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Abstract 
This paper studies a discrete fix-up limit policy for two systems. Because sometimes, a failed system cannot be completely fixed at 
the optimal fix-up limit time due to some logistic issues. This paper provides a chance to complete fixing up a failed system within a 
discrete fix-up limit time LT (L=1,2,3…) for a fixed T. The explicit expression of the expected long-term cost per unit time is 
derived for the two systems based on the assumptions of the systems. Finally, a numerical example is given to illustrate the 
theoretical results of the proposed model. 
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1. Used notations and assumptions 

1.1 Used notation 

ܥ ௜ܵ(ܮ) Fix up limit function of formation ௜ܵ,  for ݅ = 1, ∗ௌభܮ 2  Optimal discrete fix up limit time of the series 
formationܵଵ 

∗ௌమܮ  
Optimal discrete fix up limit time of the parallel 
formation ܵଶ ߤ௜ Mean failure time of formation ௜ܵ, for ݅ = 1, 2 

 (ݐ)ௌ೔ܪ
Probability of fix up for failed formation ௜ܵ, for ݅ = 1, 2 

 (ݐ)ௌഢതതതതܪ
Probability of not fixing up failed formation ௜ܵ, for ݅ = 1, 2 

 (ݐ)௜ܪ
Probability of fix up for failed componentܦ௜, for ݅ = 1, 2, 3, … , 6 

 (ݐ)௜ݎ
Fix up rate of a failed component ܦ௜,  for ݅ =1, 2, 3, … ,6 

 ௥ܥ
Cost of changing a failed formation ௜ܵ, for ݅ = 1, 2, 
when the fix-up is not over within the discrete limit 
time LT, for a fixed T and ܮ = 1, 2, Fix up cost of failed formation (ݐ)௫ܥ …,3 ௜ܵ, for ݅ =1, 2,during (0, ܮ for a fixed T and ,[ܶܮ = 1, 2, 3,… 

1.2 Assumptions 
1. Both the series-parallel ( ଵܵ) and parallel-series (ܵଶ) 

formations are subjected to a failure, rectified by 
fix up. 

2. The fix up rate for the failed series-parallel ( ଵܵ) 
and parallel-series (ܵଶ) formations follows the non-
homogeneous Poisson process, such that all fix up 
rates are increasing. 

3. If the fix up for the failed series-parallel ( ଵܵ) and 
parallel-series (ܵଶ) formations is not completed 
within the specified discrete limit time ܮ)ܶܮ =1, 2, 3, … ) for a fixed T, then it is replaced with a 
new one. 

4. The cost for the fix-up of the two formations is 
proportional to time. 

2. Introduction 
The maintenance actions for multi-component systems 
have been more serious issues in the last few decades 
because the systems are becoming more complicated, 
having many relating or dependent components. 
Sometimes, a failed system cannot be fixed up entirely 
at the exact optimal fix-up limit due to some issues, but 
during idle periods, it can give the chance to finish 
fixing up the failed device completely. Many researchers 
have studied various repair limit problems in the 
maintenance literature. Bai and Hoang (2005) applied a 
quasi-renewal process to study a repair-limit risk free 
warranty with a threshold point on the number of repairs 
of a system, where replacement is deemed more cost-
effective after that. Aven and Castro (2008) presented a 
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minimal repair replacement model for a single unit 
system subjected to two types of failures under a safety 
constraint. Niwas and Garg (2018) built a mathematical 
model of a system based on the Markov process to 
examine the properties of an industrial plant under the 
charge-free warranty policy and also derived various 
reliability parameters. Xie et al. (2020) investigated the 
implications of cascading failures of a particular system 
and the effects of safety barriers on preventing failures. 
Maihula et al. (2021) studied some reliability measures 
such as reliability, mean time to failure availability, and 
profit function for a solar serial system with four 
subsystems to look for ways to improve the whole 
reliability of the solar system. Sanusi and Yusuf 
(2022)analyzed the reliability and profit of data center 
network topology. Also, they came up with a suitable 
maintenance technique to improve system performance, 
which is vital for reliability and maintenance managers. 
There are many maintenances, replacement, and 
inspection models, and recent research has attempted to 
unify some of them. Beichelt et al. (2006) proposed 
some replacement policies for a system based on two 
strategies. Strategy 1: after a failure, the repair cost is 
estimated. If the repair cost exceeds a given limit, the 
system is not repaired but replaced with a new one. 
Strategy 2: the system is replaced as soon as the total 
repair costs arising during its running time exceed a 
given limit. Kapur et al. (2007) proposed some aliment 
cost function of a unit subjected to two types of 
breakdown under the idea of a fix-up charge limit as 
listed : (i) the unit is replaced at the nth breakdown, or 
when the estimated moderate fix-up charge exceeds a 
particular limit c; (ii) a unit has two types of breakdown 
and is replaced at the nth type 1 breakdown, or type 2 
breakdown, or when the estimated repair cost of type 1 
breakdown exceeds a limit c; (iii) the unit is replaced at 
the nth type 1 breakdown, type 2 breakdown, or when 
the estimated fix up-charge due to type 1 breakdown 
exceeds a predetermined limit c. Chang et al. (2010) 
considered a replacement model with minimal repair 
based on a cumulative repair-cost limit policy, where the 
information of all repair costs is used to decide whether 
the system is repaired or replaced. Chen and Chang 
(2015) presented a charge function of a system 
involving two levels of alarms, such that the system 
undergoes precautionary care at a projected time T or 
immediately after the nth level-I alarm, and restorative 
care at the projected time T when the entire damage 
exceeds a catastrophic limit or immediately after any 
level-II alarm, whichever comes first. Lewaherilla et al. 
(2016) developed a minimal repair model for a fishing 
vessel such that the failure rate follows Weibull and non 
homogeneous Poisson process. 

