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Abstract 

Among all systems, the series system has the lowest optimal replacement time, while the parallel system has the highest 
optimal replacement time. This paper is comparing the standard age replacement strategy (SARS) with some proposed 
replacement strategies (strategy A and strategy B) for two multi-unit systems. Two numerical examples are provided for 
a simple illustration of the proposed replacement cost models under SARS, strategies A and B. The results obtained 
showed that strategy B can extend the optimal replacement time of a series system. 
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1. Introduction 
The failure of an operating unit or system might 
sometimes be costly, dangerous, negatively affect 
revenue, the production of defective items, or causes a 
delay in customer services. It is an important problem to 
determine when best to preventively replace or maintain 
an operating unit or system before failure. Under the age 
replacement policy, the series system has the lowest 
optimum replacement time, while the parallel system 
has the highest optimum replacement time. As the series 
system is the having the lowest optimum replacement 
time, this may lead to the early replacement of a series 
system.  

There is extensive literature on age replacement 
models with minimal repair. Cha and Finkelstein [1] 
introduced a new type of minimal repair to be called 
conditional statistical minimal repair, and their approach 
goes further and deals with the corresponding minimal 
repair processes for systems operating in a random 
environment. Chang [2] considered a system that suffers 
one of two types of failures based on a specific random 
mechanism. Chang and Chen [3] discussed that effective 
replacement policies should be collaborative once 
gathering data from the time of operations, mission 
durations, minimal repairs, and maintenance triggering 
approaches. Coria et al. [4] proposed an analytical 
optimization method for preventive maintenance 

replacement cost rate. Fallahnezhad and Najafian [5] 
studied the best time for performing preventive 
maintenance operations for many systems. Gheisary and 
Goli [6] investigated an efficient method to compute the 
exact reliability for a multi-state system is a system 
consisting of n components by using the distribution of 
bivariate order statistics. Based on the continuous-time 
Markov theory, Huang and Wang [7] construct a time-
replacement policy for multistate systems with aging 
multistate components so as determine the optimal time 
to replace the entire system. Jain and Gupta [8] studied 
optimal replacement policy for a repairable system with 
multiple vacations and imperfect coverage. Enogwe et 
al. [9] applied the knowledge of probability distribution 
of failure times and proposed a replacement model for 
items that fail suddenly. Lim et al. [10] presented some 
age replacement policies in which a system is replaced 
by a new one at the planned age and when a failure 
occurs before the planned replacement age, it can be 
either perfectly repaired with random probability ݌ or 
minimally repaired with random probability 1 −  Liu .݌
et al. [11] established uncertain reliability mathematical 
models of simple repairable series systems, simple 
repairable parallel systems, simple repairable series-
parallel systems, and simple repairable parallel-series 
systems, respectively. Malki et al. [12] presented some 
age replacement policies for a parallel system with 
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stochastic dependence. Mirjalili and Kazempoor [13] 
investigated three replacement policies including cold 
standby and minimal repair policies for a system 
consisting of independent components with increasing 
failure rate functions. Murthy and Hwang [14] discussed 
that, in a probabilistic sense, failures can be reduced 
through effective maintenance actions, and such 
maintenance actions can occur either at discrete time 
instants or continuously over time. Nakagawa [15] 
presented a modified standard age replacement (SAR) 
model to a discrete-time age replacement model. 
Nakagawa et al. [16] presented the advantages of some 
proposed replacement policies. In an approach for 
analyzing the behavior of an industrial system under the 
cost-free warranty policy, Niwas and Garg [17] 
developed a mathematical model of a system based on 
the Markov process, they also derived various 
parameters such as reliability, mean time to system 
failure, availability and expected profit for the system. 
Rebaiaia and Ait-kadi  [18] presented the problem of 
selecting the best among three maintenance strategies 
for conducting maintenance planning that is the most 
economical. Safaei et al. [19] investigated the optimal 
period for preventive maintenance and the best decision 
for repair or replacement in terms of some measures. 
Safaei et al. [20] used the copula framework and present 
two optimal age replacement policies based on the 
minimum expected cost function and maximum 
availability function for series or parallel systems with 
dependent components. Sanoubar et al. [21] considered 
an age-replacement policy (without minimal repair) 
under which the system is replaced at failure or at a 
prescribed replacement time, whichever occurs first, 
where it is assumed that replacement costs are non-
decreasing in system age. Sheu et al. [22] presented 
preventive replacement models for a system subjected to 
shocks that arrive according to a non-homogeneous 
Poisson process, such that when a shock takes place, the 
system is either replaced by a new one (type 2 failure) or 
minimally repaired (type 1 failure). Sudheesh et al. [23] 
considered the discrete age-replacement model, and then 
studied the properties of mean time to failure of a 
system. Tsoukalas and Agrafiotis [24] introduced a new 
replacement policy for a system with correlated failure 
and usage time. Waziri et al. [25] explored some 
characteristics of an age replacement model with 
minimal repair for a series-parallel system with six units, 
such that the six units are having non-uniform failure 
rates. Waziri [26] presented a discrete scheduled 
replacement model with the discounting rate for a unit 
that is subjected to three categories of failures. 
Furthermore, Waziri and Yusuf [27] presented a discrete 
scheduled replacement cost model for a multi-
component system that is subjected to two categories of 
failures. Wu et al. [28] proposed a new replacement 
policy and established corresponding replacement 
models for a deteriorating repairable system with 
multiple vacations of one repairman. Xie et al. [29] 
analyzed the impacts of cascading failures on the 

reliability of series-parallel systems, where they studied 
the effects of safety barriers on preventing occurring 
failures. Yaun and Xu [30] studies a cold standby 
repairable system with two different components and 
one repairman taking multiple vacations. Yusuf and Ali 
[31] constructed an age replacement cost model for a 
parallel system with units under some assumptions. 
Zhao et al. [32]investigated the problem of which 
replacement is better between continuous and discrete 
scheduled replacement times. Zhao et al. [33] developed 
some analytic replacement cost rates under two 
proposed policies considering random mission durations 
time, to avoid preventive replacement during the 
mission period. 

