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Abstract   
This paper deals with the study of reliability measures of a complex engineering system consisting three subsystems namely L, 

M, and N in series configuration. The subsystem-L has three units working under 1-out-of-3: G; policy, the subsystem-M has two 
units working under 1-out-of-2: G policy and the subsystem-N has one unit working under 1-out-of-1: G; policy. Moreover, the 
system may face catastrophic failure at any time t. The failure rates of units of all subsystems are constant and assumed to follow the 
exponential distribution however, their repair supports two types of distribution namely general distribution and Gumbel-Hougaard 
family copula distribution. The system is analyzed by using the supplementary variable technique, Laplace transformation and 
Gumbel-Hougaard family of copula to derive the differential equations and to obtain important reliability characteristics such as 
availability of the system, reliability of the system, MTTF, and profit analysis. The numerical results for reliability, availability, 
MTTF, and profit function are obtained by taking particular values of various parameters and repair cost using maple. Tables and 
figures demonstrate the computed results and conclude that copula repair is more effective repair policy for better performance of 
repairable systems. It gives a new aspect to scientific community to adopt multi-dimension repair in form of copula. Furthermore, the 
results of the model are beneficial for system engineers and designers, reliability and maintenance managers. 

Keyword: K-out-of-n, G system, Availability, MTTF, Catastrophic failure, Gumbel-Hougaard family copula distribution.

Nomenclature§ 

s , t Laplace transform / Time scale variable 

 1 1/ x   
Failure rate / Repair rate of each unit in 
subsystem-L. 

 2 2/ x 
 

Failure rate / Repair rate of each unit in 
subsystem-M. 

3  
Failure rate of the unit in subsystem-N. 

E  

Deliberate failure rate when two units 
in subsystem-L and one unit in 
subsystem-M failed. 

C  
Failure rate related to catastrophic 
failure mode. 

 0P t  
The state transition probability that the system 
is in Si state at an instant for 0i  . 

 P s
 

Laplace transformation of the state transition 
probability  P t . 

 ,iP x t
 

The Probability that the system is in state
iS for 

1 to 9, E, C i  and the system is under 

repair with elapsed repair time is ,x t . x  is 

repaired variable and t  is time variable. 
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 pE t
 Expected profit in the interval 0, t . 

1 2,K K Revenue generated and service cost per unit 
time respectively. 

 0 x
 

An expression of the joint probability from 
failed state Si to good state S0 according to 
Gumbel-Hougaard family copula is given as

      0 1 2,x C u x u x 

  
1

exp logx x
      

where 

   1u x x  and  2
xu x e . Here   is 

the parameter1    . 

Introduction 
Determining accurate reliability and availability of an 
existing structure or product is a crucial task in the 
reliability engineering. In case of failure, money and 
time will be wasted and even disaster may occur. In 
order to achieve reliable system functioning, 
components are designed to be highly reliable in the 
sense that they rarely suffer from sudden failures. 
Nevertheless, components might degrade gradually with 
usage. Redundant strategy is often used by engineers to 
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ensure the reliability and availability of the systems 
and/or to improve these characteristics of the systems. 
Thus, variety of standby systems have been designed 
and analyzed during the last few decades. The main 
objective of these studies is to develop methods and 
tools for evaluation and demonstration of the reliability, 
availability, and cost analysis. Redundant systems, 
which have been widely used in practice, such as space 
shuttles, communication satellites, a hybrid car, Nuclear 
reactors, or a fighter plane, are frequently discussed in 
research literature. Initially, redundant parts are 
designed to improve the reliability of the system, 
meaning that some additional paths are created or 
identical components connected in such a way that when 
one component fails the others will keep the system 
functioning. It is a technique commonly used to improve 
system reliability and availability. Redundancies can be 
categorized into the following: (i) Cold standby in which 
the standby unit is only called upon when the primary or 
operating unit fails. These inactive components have a 
zero failure rate and cannot fail while in standby state; 
(ii) Hot standby in which the standby unit has the same 
failure rate as when it is run with the operating unit; (iii) 
Warm standby in which the standby unit runs in the 
background of operating unit. It can fail in this state but 
its failure rate is less than that of the operating unit. 
Moreover, redundancy is highly cost effective in 
achieving a certain reliability level of the system. 
Therefore, in order to enhance reliability k-out-of-n 
system structure in which at least k components  of n 
must be functioned. In order to improve the reliability of 
k-out-of-n systems, numerous researches have presented 
their works and contributions by constructing different 
types of complex repairable systems under the different 
types of failure and repair distributions. For instance, 
authors consider warm standby system by She and Pecht 
[1], generalized multi state system by Huang et al. [2], 
repairable consecutive systems with r repairman by Wu 
and Guan [3], two-stage weighted systems with 
components in common by Chen and Yang [4], main 
unit with helping unit by Kumar and Gupta [5], Markov 
repairable system with neglected or delayed failures by 
Bao and Cui [6], evaluated exact reliability formula for 
consecutive repairable systems by Liang et al. [7], 
general system with non-identical components 
considering shut-off rules using quasi-birth-death 
process by Moghaddass et al. [8], and generalized block 
replacement policy with respect to a threshold number 
of failed components and risk costs by Park and Pham 
[9]. 