Furthermore, they also made some comparative 
analyses of their proposed model with other related 
existing models. Laia et al. (2017) developed a bivariate 
(n,k) replacement policy with a cumulative repair cost 
limit for a two-unit system is studied, in which the 
system is subjected to a shock damage interaction 

between units. Each unit 1 failure causes random 
damage to unit 2, and these damages are additive. Unit 2 
will fail when the total damage of unit 2 exceeds a 
failure level K, and such a failure makes unit 1 fail 
simultaneously, resulting in a total failure. 

Several authors present various special preventive 
maintenance models. Safaei et al. (2018) explored a 
system's best precautionary aliment actions based on 
some stated terms. Wang et al. (2019) considered a 
repairable system with one repairman. When the system 
fails, the repairman fixes it immediately, and they derive 
an explicit expression of the long-run average cost rate 
function C(T,N) for the system based on some 
assumptions. Sheu et al.(2019) proposed precautionary 
replacement charge functions of a system prone to 
particular distress, in which the system is either replaced 
with the latest one or fixed up when distress occurs. 
Sudheeshet al. (2019) looked at the discontinuous 
replacement charge function before looking at the 
features of a system's mean time to failure (MTTF). 
Wang et al. (2019) obtained the charge function ܥ(ܶ, ܰ) 
for a fixable system with one repair worker, such that, as 
the system meets up a specified time T, the repairman 
will fix up the unit precautionary, and it will return to 
operation as soon as the fixing is completed. Mirjalili 
and Kazempoor (2020) presented three replacement 
plans for a system consisting of independent 
components with a rising failure rate. Safaei et al. (2020) 
used the copula framework to provide two optimal age 
replacement policies based on the expected cost and 
maximum availability functions. The challenge of 
adopting the best aliment strategy among three charge-
effective aliment planning approaches was investigated 
by Rebaiaia and Ait-kadi (2020). Sanoubaret al. (2020) 
considered a time replacement strategy for a system, 
which is replaced at the breakdown or a specific 
replacement time, whichever comes first, and 
replacement charges are estimated to be non-decreasing. 
Wu et al. (2021) established corresponding replacement 
models for a deteriorating repairable system with 
multiple vacations of one repairman. Al-Chalabi (2022) 
developed a cost minimization model to optimize the 
lifetime of a drill rig used in the Tara underground mine 
in Ireland. The model can estimate the economic 
replacement time of fixable instruments applied in the 
mining and other production industries. In trying to 
optimize the repair plan for some systems, Bi et al. 
(2022) proposed a method for the enhancement of repair 
efficiency for systems such as gas and water networks 
system. Waziri (2021) offered a discontinuous projected 
replacement charge function for a unit subjected to three 
forms of breakdown involving fix-up. Also, Waziri and 
Yusuf (2021) came up with a discontinuous projected 
replacement charge model for a multi-component 
system involving two levels of breakdown. 

Nakagawa (2005) explained that sometimes 
functional units could not be changed at the precise 
optimum times due to some issues: a shortage of spare 
units, lack of money or workers, or inconvenience of 
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time required to complete the replacement, units may be 
instead replaced in idle times, e.g., weekend, month-end, 
or year-end. However, the author of this paper did not 
come across any existing work presenting a discrete fix-
up limit model. This reason motivated the author of this 
paper to convert the continuous fix-up a limit model of 
some two systems to a discrete one. Additionally, the 
paper will explore the characteristics of the model 
presented. 