The literature review presented in this paper did not 
capture a method or strategy for extending the optimal 
replacement time of a multi-component system. This 
paper will come up with some replacement cost models 
under some proposed strategies, to see the possibility of 
extending the optimum replacement time of series and 
parallel systems, and this will be achieved through the 
following objectives:   

1. By constructing an age replacement cost model 
for series and parallel systems under the 
standard age replacement strategy (SARS). 

2. By constructing age replacement cost models 
for series and parallel systems under two 
proposed strategies. 

3. By providing some two numerical examples for 
a simple illustration of the constructed 
replacement cost models. 

2. Notations and systems description 

2.1 Notations ݎ௜(ݐ)  
Type I failure rate of unit ܣ௜ ,for ݅ =1, 2, 3, 4, 5,   (ݐ)∗௜ݎ6
Type II failure rate of unit ܣ௜, for ݅ =1, 2, 3, 4, 5, 6 . ܴ௜∗(ݐ)  
Reliability function of Type II failure of unit ܣ௜, for  ݅ = 1, 2, 3, 4, 5, ܥ Standard age replacement strategy  ܴܵܣܵ .6 ௜ܵ(ܶ)  
Cost rate of system ௜ܵunder SARS, for ݅ = 1, ܻܥ.2 ௜ܵ(ܶ) 
Cost rate of system ௜ܵunder strategy A, for ݅ = 1, ܼܥ2 ௜ܵ(ܶ) 
Cost rate of system ௜ܵunder strategy B, for ݅ = 1, 2.

ௌܺ௜∗   
Optimal replacement time of system ௜ܵ under 
SARS, for ݅ = 1, 2. 

ௌܻ௜∗   
Optimal replacement time of system ௜ܵunder 
strategy A, for ݅ = 1, 2. ܼௌ௜∗   
Optimal replacement time of system ௜ܵunder 
strategy B, for ݅ = 1,   ௜௥ܥ .2
 Cost of unplanned replacement of failed ܣ௜due to Type II failure, for ݅ = 1, 2, 3, 4,5,   ௜௠ܥ.6
Cost of minimal repair of failed unit ܣ௜due to 
Type II failure, for ݅ = 1, 2, 3, 4, 5, 6.
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 ௦௣  Cost of planned replacement of system ௜ܵ atܥ
planned replacement time T, for ݅ = 1,   ௦௥ܥ .2
Cost of un-planned replacement of system ௜ܵdue to Type II failure, for ݅ = 1, 2. 

2.2 Systems description  
Consider six unitsܣଵ, ܣଶ, ܣଷ,  ଺, arranged toܣ ହ andܣ,ସܣ
form two different systems, series system ( ଵܵ) and 
parallel system (ܵଶ). It is assumed that all the six units 
are subjected to Type I and Type II failures, such that, 
Type I failure is a repairable one, while Type II failure is 
a non-repairable failure. Now, since all the six units are 
subjected to Type I and Type II failures, then we can say 
that all the two systems are also subjected to Type I and 
Type II failures.  See the Figures 1 and 2 for the diagram 
of the two systems ( ଵܵ and ܵଶ). 
 

 

Figure 1. Reliability block diagram of system ࡿ૚ 

 

Figure 2. Reliability block diagram of system ࡿ૛ 

3. Formulation of cost model under 
SARS 

3.1 Some assumptions under SARS 
1. If a system fails due to Type I failure, then the 

system is minimally repaired. 
2. If a system fails due to Type II failure, then the 

whole system is replaced completely with a 
new one. 

3. Both the two types of failures for the six units 
arrive according to a non-homogeneous 
Poisson process. 

4. The rate of Type II failure follows the order: ݎଵ∗(ݐ) ≥ (ݐ)∗ଷݎ ≥ (ݐ)∗ହݎ ≥ (ݐ)∗ଶݎ ≥ (ݐ)∗ସݎ  .(ݐ)∗଺ݎ≤

5. The rate of Type I failure follows the order: ݎଵ(ݐ) ≥ (ݐ)ଷݎ ≥ (ݐ)ହݎ ≥ (ݐ)ଶݎ ≥ (ݐ)ସݎ ≥  .(ݐ)଺ݎ
6. A system is replaced at a planned time ܶ(ܶ >0) after its installation or at Type II failure, 

whichever arrives first.  
7. The cost of the planned replacement of a 

system is less than the cost of un-planned 
replacement. 

8. The cost of repair of a failed unit is less than 
the cost of replacement of a unit. 

9. All costs are positive numbers. 
The probability that system ଵܵ will be replaced at 

planned replacement time ܶ, before Type II failure 
occurs, is ܴௌଵ∗ (ܶ) = ܴଵ∗(ܶ)ܴଶ∗(ܶ)ܴଷ∗(ܶ)ܴସ∗(ܶ)ܴହ∗(ܶ)ܴ଺∗(ܶ)  (1) 

The probability that system ܵଶ will be replaced at 
planned replacement time ܶ, before Type II failure 
occurs, is 

(2) 

In the meantime systems of ଵܵ and ܵଶ under SARS, 
is ݊ܽ݁ܯ ݁݉݅ݐ = ∫ ܴௌ௜∗ ଴்ݐ݀(ݐ)  , for ݅ = 1, 2 . (3) 

The cost of un-planned replacement (failure due to 
Type II failure) of ଵܵ and ܵଶ in one replacement cycle, is  ݐݏ݋ܥ ݂݋ ݈݀݁݊݊ܽ݌݊ݑ ݐ݈݊݁݉݁ܿܽ݌݁ݎ = ௦௥൫1ܥ −ܴௌ௜∗ (ܶ)൯ , for   ݅ = 1, 2 . 

(4) 

The cost of planned replacement at time T of ଵܵ 
and ܵଶ in one replacement cycle, is  ݐݏ݋ܥ ݂݋ ݈݀݁݊݊ܽ݌ ݐ݈݊݁݉݁ܿܽ݌݁ݎ = ∗௦௣ܴௌ௜ܥ (ܶ),  for ݅ = 1, 2 . 