The occurrence of failure in any complex repairable 
or non-repairable engineering system is a natural 
phenomenon, which arises due to the different working 
conditions. The k-out-of-n effective policy plays a 
crucial role in maintaining the reliability of repairable 
systems. The researchers have focused on evaluating 
reliability and availability of the redundant repairable 
systems like k-out-of-n in series configuration. In 

particular, Singh et al. [10] analyzed an engineering 
system, which consists of two subsystems, viz. 
subsystem-1 and subsystem-2 with controllers in series. 
Subsystem-1 works under the k-out-of- n: good policy. 
Subsystem-2 consists of three identical units in parallel 
configuration. In this case, controllers control the 
working of both subsystems. Authors evaluated 
reliability characteristics using supplementary variable 
technique. Ram et al. [11] investigated the reliability of 
a standby system incorporating waiting time to repair. In 
this case, system consists of two units’ namely main unit 
and standby unit. Whenever the main unit fails, the 
whole load is transferred to the standby unit 
instantaneously by a switching-over device. As regards 
to the repairing of the main unit, it has to wait for repair 
whenever it fails due to unavailability of repair facility. 
Munjal and Singh [12] analyzed a complex repairable 
system composed of two 2-out-of-3: G subsystems 
connected in parallel. Jia et al. [13] studied repairable 
multistate two-unit series systems when repair time can 
be neglected. Goyal et al. [14] studied the sensitivity 
analysis of a three-unit series system under k-out-of-n 
redundancy. Singh et al. [15] developed a model of a 
complex repairable system having two subsystems in 
series configuration. Both subsystems includes two units 
in parallel, and it is assumed to work till at least one unit 
of both the subsystems are in good operative condition. 
Gahlot et al. [16] assessed a repairable system in series 
configuration under different types of failure and repair 
policies using copula linguistics. Singh and Poonia [17] 
assessed 1-out-of-2: G system with correlated lifetimes 
under inspection.  

Some specific papers related to this paper are as 
follows. Lado and Singh [18] analyzed an engineering 
system, which consists of two subsystems in series 
configuration operated by a human operator. Both the 
subsystems have two units in parallel. In this papers 
authors proved that copula repair is more reliable than 
general repair. Pundir and Patawa [19] studied 
repairable two dissimilar units’ cold standby system 
waiting for repair facility after failure of system units. 
They stimulated exponential failures, arbitrary waiting 
and arbitrary repair rate. Singh et al. [20] studied two 
subsystems in series configuration with imperfect switch 
connected with both subsystems. Recently, Zhao et al. 
[21] and Singh et al. [22] studied some real system 
problems related to our study. 

System Description 

Researchers around the world have presented their 
research works on reliability analysis of complex 
repairable system however they have not focused on 
the study of the system consisting of three subsystems 
connected in series configuration with catastrophic 
failure. Catastrophic failure is a complete, sudden, 
often unexpected breakdown in the entire system. Such 
a break down may occur due to animal related 
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disruption or change in environment related conditions 
like Corona virus nowadays. Sometimes a single 
component in a critical location fails; resulting in 
downtime for the entire system also comes under 
catastrophic failure. The term catastrophic failure is 
most commonly used for organizational failures, but 
has often been extended to many other disciplines in 
which total and irrecoverable loss occurs. Treating the 
above realities in the present study, the model 
consisting three subsystems in series configuration 
considering catastrophic failure. The subsystem-L has 
three identical units, subsystem-M has two identical 
units and subsystem-N has one unit only. The 
subsystem-L is working under 1-out-of-3: G; scheme, 
the subsystem-M is working under 1-out-of-2: G; 
scheme, however, the subsystem-N works under 1-out-
of-1: G; scheme. The catastrophic failure is treated as a 
complete failing state. During operation, the system 
will be in any of the three states: perfect operation, 
partial failure, and complete failure. The failure rates 
of units of subsystems are constant and assumed to 
follow the exponential distribution, but their repair 
supports two types of distribution namely general 
distribution and Gumbel-Hougaard family copula 
distribution. Then, based on the behavior of the whole 
system, all the system states can also be classified into 
three subsets as follows. 

