 5.432 2.814 2.215 2.172 2.295 2.464
16 9.935 5.130 2.670 2.182 2.196 2.349 2.534
17 9.925 4.852 2.552 2.164 2.227 2.406 2.604
18 9.915 4.596 2.456 2.158 2.264 2.464 2.672
19 9.904 4.361 2.379 2.161 2.305 2.522 2.739
20 9.892 4.146 2.317 2.172 2.349 2.581 2.803
21 9.880 3.950 2.268 2.189 2.394 2.638 2.864
22 9.867 3.771 2.230 2.211 2.440 2.694 2.924
23 9.853 3.608 2.202 2.236 2.487 2.749 2.980
24 9.839 3.460 2.182 2.264 2.534 2.803 3.034
25 9.824 3.325 2.168 2.295 2.581 2.854 3.085
26 9.808 3.202 2.160 2.327 2.627 2.904 3.134
27 9.791 3.090 2.158 2.360 2.672 2.952 3.181
28 9.774 2.989 2.159 2.394 2.717 2.998 3.225
29 9.756 2.897 2.164 2.429 2.760 3.043 3.266
30 9.738 2.814 2.172 2.464 2.803 3.085 3.306
10.05 12
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12 12
CSz(P) as T=10 CSy(L) 25 T=30
10 10
3 8
E 6 g 6
[ N
4 4
2 2 )
0 0
1234567 8 0101112131415161718192021222324252627282930 12345678 910111213141516171819202122 132475 2677282030
DISCRETE FIX UF LIMIT TIME (L) DISCRETE FIX UP LIMIT TIME(P)

Figure 8. Theplot of CS,(L) versusL asthevaueof T =10 Figure 10. The plot of CS,(L) versusL asthevalueof T =30
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Some observations from the results obtained are as
follows
1. Table 3 below presents the optimal discrete fix
up limit times of the series-parallel and
parallel-series formations with various values
of T, extracted from Tables 1 and 2.
Table 3. Optimal discrete fix up limit times for the S; and S,

formations
Values of
T for §, 0.2 0.4 06 (08| 1 |15 2
L§1 17 9 6 4 4 3 2
Values of
T for S, 1 10 20 | 30 | 40 | 50 | 60
L Vey | age| 27|18 14|12 9
2 large
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2. From Figure 6, observe that:

(€S4(L), T=1) < (CS+(L), T=10) <
(€S4(L), T =20) < (€CS4(L), T=30) <
(€CS4(L), T = 40) < (CS1(L), T =50) <
(€S4(L), T = 60).

3. From Table 3, the optimal discrete fix up limit
times of the series-parallel and paralé-series
formations decreases as the value of T
decreases.

4. From Figure 12, observe that:

(CS,(L), T =1) < (CS,(L), T =10) <
(CSz(L), T =20) < (CS,(L), T=30) <
(CSL(L), T = 40) < (CS,(L), T = 50) <
(€CS,(L), T = 60).

5. Figures 1, 2, 3, 4 and 5 are the sketches
ofCS,(L) versus the discrete fix up limit time
(L) for the series-parallel formation.

6. Figures 7, 8, 9,10 and 11 are the sketches
ofCS,(L) versus the discrete fix up limit
time(L) for the parallel-series formation.

7. From Figure 13, observe that :CS;(L) <
CS,(L), as T=1.

6. General discussion of result

In search of the properties of the discrete fix up limit
model constructed for the series-pardlel (S;) and
parallel-series(S,) formations, the results obtained
showed that the optimal discrete fix up limit time of the
series-parallel formation (S,) is lower than that of the
parallel-series formation (S,). This situation occurs as
the result of the arrangement of the components. It can
be seen that, as the value of T increases, the optimal
discrete fix up limit times of series-pardlel (S;) and
parallel-series (S,) formations decrease. As the value of
T increases, the vaues of the discrete fix up limit
function for both the series-paralél(S;) and parallel-
series(S,) formations aso increase. Furthermore, the
values of the discrete fix up limit function for the series-
parallel formation are less than that of the parallel-series
formation.

7. Significance of results

Failed component(s) or subsystem(s) of various systems
such as commercial vehicles, hydropower plants, and
chemical plants sometimes requires a repair at ideal
times to get the full attention of a professional repairman
or to avoid scarcity of product on the norma working
days. For the significance of this paper, the results
obtained in this paper provided a vita theoretical
strategy or policy for maintaining multi-components
systems at a projected discrete fix up limit ideal times,
such as weekend, month-end, or year-end. The results
advantages provide a chance of obtaining the optimal
discrete fix up limit time of multi-components.
Furthermore, sometimes transportation systems are less
busy on some day(s) of the week of the year, which can
plan or selected for al repairs.
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8. Conclusion

This paper developed a discrete fix up limit model for
series-parallel(S;) and parallel-series(S,) formations
exposed to a fixable failure to provide a chance of
completing fixing up a failed system within a discrete
fix up limit time LT (L = 1,2,3,...) for afixed T. Itis
assumed that, if a formation fails, the fix up is started
immediately. When the fix up is not completed within
the discrete fix up limit time, it is replaced with a new
one. A numerical example was provided to investigate
the characteristics of the constructed discrete fix up limit
function for the series-paralel(S,) and parallel-series(S,)
formations. From the results obtained, one can see that
the value of T affects the discrete fix up limit model
because of the two reasons as follows (i) as the value of
T increases, the optimal discrete fix up a limit time for
the series-paralel(S,) and parallel-series(S,) formations
decreases; (ii) and, as the value of T increases, the value
of the discrete fix up limit function for both the series-
paralel(S;) and parale-series(S,) formations aso
increases. To finalize the discussion of the results
obtained, the results showed that, the optimal fix up
limit time of the parallel-series formation is higher than
that of the series-parallel formation.
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