(5) 

The cost of minimal repair of units ܣଵ, ܣଶ, ܣଷ, ܣସ, ܣହ and ܣ଺ due to Type I failure in one replacement 
cycle, is   ݐݏ݋ܥ ݂݋ ݎ݅ܽ݌݁ݎ = ∫ ∗ௌ௜ܴ(ݐ)ଵݎଵ௠ܥ ଴்ݐ݀(ݐ) +∫ ∗ௌ௜ܴ(ݐ)ଶݎଶ௠ܥ ଴்ݐ݀(ݐ) + ∫ ∗ௌ௜ܴ(ݐ)ଷݎଷ௠ܥ ଴்ݐ݀(ݐ) +∫ ∗ௌ௜ܴ(ݐ)ସݎସ௠ܥ ଴்ݐ݀(ݐ) + ∫ ∗ௌ௜ܴ(ݐ)ହݎସ௠ܥ ଴்ݐ݀(ݐ) +∫ ∗ௌ௜ܴ(ݐ)଺ݎହ௠ܥ ଴்.ݐ݀(ݐ)   

(6) 

The replacement cost rate of ଵܵ and ܵଶ under 
SARS, is ܥ ௜ܵ(ܶ) = ஼ೞೝቀଵିோೄ೔∗ (்)ቁା஼ೞ೛ோೄ೔∗ (்)ା∫ ௃(௧)ோೄ೔∗ (௧)ௗ௧೅బ∫ ோೄ೔∗ (௧)ௗ௧೅బ , for ݅ = 1, 2, (7) 

where (ݐ)ܬ = (ݐ)ଵݎଵ௠ܥ + (ݐ)ଶݎଶ௠ܥ + (ݐ)ଷݎଷ௠ܥ (ݐ)ସݎସ௠ܥ+ + (ݐ)ହݎହ௠ܥ +  (8)  .(ݐ)଺ݎ଺௠ܥ

4. Formulation of cost model under 
strategy A 

Strategy A is a preventive maintenance strategy, in 
which the un-planned replacement of a whole system 
depends on the failure of units ܣଵ,  ହ due toܣ ଷ andܣ
Type II. Noting that, the reliability function of a system 
due to strategy A, depends on the location of units 
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,ଵܣ ,ଶܣ ହ in a system. But when any of the unitsܣ  ଷ andܣ  ଺ fails due to Type II failure, the failed unit isܣ ସ orܣ
replaced completely with a new one and allows the 
system to continue operating from where it stopped. 

Under strategy A, we have the following reliability 
functions: 

1. System ଵܵ: the system is replaced completely 
with a new one when at least one of the units ܣଵ,  ,ହ fails due to Type II failure. Nowܣ ଷ orܣ
the probability that system ଵܵ will be replaced 
at planned replacement  time ܶ, before Type II 
failure occurs under strategy A, is ܴௌଵ௔∗(ܶ) = ܴଵ∗(ܶ)ܴଷ∗(ܶ)ܴହ∗(ܶ)  (9) 

2. System ܵଶ : the system is replaced completely 
with a new one when all the three units ܣଵ,  ଷܣ
and ܣହ fails due to Type II failure. Now,  the 
probability that system ܵଶ will be replaced at 
planned replacement time ܶ, before Type II 
failure occurs under strategy A, is ܴௌଶ௔∗(ܶ) = 1 − (1 − ܴଵ∗(ܶ))(1 − ܴଷ∗(ܶ))(1 − ܴହ∗(ܶ))  (10) 

In the meantime systems of ଵܵ and ܵଶ in one 
replacement cycle under strategy A, is ݁݉݅ݐ ݊ܽ݁ܯ = ∫ ܴௌ௜௔∗(ݐ)݀ݐ଴் , for ݅ = 1, 2.   (11) 

The cost of un-planned replacement (failure due to Type 
II failure) of ଵܵ and ܵଶ in one replacement cycle, is  ݐ݈݊݁݉݁ܿܽ݌݁ݎ ݈݀݁݊݊ܽ݌݊ݑ ݂݋ ݐݏ݋ܥ = ௦௥൫1ܥ − ܴௌ௜௔∗(ܶ)൯ , 
for   ݅ = 1, 2 . 

(12) 

The cost of planned replacement at time T of ଵܵ 
and ܵଶ in one replacement cycle, is  ݐ݈݊݁݉݁ܿܽ݌݁ݎ ݈݀݁݊݊ܽ݌ ݂݋ ݐݏ݋ܥ =  , (ܶ)∗௦௣ܴௌ௜௔ܥ
for ݅ = 1, 2 . 

(13) 

The cost of minimal repair of units ܣଵ, ܣଶ, ܣଷ, ܣସ, ܣହ and ܣ଺ due to Type I failure in one replacement 
cycle, is   ݎ݅ܽ݌݁ݎ ݂݋ ݐݏ݋ܥ= ∫ ܽ)^݅ܵ_ܴ (ݐ) 1_ݎ 1݉_ܥ〗▒ܶ^0_ + 〖ݐ݀(ݐ) (∗ ∫ ଴்ݐ݀(ݐ)∗ௌ௜௔ܴ(ݐ)ଶݎଶ௠ܥ +  ∫ ଴்ݐ݀(ݐ)∗ௌ௜௔ܴ(ݐ)ଷݎଷ௠ܥ   + ∫ ଴்ݐ݀(ݐ)∗ௌ௜௔ܴ(ݐ)ସݎସ௠ܥ + ∫ ଴்ݐ݀(ݐ)∗ௌ௜௔ܴ(ݐ)ହݎସ௠ܥ   + ∫ ଴்ݐ݀(ݐ)∗ௌ௜௔ܴ(ݐ)଺ݎହ௠ܥ   

(14) 