Classification I: The system operates perfectly; in 
this situation, all the components in both subsystems 
are in the perfect functioning state. 

Classification II: The system is partially working; 
in this situation, at least one component in one or both 
subsystems is in the failure state, and the remainder is 
perfectly functioning. 

Classification III: The system is completely failed; 
in this situation, either subsystem L, M or N is in the 
complete failure state. Further, system may be 
completely failed due to catastrophic failure. 

Therefore, the system remains working until one 
of the subsystems is completely failed. Based on the 
above-mentioned assumptions, the system could be 
modeled by a continuous-time stochastic process. The 
present study accomplished two objectives using 
supplementary variable technique. First the expressions 
for the reliability of the system, availability of the 
system, mean time to failure and profit function are 
obtained. Second numerical simulation with respect to 
profit function is performed. Explicit expressions for 
reliability, availability, MTTF, and cost analysis 
functions are obtained with help of MAPLE (software). 
Tables and graphs present a comparative analysis of 
results. The system configuration and transition state 
diagram of the designed model are shown in fig. 1(a) 
and 1(b) respectively. 

Assumptions 

The following assumptions are made through this paper: 

1. Initially the system is in state 0S , and all the units 

of subsystem-L, M, and N are in proper working 
conditions. 

2. The subsystem-L works successfully if minimum 
one unit is in proper working condition i.e. 
1-out-of-3: G policy, the subsystem-M works 
successfully if minimum one unit is in proper 
working condition i.e. 1-out-of-2: G policy, and 
the subsystem-N works successfully if the lonely 
unit is in proper working condition i.e. 
1-out-of-1: G policy. 

3. As soon as repair of a unit in all of the three 
subsystems completed, it again becomes 
operational (as good as new). No damage reported 
due to repair of the system. 

4. Whenever there is a failure in two units of 
subsystem-L and one unit in subsystem-M, the 
system goes to perilous state where system has to 
stop functioning deliberately to avoid further 

failures with emergency failure rate E . 

5. There may be unpredictable catastrophic failure to 
the system at any time (t).  

6. One repairperson is available full time with the 
system and may be called as soon as the system 
reaches to partially or completely failed state. 

7. All failure rates are constant and follows the 
exponential distribution. 

8. The failure rate and repair rate in all the three 
subsystems is same unit wise, while different 
subsystem wise. 

9. The complete failed system needs repair 
immediately. For this Gumbel-Hougaard, family 
of copula can be employed to restore the system. 

Copula 

A d-dimensional copula is a distribution function on [0, 
1]d with standard uniform marginal distributions. Let 
C(u) = C (u1, ...,ud) be the distribution functions which 
are copulas. Hence C is a mapping of the form C: [0, 1]d 
→ [0, 1], i.e. a mapping of the unit hypercube into the 
unit interval. The following three properties must hold: 

(i) C(u1, ..., ud) is increasing in each component ui. 
(ii) C(1, ...1, ui, 1, ..., 1) = ui for all i {1, ...d}, ui  [0, 1]. 

(iii) For all (a1,..., ad), (b1,..., bd)   [0, 1] with ai ≤ bi we 
have: Where uj1 = aj and uj2 = bj for all j    {1, ..., 
d}. 

The copulas are multivariate distribution functions 
whose one-dimensional margins are uniform on the 
interval [0, 1]. The copula (joint probability distribution) 
approach is very natural when a complex system repaired 
in a couple of ways. For θ=1 the Gumbel- Hougaard copula 

1/
1 2 1 2( , ) exp( (( log ) ( log ) ) ,C u u u u  

      1    , θ=1 

the Gumbel- Hougaard copula models become 
independence, and for θ→∞ it converges monotonically. 
Although the different copulas have employed by 
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various researchers due to simplicity conventional 
purpose Gumbel- Hougaard family copula have 
employed to assessing analytical cases of the paper. 