The subsequent sections of this paper are arranged 
in this order: Section 2 presents the used notations and 
assumptions. Section 3 presents the description of the 
system. Section 4 presents the formulation of the model. 
Section 5 presents the numerical example. Section 6 
presents the general discussion of the results. Section 7 
presents the significance of the results obtained. Finally, 
section 8presents the conclusion. 

3. Systems description  
Consider six components ܦଵ,ܦଶ,… andܦ଺, arranged in 
two different formations to form two systems, which are 
series-parallel formation( ଵܵ)and parallel-series 
formation(ܵଶ). ଵܵ formation has three subsystems (which 
are ܦଵܦଶ, ܦଷܦସ and ܦହܦ଺), while ܵଶ formation is having 
two subsystems (which are ܦଵܦଶܦଷand ܦସܦହܦ଺). It 
assumed that all the six components are subjected to a 
particular failure, rectified by minor fix up. The series 
formation fails due to the failure if at least one of the six 
component(s) fails due to the particular failure, and the 
failure is rectified by fix up the failed component(s). For 
the parallel formation, the formation fails due to the 
failure if all the components fail due to the particular 
failure, and such failure is rectified by fixing up all the 
six failed components. When a formation fails, its fix up 
is started immediately. When the fix up is not completed 
within the specified discrete limit time projected time ܮ) ܶܮ = 1, 2, 3, … ) for a fixed T, it is replaced with a 
new one. Let ܥ௥ be the replacement cost of a failed 
formation that includes all costs caused by failure and 
replacement. Let ܥ௫(ܶܮ) be the expected charge of 
minor fix up during(0, ܮfor ,[ܶܮ = 1, 2, 3, … and a fixed 
T, which includes all charges incurred due to fix up and 
downtime during and be bounded on a finite interval. 
Due to insufficient fund, fix up man or difficulty of time 
required to complete the fix up of the failed system, the 
failed system sometimes cannot be fix up completely 
within the exact optimum fix up limit times. The 
formation may be fix up in discrete limit time ܮ) ܶܮ =1, 2, 3, … ) for a fixed T. ଵܵ formation fails if at least one 
of the three subsystems fails, whileܵଶ formation fails if 
at least one component fails from both the two 
subsystems fail.  

 
Figure 1.  Reliability block diagram of Sଵ formation 

 

Figure 2.  Reliability block diagram of Sଶ formation. 

4. Formulation of the model 
The probability that series-parallel( ଵܵ)formation 

will be fixed up within the discrete fix up limit time ܮ)ܶܮ = 1, 2, 3, … ) for a fixed T in one cycle is  ܪௌభ(ܶܮ) = ൫1 − (1 − ܴଵ∗(ܶܮ))(1 − ܴଶ∗(ܶܮ))൯ ×൫1 − (1 − ܴଷ∗(ܶܮ))(1 − ܴସ∗(ܶܮ))൯  × ൫1 − (1 − ܴହ∗(ܶܮ))(1 − ܴ଺∗(ܶܮ))൯  
(1) 

While, the probability that parallel-
series(ܵଶ)formation will be fixed up within the discrete 
fix up limit time ܮ)ܶܮ = 1, 2, 3, … ) for a fixed T in one 
cycle is  ܪௌమ(ܶܮ) = 1 − (1 − ܴଵ∗(ܶܮ)ܴଶ∗(ܶܮ)ܴଷ∗(ܶܮ)) ×(1 − ܴସ∗(ܶܮ)ܴହ∗(ܶܮ)ܴ଺∗(ܶܮ))  

(2) 

where ܪ௜(ܶܮ) = ݁ି ׬ ௥೔(௧)ௗ௧ಽ೅బ , for  ݅ = 1, 2, 3, … , ݊. 
(3) 

The probability that series-parallel( ଵܵ) and parallel-
series (ܵଶ) formations will be not fix up within the 
discrete fix up limit timeܮ) ܶܮ = 1, 2, 3, … ) for a fixed 
T in one cycle is  ܪഥௌ೔(ܶܮ) = 1 − ,(ܶܮ)ௌ೔ܪ for݅ = 1, 2. (4) 