The cost of replacement of units ܣଶ, ܣସ and ܣ଺ due 
to Type II failure in one replacement cycle, is   ݐ݈݊݁݉݁ܿܽ݌݁ݎ ݂݋ ݐݏ݋ܥ = ∫ ଴்ݐ݀(ݐ)∗ௌ௜௔ܴ(ݐ)∗ଶݎଶ௥ܥ +∫ ଴்ݐ݀(ݐ)∗ௌ௜௔ܴ(ݐ)∗ସݎସ௥ܥ + ∫ ଴்.ݐ݀(ݐ)∗ௌ௜௔ܴ(ݐ)∗଺ݎ଺௥ܥ   

(15) 

The replacement cost rate of ଵܵ and ܵଶ under 
strategy A, is ܻܥ ௜ܵ(ܶ) ௦௥൫1ܥ     − ܴௌ௜௔∗(ܶ)൯ + (ܶ)∗௦௣ܴௌ௜௔ܥ + ∫ ଴்ݐ݀(ݐ)∗ௌ௜௔ܴ(ݐ)ܭ + ∫ ∫଴்ݐ݀(ݐ)∗ௌ௜௔ܴ(ݐ)ܮ ܴௌ௜௔∗(ݐ)݀ݐ଴் , 
for   ݅ = 1, 2, (16) 

where (ݐ)ܭ = (ݐ)ଵݎଵ௠ܥ + (ݐ)ଶݎଶ௠ܥ + (ݐ)ଷݎଷ௠ܥ (ݐ)ସݎସ௠ܥ+ + (ݐ)ହݎହ௠ܥ +  ,(ݐ)଺ݎ଺௠ܥ
(17) 

and  (ݐ)ܮ = (ݐ)∗ଶݎଶ௥ܥ + (ݐ)∗ସݎସ௥ܥ +  (18)  (ݐ)∗଺ݎ଺௥ܥ

5. Formulation of cost model under 
strategy B 

Strategy B is a preventive maintenance strategy, in 
which the un-planned replacement of a whole system 
depends on the failure of units ܣଶ,  ଺ due toܣ ସ andܣ
Type II.  Noting that, the reliability function of a system 
due to strategy B, depends on the location of units ܣଶ, ,ଵܣ ଺  in a system. But when any of the unitsܣ ସ andܣ   ହ fails due to Type II failure, the failed unitsܣ ଷ orܣ
are replaced completely with new ones and allow the 
system to continue operating from where it stopped. 
Under strategy B, we have the following reliability 
functions: 

1. System ଵܵ: the system is replaced completely 
with a new one when at least one of the units ܣଶ,  ,଺ fails due to Type II failure. Nowܣ ସ orܣ
the probability that system ଵܵ will be replaced 
at planned replacement time ܶ,  before Type II 
failure occurs under strategy B, is ܴௌଵ௕∗(ܶ) = ܴଶ∗(ܶ)ܴସ∗(ܶ)ܴ଺∗(ܶ)  (19) 

2. System ܵଶ : the system is replaced completely 
with a new one when all the three units ܣଶ,  ସܣ
or ܣ଺ fails due to Type II failure. Now, the 
probability that system ܵଶ will be replaced at 
planned replacement time ܶ, before Type II 
failure occurs under strategy B, is ܴௌଶ௕∗(ܶ) = 1 − ൫1 − ܴଶ∗(ܶ)൯൫1 − ܴସ∗(ܶ)൯൫1 − ܴ଺∗(ܶ)൯. (20) 

The mean time of systems of ଵܵ and ܵଶ in one 
replacement cycle under strategy B, is ݊ܽ݁ܯ ݁݉݅ݐ = ∫ ܴௌ௜௕∗(ݐ)݀ݐ଴் , for ݅ = 1, 2. (21) 

The cost of un-planned replacement (failure due to 
Type II failure) of ଵܵ and ܵଶ in one replacement cycle, is ݐݏ݋ܥ ݂݋ ݈݀݁݊݊ܽ݌݊ݑ ݐ݈݊݁݉݁ܿܽ݌݁ݎ = ௦௥ܥ ቀ1 − ܴௌ௜௕∗(ܶ)ቁ ,  

for   ݅ = 1, 2 . 
(22) 

The cost of planned replacement at time T of ଵܵ 
and ܵଶ in one replacement cycle, is  ݐݏ݋ܥ ݂݋ ݈݀݁݊݊ܽ݌ ݐ݈݊݁݉݁ܿܽ݌݁ݎ =   , (ܶ)∗௦௣ܴௌ௜௕ܥ
for ݅ = 1, 2 .

(23)   

The cost of minimal repair of units ܣଵ, ܣଶ, ܣଷ, ܣସ, ܣହ and ܣ଺ due to Type I failure in one replacement 
cycle, is   ݐݏ݋ܥ ݂݋ ݎ݅ܽ݌݁ݎ = ∫ ଴்ݐ݀(ݐ)∗ௌ௜௕ܴ(ݐ)ଵݎଵ௠ܥ   + ∫ ଴்ݐ݀(ݐ)∗ௌ௜௕ܴ(ݐ)ଶݎଶ௠ܥ + ∫ ଴்ݐ݀(ݐ)∗ௌ௜௕ܴ(ݐ)ଷݎଷ௠ܥ   + ∫ ଴்ݐ݀(ݐ)∗ௌ௜௕ܴ(ݐ)ସݎସ௠ܥ + ∫ ଴்ݐ݀(ݐ)∗ௌ௜௕ܴ(ݐ)ହݎସ௠ܥ   + ∫ ଴்.ݐ݀(ݐ)∗ௌ௜௕ܴ(ݐ)଺ݎହ௠ܥ   

(24) 

The cost of replacement of units ܣଵ, ܣଷ and ܣହ due 
to Type II failure in one replacement cycle, is   ݐݏ݋ܥ ݂݋ ݐ݈݊݁݉݁ܿܽ݌݁ݎ = ∫ ଴்ݐ݀(ݐ)∗ௌ௜௕ܴ(ݐ)∗ଵݎଵ௥ܥ   + ∫ ଴்ݐ݀(ݐ)∗ௌ௜௕ܴ(ݐ)∗ଷݎଷ௥ܥ + ∫ ଴்.ݐ݀(ݐ)∗ௌ௜௕ܴ(ݐ)∗ହݎହ௥ܥ   

(25) 