System Configuration and Transition 
Diagram 

System configuration shown in Fig 1 (a) while transition 
diagram in Fig 1 (b). HereS0 is perfect state, S1, S2, S3, 
S4 and S5 partial failed/degraded and S6, S7, S8, S9, SE 
and SC are complete failed states. Due to failure of unit 
(s) in the subsystem-L, M or/and N, the transitions 
approaches to partially failed states S1, S2, S3 S4 and S5. 
The state S6, S7, S8 and S9 are complete failed states due 
to failure of units in all the subsystems, while SE is 
completely failed state due to deliberate failure. The 
states SC is complete failed state due to catastrophic 
failure. 

 

Fig. 1(a) System configuration 

 

Fig. 1(b) State transition diagram of the model 

In the transition diagram above S0 is a state where 
all the subsystems are in good working condition. S1, S2, 
S3, S4 and S5 are the states where the system is in 
partially failure mode/ degraded, and the general repair 
is employed, states S6, S7, S8, S9, SE and SC are the states 
where the system is in the totally failure mode. Repair is 
being applied using Gumbel-Hougaard family copula 
distribution. 

Table 1. State Description 

State Description 

S0 
This is a perfect state and all units of subsystem-L, 
M and N are in proper working condition. 

S1 The indicated state is degraded but is in operational 

State Description 
mode after the failure of the one unit in subsystem-
L. All units of subsystem-M and N are in the 
proper operational state. The system is under 
general repair. 

S2 

The indicated state is degraded but is in operational 
mode after the failure of two units in subsystem-L. 
All units of subsystem-M and N are in the proper 
operational state. The system is under general 
repair. 

S3 

The indicated state is degraded but is in operational 
mode after the failure of the one unit in subsystem-
M. All units of subsystem-L and N are in the 
proper operational state. The system is under 
general repair. 

S4 

The indicated state is degraded but is in operational 
mode after the failure of the one unit in subsystem-
L and one unit in subsystem-M. All units of 
subsystem-N are in the proper operational state. 
The system is under general repair. 

S5 

The indicated state is degraded but is in operational 
mode after the failure of two units in subsystem-L 
and one unit in subsystem-M. All units of 
subsystem-N are in the proper operational state. 
The system is under general repair. 

S6, S7 

S8, S9 

SE, 

SC

The states represent that the system is in 
completely failure mode and the system is under 
repair using Gumbel-Hougaard family copula 
distribution. 

Formulation of mathematical model 

By probability of considerations and continuity 
arguments, we can obtain the following set of 
difference-differential equations associated with the 
present mathematical model (see Appendix-1):  

1 2 3 0 1 1
0

2 3 0
0 0

3 2 ( ) ( ) ( , )

( ) ( , ) ( ) ( , )

C

k
k

P t x P x t dx
t

x P x t dx x P x t dx

    

 



 

       

 



 
 (1) 

where 6, 7,8,9, ,k E C  

 1 2 3 1 12 2 ( , ) 0C x P x t
t x

               
 

(2) 

 1 2 3 1 22 ( , ) 0C x P x t
t x

               
(3) 

 1 2 3 2 33 ( , ) 0C x P x t
t x

               
(4) 

   1 2 3 1 2 42 ( , ) 0C x x P x t
t x

                 
(5) 

   1 2 5 ( , ) 0E C x x P x t
t x

             
(6) 

  
1

exp log ( , ) 0kx x P x t
t x

  
            

(7) 

Where 6, 7,8,9, ,k E C  
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Boundary Conditions, 

1 1 0(0, ) 3 ( )P t P t  (8) 
2

2 1 1 1 0(0, ) 2 (0, ) 6 ( )P t P t P t   (9) 

3 2 0(0, ) 2 ( )P t P t  (10) 

4 1 3 2 1 1 2 0(0, ) 3 (0, ) 2 (0, ) 12 ( )P t P t P t P t       (11) 
2

5 2 2 1 4 1 2 0(0, ) 2 (0, ) 2 (0, ) 36 ( )P t P t P t P t      (12) 
3

6 1 2 1 0(0, ) (0, ) 6 ( )P t P t P t   (13) 
2

7 2 3 2 0(0, ) (0, ) 2 ( )P t P t P t   (14) 
2

8 2 4 1 2 0(0, ) (0, ) 12 ( )P t P t P t     (15) 