The cost of replacement for the failed series-
parallel ( ଵܵ) and parallel-series (ܵଶ) formations that is 
not fix up within the discrete fix up limit time ܮ) ܶܮ =1, 2, 3, … ) for a fixed T in one cycle is ݐ݈݊݁݉݁ܿܽ݌݁ݎ݂݋ݐݏ݋ܥ = ௥ܥ) + for,(ܶܮ)ഥௌ೔ܪ((ܶܮ)௫ܥ ݅ = 1, 2  

(5) 

The cost of fix up for the failed series-parallel ( ଵܵ) 
and parallel-series (ܵଶ) formations within the periodic 
fix up limit timeܮ) ܶܮ = 1, 2, 3, … ) for a fixed T in one 
cycle is ݌ݑݔ݂݅ݎ݋݂݊݅݉݋ݐݏ݋ܥ = ׬ ௅்଴(ݐ)ௌ೔ܪ݀(ݐ)௫ܥ , 

for݅ = 1, 2. 
(6) 

Using equations (5) and (6), the cost for the series-
parallel ( ଵܵ) and parallel-series (ܵଶ) formations within 
the discrete fix up limit timeܮ) ܶܮ = 1, 2, 3, … ) for a 
fixed T in one cycle is (ܥ௥ + (ܶܮ)ഥௌ೔ܪ((ܶܮ)௫ܥ + ׬ (ݐ)ௌ೔ܪ݀(ݐ)௫ܥ =௅்଴ܥ௥ܪഥௌ೔(ܶܮ) + ׬ ௅்଴(ݐ)௫ܥ݀(ݐ)ഥௌ೔ܪ , for ݅ = 1, 2. 

(7) 

૜ࡰ

 ૞ࡰ

૚ࡰ ૛ࡰ

૝ࡰ ૟ࡰ

 ૛ࡰ

 ૜ࡰ ૚ࡰ

 ૝ࡰ

૞ࡰ

૟ࡰ



4/ IJRRS / Vol. 5/ Issue 1/ 2022 

 

 

T. A. Waziri

The mean failure time for the series-parallel ( ଵܵ) 
and parallel-series (ܵଶ) formations within the discrete fix 
up limit time ܮ) ܶܮ = 1, 2, 3, … ) for a fixed T in one 
cycle is ݁݉݅ݐ݊ܽ݁ܯ = μ + ׬ ௅்଴ݐ݀(ݐ)ഥௌ೔ܪ , for݅ = 1, 2. (8) 

Using equations (7) and (8), the fix up limit 
function for the series-parallel ( ଵܵ) and parallel-series 
(ܵଶ) formations within the discrete fix up limit time ܮ) ܶܮ = 1, 2, 3, … ) for a fixed T in one cycle, is ܥ ௜ܵ(ܮ) =     ஼ೝுഥೄ೔(௅்)ା׬ ுഥೄ೔(௧)ௗ஼ೣ(௧)ಽ೅బஜା׬ ுഥೄ೔(௧)ௗ௧ಽ೅బ , for   ݅ =1, 2.  (9) 

Note following observations: 
1. Observed that, as L approaches zero, we have ܥ ௜ܵ(0) ≡ lim௅→଴ ܥ ௜ܵ(ܮ) = ஼ೝஜ , for  ݅ = 1, 2. (10) 

2. Observed that, as L approaches infinity, we 
have ܥ ௜ܵ(∞) ≡ lim௅→ஶ ܥ ௜ܵ(ܮ) = ׬  ுഥೄ೔(௧)ௗ஼ೣ(௧)ಽ೅బஜା׬ ுഥೄ೔(௧)ௗ௧ಮబ ,for ݅ = 1, 2. (11) 

5. Numerical example 
In this section, two numerical examples were provided 
to illustrate the proposed replacement cost model's 
characteristics. Let the fix up rate of the fixable failure 
for the six components obeys the Weibull distribution: 

(ݐ)௜ݎ = ௜ߣ ∝௜ ೔ିଵ, for∝ݐ ݅ = 1, 2, 3, 4, 5, 6, (12) 
Where ∝௜> 1 and ݐ ≥ 0. 
For illustration purposes, let us consider a simple 

numerical example based on the assumptions. Suppose  
1. ∝ଵ= 4, ∝ଶ= 2, ∝ଷ= 3,∝ସ= 2, ∝ହ= 2, and ∝଺= 3. 
ଵߣ .2 = ଶߣ ,0.03 = ଷߣ ,0.002 = ସߣ ,0.03 = 0.001 