The replacement cost rate of systems ଵܵ and ܵଶ 
under strategy B, is   ܼܥ ௜ܵ(ܶ) =஼ೞೝቀଵିோೄ೔್∗(்)ቁା஼ೞ೛ோೄ೔್∗(்)ା∫ ெ(௧)ோೄ೔್∗(௧)ௗ௧ା∫ ே(௧)ோೄ೔್∗(௧)ௗ௧೅బ೅బ∫ ோೄ೔್∗(௧)ௗ௧೅బ  

, for  ݅ = 1, 2,  

(26) 
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where (ݐ)ܯ = (ݐ)ଵݎଵ௠ܥ + (ݐ)ଶݎଶ௠ܥ + (ݐ)ଷݎଷ௠ܥ (ݐ)ହݎହ௠ܥ+ (ݐ)ସݎସ௠ܥ+ +  ,(ݐ)଺ݎ଺௠ܥ

(27) 

and  ܰ(ݐ) = (ݐ)∗ଵݎଵ௥ܥ + (ݐ)∗ଷݎଷ௥ܥ +  (28)  (ݐ)∗ହݎହ௥ܥ

5.1 Numerical examples  
In this section, two numerical examples were provided 
to illustrate the characteristics of the proposed 
replacement cost models constructed above. 
Example 1 
Let the failure time of Type l I failure for the six units 
follows the Weibull distribution: ݎ௜(ݐ) = ௜ߣ ∝௜ ݅ ೔ିଵ, for∝ݐ = 1, 2, 3, 4, 5, 6, (29) 

where ∝௜> 1 and ݐ ≥ 0. 
Also, let the failure time of Type II failure for the 

six units follows the Weibull distribution: ݎ௜∗(ݐ) = ∗௜ߣ ∝௜∗ ݅ ೔∗ିଵ, for∝ݐ = 1, 2, 3, 4, 5, 6, (30) 
where ∝௜> 1, and ݐ ≥ 0. 
Let the set of parameters and cost of 

repair/replacement be used throughout this particular 
example: 

1. ∝ଵ= 4, ∝ଶ= 3, ∝ଷ= 3, ∝ସ= 3, ∝ହ= 4 and  ∝଺= 2. 
ଵߣ .2 = ଶߣ ,0.03 = ଷߣ ,0.002 = ସߣ ,0.03 = 0.001 

ହߣ , = 0.001 and  ߣ଺ = 0.001. 
3. ∝ଵ∗= 4, ∝ଶ∗ = 3.5, ∝ଷ∗ = 4, ∝ସ∗ = 3.5, ∝ହ∗ = 4, and ∝଺∗ = 3.5. 
∗ଵߣ  .4 = ∗ଶߣ ,0.00033 = 0.00025 , ∗ଷߣ = ∗ସߣ ,0.00030 = ∗ହߣ ,0.00023 = 0.00025  and       ߣ଺∗ =0.0002. 
௦௥ܥ  .5 = ௦௣ܥ ,70 = 45 and ܥ௜௠ = 0.4,  for ݅ = 1, 2 , 3, 4, 5, 6 . 
By substituting the parameters of equations (29) 

and (30), the rates of Type I and Type II failures are 
obtained as follows: ݎଵ(ݐ) = (ݐ)ଶݎ ଷ.  (31)ݐ0.12 = (ݐ)ଷݎ (32)  .ݐ0.06 = (ݐ)ସݎ ଶ.  (33)ݐ0.09 = (ݐ)ହݎ ଶ.  (34)ݐ0.003 = (ݐ)଺ݎ ଷ.  (35)ݐ0.004 = (ݐ)∗ଵݎ (36)  .ݐ0.002 = (ݐ)∗ଶݎ ଷ.  (37)ݐ0.00132 = (ݐ)∗ଷݎ ଶ.ହ.  (38)ݐ0.000875 = (ݐ)∗ସݎ ଷ.  (39)ݐ0.00012 = (ݐ)∗ହݎ ଶ.ହ.  (40)ݐ0.000805 = (ݐ)∗଺ݎ ଷ.  (41)ݐ0.001 =  ଶ.ହ.  (42)ݐ0.0007

The tables below in this example are obtained by 
substituting all the rates of the two failures (Type I and 
Type II failures), and costs of replacement and repair in 
equations (7), (16), and (26). 

 

Table 1. Results obtained from evaluating the replacement 
cost rates of systemsܵଵ and ܵଶ under SARS. 

T ࡿ࡯૚(ࢀ) ࡿ࡯૛(ࢀ) 
1 240.42 240.04 
2 122.77 120.16 
3 88.58 80.36 
4 79.17 60.69 
5 82.73 49.16 
6 91.47 41.80 
7 94.78 36.93 
8 95.87 33.87 
9 97.93 32.50 

10 99.00 32.92 
11 99.52 34.91 
12 100.22 37.87 

Table 2. Results obtained from evaluating the replacement 
cost rates of systems ଵܵ and ܵଶ  under strategy A. 

T ࡿࢅ࡯૚(ࢀ) ࡿࢅ࡯૛(ࢀ) 
1 240.78 240.57 
2 122.87 121.18 
3 87.58 81.96 
4 76.01 62.89 
5 76.62 52.13 
6 83.71 46.27 
7 89.44 44.88 
8 90.24 48.34 
9 92.73 55.49 
10 93.99 60.79 
11 95.45 62.77 
12 98.00 64.57 

Table 3. Results obtained from evaluating the replacement 
cost rates of systems ܵଵ and ܵଶ  under strategy B. 

T ࡿࢆ࡯૚(ࢀ) ࡿࢆ࡯૛(ࢀ) 
1 240.80 240.64 
2 122.54 121.62 
3 85.61 83.11 
4 70.10 65.11 
5 63.97 55.61 
6 62.95 50.64 
7 64.67 49.55 
8 67.21 48.55 
9 67.67 50.20 
10 68.74 53.05 
11 70.46 56.43 
12 72.97 59.34 

Table 4.  The optimal replacement times of systemsܵଵ and ܵଶ 
under SARS, strategies A and B from Tables 1, 2 and 3. 