9 3 0 3 1 3 2 3 3(0, ) ( ) (0, ) (0, ) (0, )P t P t P t P t P t      

3 4 (0, )P t

 2
3 1 1 2 1 2 01 3 6 2 12 ( )P t           

(16) 

3 2 0(0, ) (0, ) 2 ( )E E EP t P t P t     (17) 

0 1 2 3(0, ) ( ) (0, ) (0, ) (0, )C C C C CP t P t P t P t P t      

4 5(0, ) (0, )C CP t P t  

 2 2
1 1 2 1 2 1 2 01 3 6 2 12 36 ( )C P t            

 

(18) 

Initials conditions 

 0 0 1P  , and other state probabilities are zero 

at 0t   
(19) 

 

Solution of the model 
Taking Laplace transformation of equations (1) to (18) 
and using equation (19), we obtain 

 1 2 3 0 1 1
0

2 3 0
0 0

3 2 ( ) 1 ( ) ( , )

( ) ( , ) ( ) ( , )

C

k
k

s P s x P x s dx

x P x s dx x P x s dx

    

 



 

      





 
 (20) 

 

Where 6,7,8,9, ,k E C and 
0

( , ) ( , )st
i iP x s e P x t dt


   

 1 2 3 1 12 2 ( , ) 0Cs x P x s
x

             
(21) 

 1 2 3 1 22 ( , ) 0Cs x P x s
x

             
(22) 

 1 2 3 2 33 ( , ) 0Cs x P x s
x

             
(23) 

   1 2 3 1 2 42 ( , ) 0Cs x x P x s
x

               

 

(24) 

   1 2 5 ( , ) 0E Cs x x P x s
x

             
(25) 

  
1

exp log ( , ) 0ks x x P x s
x

  
          

(26) 

Where 6,7,8,9, ,k E C  
Boundary Conditions, 

1 1 0(0, ) 3 ( )P s P s  (27) 
2

2 1 1 1 0(0, ) 2 (0, ) 6 ( )P s P s P s    (28) 

3 2 0(0, ) 2 ( )P s P s  (29) 

4 1 3 2 1 1 2 0(0, ) 3 (0, ) 2 (0, ) 12 ( )P s P s P s P s       (30) 

2
5 2 2 1 4 1 2 0(0, ) 2 (0, ) 2 (0, ) 36 ( )P s P s P s P s       (31) 

3
6 1 2 1 0(0, ) (0, ) 6 ( )P s P s P s    (32) 

2
7 2 3 2 0(0, ) (0, ) 2 ( )P s P s P s    (33) 

2
8 2 4 1 2 0(0, ) (0, ) 12 ( )P s P s P s     (34) 

 2
9 3 1 1 2 1 2 0(0, ) 1 3 6 2 12 ( )P s P s           (35) 

3 2 0(0, ) (0, ) 2 ( )E E EP s P s P s   
 

(36) 

 2 2
1 1 2 1 2 1 2 0(0, ) 1 3 6 2 12 36 ( )C CP s P s              (37) 

Change in Laplace transformation of boundary 
conditions after repair, if any 

       1 1 0 1 2
0

0, 3 ,P s P s x P x s dx 


    (38) 

       2 1 1 2 5
0

0, 2 0, ,P s P s x P x s dx 


  
 

(39) 

       3 2 0 1 4
0

0, 2 ,P s P s x P x s dx 


  
 

(40) 

   4 1 3 2 1 1 5
0

(0, ) 3 (0, ) 2 (0, ) ,P s P s P s x P x s dx  


    (41) 

Now solving all the equations with the boundary 
conditions, one may get 

   0

1
P s

D s
  (42) 

1
1

1 2 3

3 1
( )

( ) 2 2 C

P
P s

D s s


   




   
(43) 

2
1

2
1 2 3

6 1
( )

( ) 2 C

Q
P s

D s s


   




     
(44) 

  2
3

1 2 3

2 1

( ) 3 C

R
P s

D s s


   




     
(45) 

  1 2
4

1 2 3

12 1

( ) 2 C

S
P s

D s s

 
   




     
(46) 

 
2

1 2
5

36 1

( ) E C

T
P s

D s s

 
 



   

(47) 

   0
3 3

1 1
6

16 6 1

( ) ( )

S s U
P s

D s s D s s

  
 

 

(48) 

   0
2 2
2 2

7

12 2 1

( ) ( )

S s U
P s

D s s D s s

  
 

 
(49) 

   0
2 2

1 2 1 2
8

112 12 1

( ) ( )