ହߣ , = 0.02 and  ߣ଺ = 0.01 . 
௥ܥ .3 = ߤ , 30 = 2andܥ௫ =  .ଶݐ2
By substituting the parameters for the fix up rate in 

equation (12), the following equations below are 
obtained as follows: ݎଵ(ݐ) = (ݐ)ଶݎ ଷ  ;  (13)ݐ0.12 = (ݐ)ଷݎ (14) ;  ݐ0.06 = (ݐ)ସݎ ଶ  ; (15)ݐ0.09 = ଶݐ0.002 ; (ݐ)ହݎ (16) = (ݐ)଺ݎ ଷ; (17)ݐ0.02 =  ଶ . (18)ݐ0.03

Table 1 and Table 2 below are obtained by 
substituting the assumed costs of replacement and fix up 
௥ܥ) = 30, μ = 2andܥ௫ =  ଶ) and fix up rate for the sixݐ2
components(equations (13), (14), (15), (16), (17) and 
(18)) in equation (9).  Noting that in the continuous case, 
the optimal repair limit time for parallel formation is 
larger than that of the series formation, that is why the 
choice of values of T for ܵܥଶ(ܮ) is larger than that of ܥ ଵܵ(ܮ). 

Table 1.Values of CS₁(L) with various values of T versus L. 
L CS₁(L)as 

T=0.2 
CS₁(L)as  

T=0.4 
CS₁(L)as 

T=0.6 
CS₁(L) as 

T=0.8 
CS₁(L)as 

T=1 
CS₁(L)as 

T=1.5 
CS₁(L)as 

T=2 

1 9.94 9.82 9.61 9.28 8.78 6.71 3.84 
2 9.82 9.28 8.10 6.17 3.84 0.57 0.47 
3 9.61 8.10 5.01 1.88 0.57 0.52 0.67 
4 9.28 6.17 1.88 0.46 0.47 0.67 0.84 
5 8.78 3.84 0.57 0.47 0.57 0.80 1.00 
6 8.10 1.88 0.44 0.55 0.67 0.92 1.14 
7 7.22 0.81 0.49 0.63 0.76 1.04 1.27 
8 6.17 0.46 0.55 0.70 0.84 1.14 1.39 
9 5.01 0.44 0.61 0.77 0.92 1.24 1.50 
10 3.84 0.47 0.67 0.84 1.00 1.33 1.60 
11 2.77 0.51 0.72 0.91 1.07 1.42 1.69 
12 1.88 0.55 0.77 0.97 1.14 1.50 1.78 
13 1.23 0.59 0.83 1.03 1.21 1.58 1.86 
14 0.81 0.63 0.88 1.09 1.27 1.65 1.93 
15 0.57 0.67 0.92 1.14 1.33 1.71 2.00 
16 0.46 0.70 0.97 1.20 1.39 1.78 2.06 
17 0.43 0.74 1.01 1.25 1.45 1.84 2.13 
18 0.44 0.77 1.06 1.30 1.50 1.89 2.18 
19 0.45 0.81 1.10 1.35 1.55 1.95 2.24 
20 0.47 0.84 1.14 1.39 1.60 2.00 2.29 
21 0.49 0.88 1.18 1.44 1.65 2.05 2.33 
22 0.51 0.91 1.22 1.48 1.69 2.10 2.38 
23 0.53 0.94 1.26 1.52 1.74 2.14 2.42 
24 0.55 0.97 1.30 1.56 1.78 2.18 2.46 
25 0.57 1.00 1.33 1.60 1.82 2.22 2.50 
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8. Conclusion 
This paper developed a discrete fix up limit model for 
series-parallel( ଵܵ) and parallel-series(ܵଶ) formations 
exposed to a fixable failure to provide a chance of 
completing fixing up a failed system within a discrete 
fix up limit time ܮ) ܶܮ = 1, 2, 3, … ) for a fixed T.  It is 
assumed that, if a formation fails, the fix up is started 
immediately. When the fix up is not completed within 
the discrete fix up limit time, it is replaced with a new 
one. A numerical example was provided to investigate 
the characteristics of the constructed discrete fix up limit 
function for the series-parallel( ଵܵ) and parallel-series(ܵଶ) 
formations. From the results obtained, one can see that 
the value of T affects the discrete fix up limit model 
because of the two reasons as follows (i) as the value of 
T increases, the optimal discrete fix up a limit time for 
the series-parallel( ଵܵ) and parallel-series(ܵଶ) formations 
decreases; (ii) and, as the value of T increases, the value 
of the discrete fix up limit function for both the series-
parallel( ଵܵ) and parallel-series(ܵଶ) formations also 
increases. To finalize the discussion of the results 
obtained, the results showed that, the optimal fix up 
limit time of the parallel-series formation is higher than 
that of the series-parallel formation.  
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