System SARS Strategy A Strategy B ࡿ૚ ௌܺଵ∗ = 4.00 ௌܻଵ∗  = 4.00 ܼௌଵ∗  = ∗૛ ௌܺଶࡿ6.00 = 9.00 ௌܻଶ∗  = 7.00 ܼௌଶ∗  = 8.00 
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Figure 3. The plot of cost rates of systemܵଵunder SARS, 

strategy A and strategy B against planned replacement time T. 

 
Figure 4. The plot of cost rates of systemܵଶ under SARS, 

strategy A and strategy B against planned replacement time T. 

Some observations of results obtained from 
example 1 are as follows 

1. From Table 4, observe that, the optimal 
replacement time of the system ଵܵ obtained under 
strategy B is higher than that of SARS and strategy 
A, while the optimal replacement time of system ܵଶ 
obtained under SARS is higher than that of 
strategies A and B. 

2. From Figure 3, observe that, the cost rate of the 
system ଵܵ obtained under strategy B is lower than 
that of SARS and strategy A. 

3. From Figure 4, observe that, the cost rate of the 
system ܵଶ obtained under SARS is lower than that 
of strategies A and B. 

Example 2 
Let the failure time of Type I failure for the six units 
follows Power law distribution: ݎ௜(ݐ) = ௜ߣ ∝௜ ೔ିଵ, for݅∝(ݐ௜ߣ) = 1, 2, 3, 4, 5, 6,  (43) 

where ∝௜> 1 and ݐ ≥ 0. 
Also, let the failure time of Type II failure for the 

six units follows Power law distribution: ݎ௜∗(ݐ) = ∗௜ߣ ∝௜∗ ݅ ೔∗ିଵ, for∝(ݐ∗௜ߣ) = 1, 2, 3, 4, 5, 6,     (44) 
where ∝௜> 1, and ݐ ≥ 0. 
The cost and the parameters of both Type I and 

Type II failures in example 1 were adopted. Similarly, 
the tables below in this example are obtained by 

substituting all the failure rates of Type I, Type II, and 
costs of replacement and repair in equations (7), (16), 
and (26). 

Table 5. Results obtained from evaluating the replacement 
cost rates of systemsܵଵ and ܵଶ  under SARS. 

T ࡿ࡯૚(ࢀ) ࡿ࡯૛(ࢀ) 
10 224.67 224.29 
20 107.02 104.41 
30 72.83 64.61 
40 63.42 44.94 
50 66.98 33.41 
60 75.72 26.05 
70 79.03 21.18 
80 80.12 18.12 
90 82.18 16.75 
100 83.25 17.17 
110 83.77 19.16 
120 84.47 22.12 

Table 6. Results obtained from evaluating the replacement 
cost rates of systems ଵܵ and ܵଶ  under strategy A. 

T ࡿࢅ࡯૚(ࢀ) ࡿࢅ࡯૛(ࢀ) 
10 225.03 224.82 
20 107.12 105.43 
30 71.83 66.21 
40 60.26 47.14 
50 60.87 36.38 
60 67.96 30.52 
70 73.69 29.13 
80 74.49 32.59 
90 76.98 39.74 
100 78.24 46.04 
110 79.7 47.02 
120 82.25 48.82 

Table 7. Results obtained from evaluating the replacement 
cost rates of systemsܵଵ and ܵଶ  under strategy B. 

T ࡿࢆ࡯૚(ࢀ) ࡿࢆ࡯૛(ࢀ) 
10 225.05 240.64 
20 106.79 121.62 
30 69.86 83.11 
40 54.35 65.11 
50 48.22 55.61 
60 47.20 50.64 
70 48.92 48.55 
80 51.46 48.00 
90 51.92 50.20 

100 52.99 53.05 
110 54.71 56.43 
120 57.22 59.34 

Table 8. The optimal replacement times of systemsܵଵ and ܵଶ 
under SARS, strategy A and strategy B from tables 5, 6 and 7. 

System SARS Strategy A Strategy B ࡿ૚ ௌܺଵ∗ = 40.00 ௌܻଵ∗  = 40.00 ܼௌଵ∗ = ∗૛ ௌܺଶࡿ60.00 = 90.00 ௌܻଶ∗ = 70.00 ܼௌଶ∗ = 80.00
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Figure 5. The plot of cost rates of systemܵଵ under SARS, 
strategy A and strategy B against planned replacement time T. 

 

Figure 6. The plot of cost rates of systemܵଶ under SARS, 
strategy A and strategy B against planned replacement time T. 

Some observations of results obtained from 
example 2 

1. From Table 8, observe that, the optimal 
replacement time of the system Sଵ under the 
strategy, B is higher than that of SARS and 
strategy A, while the optimal replacement time 
of the system Sଶ under SARS is higher than 
that of strategies A and B. 

2. From Figure 5, observe that, the cost rate of the 
system Sଵ under the strategy, B is lower than 
that of SARS and strategy A. 

3. From Figure 6, observe that, the cost rate of the 
system Sଶ under SARS is lower than that of 
strategies A and B. 

6. General observation of results  
From the results obtained from examples 1 and 2, one 
can clearly see that strategy B can extend the optimal 
replacement time of the series system, while it cannot 
extend the optimal replacement time of the parallel 
system. In terms of the cost rate, the results showed that 

the cost rate of the series system is lower than that of 
SARM and strategy A, while the cost rate of the parallel 
system under SARM is lower than that of the strategies 
A and B.  

7. Significance of results  
From the results obtained in this research, one can 
clearly see that the strategy B is a good preventive 
maintenance plan for maintaining series multi-unit 
systems because strategy B has the following advantages 
over SARS and strategy A: 

1. The optimal replacement time of the series 
system obtained under strategy B has a higher 
optimal replacement time than that of SARS 
and strategy A. Thus, this will reduce the 
chances of early replacement of the series 
systems at an early stage.  

2. The cost of maintenance of the series system 
under strategy B is lower than that of SARS 
and strategy A. 

 Also, from the other way round of the findings, 
maintenance managers and plant management are 
advised to adopt SARS as a good preventive 
maintenance strategy for maintaining the parallel multi-
unit system, because preventive maintenance under 
SARS, has the following advantages over strategies A 
and B: 

1. The optimal replacement time of a parallel system 
obtained under SARS has a higher optimal 
replacement time than that of strategies A and B.  

2. The cost of maintenance of the parallel system under 
SARS is lower than that of strategies A and B. 
One can relate the findings of these results obtained 

to real life, one can use the results to select the best 
strategy for maintaining the following: 

1. Series and parallel configurations of a combined 
heat and power (CHP) plant coupled to thermal 
networks. 

2. Subsystems of industrial plants. 
3. Subsystems of air crafts  

8. Summary and conclusion 

This research covered the age replacement policy with 
the concept of repair at failure. In trying to explore 
some possible ways of extending the optimal 
replacement time of some multi-component systems, 
this paper presented some proposed age replacement 
cost models under standard age replacement strategy 
(SARS), strategy A and strategy B for series and 
parallel systems. It is assumed that the two systems are 
subjected to Type I and Type II failures. Below are the 
tables that compare the three proposed strategies. 
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Table 9. Comparing SARS, Strategy A and Strategy B for 
system ܵଵ. 

SARS 

If all the six units fails due Type II failure, 
then  replace the whole system 
If all the six units fails due Type I failure, 
then repair the failed units, minimally. 

Strategy 
A 

If at least  one of  ܣଵ, ܣଷ and ܣହ fails due  
Type II failure, then  replace the whole 
system 
If at least  one of  ܣଶ, ܣସ and ܣ଺ fails due  
Type II failure, then  replace the failed unit(s) 
If all the six units fails due Type I failure, 
then repair the failed unit, minimally. 

Strategy 
B 

If at least  one of  ܣଶ, ܣସ and ܣ଺ fails due  
Type II failure, then  replace the whole 
system 
If at least  one of  ܣଵ, ܣଷ and ܣହ fails due  
Type II failure, then  replace the failed unit(s) 
If all the six units fails due Type I failure, 
then repair the failed units, minimally. 

Table 10. Comparing SARS, Strategy A and Strategy B for 
system ܵଶ. 

 If all the six units fails due Type II failure, 
then  replace the whole system 

SARS If all the six units fails due Type I failure, 
then repair the failed units, minimally. 

 If  all the three units ܣଵ, ܣଷ and ܣହ fails due  
Type II failure, then  replace the whole 
system 

Strategy 
A 

If  all the three units ܣଶ, ܣସ and ܣ଺ fails due  
Type II failure, then  replace the failed unit 

 If all the six units fails due Type I failure, 
then repair the failed units, minimally. 

 If  all the three units ܣଶ, ܣସ and ܣ଺ fails due  
Type II failure, then  replace the whole 
system 

Strategy 
B 

If  all the three units ܣଵ, ܣଷ and ܣହ fails due  
Type II failure, then  replace the failed units 

 If all the six units fails due Type I failure, 
then repair the failed units, minimally. 

The results obtained in this research showed that 
the preventive replacement of the series system under 
strategy B is optimal over SARS and strategy A. While, 
whereas the preventive replacement of the parallel 
system under SARS, is optimal over strategies A and B.  
Therefore, the main contribution of this research is, that 
it showed that preventive replacement under strategy B 
is better than preventive replacement under strategy A 
and SARS because strategy B extends the optimum 
replacement time of a series system. For future 
extension and modification of this research, one can see 
the following cases: 

1. By applying the proposed strategy A and 
strategy B, to series-parallel and parallel-series 
systems, to see the possible extension of their 
optimal replacement time. 

2. By considering periodic replacement time ܰܶ (ܰ = 1, 2, 3, … ) for a fixed T, to see the 

possible extension of the optimal replacement 
time of multi-component systems.   

3. By in-cooperating a warranty period in the 
proposed replacement models under strategies 
and B.  

9. References  
[1] J. H. Chaand M.Finkelstein, “New failure and minimal 

repair processes for repairable systems in a random 
environment,” Appl Stochastic Models Bus Ind.,vol.35, pp. 
522– 536,2019. 

[2]C. Chang, “Optimum preventive maintenance policies for 
systems subject to random working times, replacement, 
and minimal repair,” Computers and Industrial 
Engineering, vol. 67, pp. 185-194, 2014. 

[3] C. C. Chang, and Y. L. Chen, “Optimization of continuous 
and discrete scheduled times for a cumulative damage 
system with age-dependent maintenance,” 
Communications in Statistics-Theory and Methods, vol.18, 
no.17,pp. 4261-4277,2019. 

[4] V. H. Coria, S. Maximov, F. Rivas-Davalos, C. L. Melchor, 
and J. L. Guardado, “Analytical method for optimization of 
maintenance policy based on available system failure data,” 
Reliability Engineering and System Safety, vol.135, pp. 55-
63, 2015. 

[5] M. S. Fallahnezhad, and E. Najafian, ,“A model of 
preventive maintenance for parallel, series, and single-item 
replacement systems based on statistical analysis,” 
Communications in Statistics-Simulation and 
Computation,vol.46, no.7, pp. 5846-5859 ,2017. 

[6] A. Gheisary, and S. Goli, , “A study on the multi-state (r, 
s)-out-g-n systems with dependent components,” 
International Journal of Reliability, Risk and Safety, vol.1, 
no.1, pp. 11-16, 2018. 

[7] C. H. Huang, and C. H. Wang, “A time-replacement policy 
for multistate systems with aging components under 
maintenance, from a component perspective,” 
Mathematical Theories and Applications for Nonlinear 
Control Systems, doi.org/10.1155/2019/9651489.2019. 

[8] M. Jain, and R. Gupta, “Optimal replacement policy for a 
repairable system with multiple vacations and imperfect 
fault coverage,” Computers & Industrial Engineering, 
vol.66, pp. 710-719,2013. 

[9] S. U. Enogwe, B. I. Oruh, and E. J. Ekpenyong, “A 
modified replacement model for items that fail suddenly 
with variable replacement costs,” American Journal of 
Operations Research, vol.8, pp. 457-473, 2018. 

[10] J. H. Lim, J. Qu, and J. M. Zuo, “Age replacement policy 
based on imperfect repair with random probability,” 
Reliability Engineering and System Safety, vol.149, pp. 24-
33,2016. 

[11] Y. Liu, Y. Ma, Z. Qu, and X. Li, , “Reliability 
mathematical models of repairable systems with uncertain 
lifetimes and repair time,” IEEE, vol. 6: pp. 71285-71295. 
2018. 

[12] Z. Malki, D. A. Ait and M. S. Ouali, “Age replacement 
policies for two-component systems with stochastic 
dependence,” Journal of Quality in Maintenance 
Engineering, vol. 20, no.3, pp. 346-357, 2015. 

[13] S. M. Mirjalili, and J. Kazempoor, “Life extension for a 
coherent system through cold standby and minimal repair 
policies for their independent components,” International 



                 IJRRS: Vol. 4/ Issue 2/ 2021 / 37 

 

On Possibility of Extending the Optimal Replacement time of Series and 
Parallel Systems 

Journal of Reliability, Risk and Safety, vol.3,no.2,pp.51-
54, 2020. 

[14] D. N. P. Murthy, and M. C.Hwang, “Optimal discrete and 
continuous maintenance policy for a complex unreliable 
machine,” International Journal of Systems Science, 
doi.org/10.1080/00207729608929240.  2007. 

[15]T. Nakagawa, “Maintenance theory of reliability,” 
Springer-Verlag, London Limited, 2005. 

[16] T. Nakagawa, M. Chen, and X. Zhao, “Note on history of 
age replacement policies,” International Journal of   
Mathematical, Engineering and Management Sciences,vol
.3, no.2, pp. 151–161, 2018. 

[17] R. Niwas, and H. Garg, “An approach for analyzing the 
reliability and profit of an industrial system based on the 
cost free warranty policy,” Journal of the Brazilian 
Society of Mechanical Sciences and Engineering, 
vol.40,no.5, doi: 5.10.1007/s40430-018-1167-8. 2018. 

[18] M. L. Rebaiaia, and  D. Ait-kadi, , “Maintenance policies 
with minimal repair and replacement on failures: analysis and 
comparison,” International Journal of 
ProductionResearch,vol.59,no.23, pp. 6995-7017, 2021. 

[19] F. Safaei, J. Ahmadi, and N. Balakrishnan, “A repair and 
replacement policy for repairable systems based on 
probability and mean of profits,” Reliability Engineering 
and System Safety, 
doi.org/10.1016/j.ress.2018.11.012.2018. 

[20] F. Safaei, E. Chatelet, and J. Ahmadi, “Optimal age 
replacement policy for parallel and series systems with 
dependent components,” Reliability Engineering & 
System Safety,doi.org/10.1016/j.ress.2020.106798 . 2020. 

[21] S. Sanoubar, L. M. Maillart, and O. A. Prokopyev, “Age 
replacement policies under age dependent replacement 
costs, operations and engineering and analytics,” IISE 
Transactions, vol.53,no.4, pp.425-436, 2021. 

[22] S. H. Sheu, T. H. Liu, and Z. G. Zhang, “Extended 
optimal preventive replacement policies with random 
working cycle,” Reliability Engineering & System Safety, 
vol.188, pp. 398–415, 2019. 

[23] K. K. Sudheesd, G. Asha, and K. M. J. Krishna, “On the 
mean time to failure of an age-replacement model in 
discrete time,” Communications in Statistics - Theory and 
Methods, vol.50, no.11, pp.2569-2585, 2021.  

[24] M. Z. Tsoukalas, and G. K. Agrafiotis, “A new 
replacement warranty policy indexed by the product’s 
correlated failure and usage time,” Computers and 
Industrial Engineering, vol.66, pp.203-211, 2013. 

[25] T. A. Waziri, I. Yusuf, and A. Sanusi, “On planned time 
replacement of series-parallel system,” Annals of 
Optimization Theory and Practice, vol. 3: pp. 1-13, 2020. 

[26]T. A. Waziri, “On discounted discrete scheduled 
replacement model,” Annals of Optimization Theory and 
Practice, vol.4, no.2, pp. 69-82, 2021. 

[27] T. A. Waziri, I. Yusuf “On discrete scheduled 
replacement model of series-parallel system,” Reliability 
Theory and Application, vol.3,no.36, pp. 273-283, 2021. 

[28] W. Wu, J. Song, K. Jiang, and H. Li, “Optimal 
replacement policy based on the effective age of the 
system for a deteriorating repairable system with 
multiple vacations,” Journal of Quality in Maintenance 
Engineering, vol. 19, no.1, doi.org/10.1108/JQME-06-
2014-0036. 2021. 

[29] L. Xie, M. A. Lundteigen, and Y. Liu, “Reliability and 
barrier assessment of series-parallel systems subject to 
cascading failures,” Journal of Risk and Reliability, vol. 
234, no.3, pp. 455-469, 2020. 

[30] L. Yuan, and J. Xu, “An optimal replacement policy for a 
repairable system based on its repairman having 
vacations,” Reliability Engineering and System Safety, 
vol.96, pp. 868 – 875, 2011. 

[31] I. Yusuf, and U. A. Ali, “Structural dependencere 
placement model for parallel system of two units,” 
Nigerian Journal of Basic and Applied Science, vol.20, 
no.4, pp. 324 – 326,2012. 

[32] X. Zhao, N. K. Al-Khalifa, A. M. Hamouda, and T. 
Nakagawa, “Age replacement models: A summary of 
new perspectives and methods,” Reliability Engineering 
and System Safety, vol. 161, pp. 95-105, 2017. 

[33] X. Zhao, J. Cai, S. Mizutani, and T. Nakagawa, 
“Preventive replacement policies with time of 
operations, mission durations, minimal repairs and 
maintenance triggering approaches,” Journal of 
Manufacturing Systems, vol.61,819-829, 2021. 

 