S s U
P s

D s s D s s

    
 

 

(50) 
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  3
9

1

( )

V U
P s

D s s

 


 
(51) 

   02 2
12 2 1

( ) ( )
E E

E

S s U
P s

D s s D s s

    
 

 

(52) 

 
 

 

2
1 236 1C

C

V U
P s

D s s

   


 

(53) 

Where,  
  1 2 3 1 23 2 3 2CD s s P R UW              

1

1 2 3 12 2 C

P
s


    


      

1

1 2 3 12 C

Q
s


    


    

2

1 2 3 23 C

R
s


    


    

3

1 2 3 32 C

S
s


    


    

 3

3

3
E C

E C

T S s
s




 
  

   
  

,  

 
0

0

0

U S s
s



 


,  

2
1 1 2 1 21 3 6 2 12V         

and 
 3 2 2 2

1 2 1 2 2 3 1 26 2 12 2 36E C CW V                  
Sum of Laplace transformations of the state 

transitions, where the system is in operational mode and 
failed state at any time, is as follows 

             0 1 2 3 4 5upP s P s P s P s P s P s P s       (54) 

   1down upP s P s 
 

(55) 

Analytical Study 

Availability Analysis 
When repair follows general and Gumbel-Hougaard 
family copula distribution, we have 

 
  

  
0

1

1

exp log

exp log

x x
S s

s x x

 


 





   
      

setting    , 1,2,3
i

i

i

S s i
s



 


. Following cases have 

been considered: 

(a) Taking the values of different parameters as

1 0.020,  2 0.025,  3 0.030,  0.040,E 

 0.015, 1, 1 1, 2,3C i x i     in (54) and 

then taking inverse Laplace transform, we 
obtain the availability of the system: 

1.1150 1.1100

1.0550 2.7672

1.2268 1.1322

0.0037

( )

            

           

0.000324 0.001009

0.000149 0.020391

          0.018120 0.000026

0.999239

up
t t

t t

t t

t

P t e e

e e

e e

e

 

 

 



 

 





 
 (56) 

(b) Taking the values of different parameters as
0.025  ,  1, 1 1, 2,3i x i    in (54) and 

then taking inverse Laplace transform, we 
obtain the availability of the system: 

1.0500 1.1250

2.7740 1.2549

0.00599

( )

           

1

0.000253 0.001858

0.022656 0.022560

         .002016

up
t t

t t

t

P t e e

e e

e

 

 



 

 




 (57) 

(c) Repair follows general distribution by taking 
   0 ix x   and same values of failure rates as 

in case (a) in (54) and then taking inverse Laplace 
transform, we obtain the availability of the system: 

7

1.1150 1.2561

1.1322 1.0279

0.0036 1.0550

1.1100

( )

          8.8603 10

         

0.000351 0.005406

0.027113

         +0.969217 0.000268

0.001118

up
t t

t t

t t

t

P t e e

e e

e e

e



 

 

 



  

 




 (58) 

 

          For different values of time variable 
0,10, 20,30, 40,50,t  60,70,80,90 and 100 units of 

time, one may get different values of ( )upP t with the help 

of (56-58) as shown in table 2 and the figure 2. 

Reliability Analysis 
Taking all repair rates equal to zero and obtain inverse 
Laplace transform, we get an expression for the 
reliability of the system after taking the failure rates as

1 2 30.020,  0.025,  0.030,  0.040E      

and 0.015C  : 
0.1350 0.1150

0.1300 0.110000

0.1550 0.0550

( )

        2.000000

        +

3.000000 0.060000

0.133333

4.196933 0.003600

i
t t

t t

t t

R t e e

e e

e e

 

 

 



 




 (59) 

For different values of time variable 
0,10, 20,30, 40,50,60,70,80,90 and 100t  units of time, 

one may get different values of reliability ( )iR t with the help 

of (59) as shown in table-3 and the corresponding figure 3. 

Table 2. Variation in ( )upP t with respect to time 

Time ( )upP t  (a) ( )upP t  ( )upP t  

0 1.00000 1.00000 1.00000 

10 0.96280 0.94371 0.93491 

20 0.92770 0.88880 0.90183 

30 0.89387 0.83708 0.86991 

40 0.86128 0.78837 0.83913 

50 0.82988 0.74250 0.80943 

60 0.79962 0.69930 0.78079 
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Time ( )upP t  (a) ( )upP t  ( )upP t  

70 0.77047 0.65861 0.75315 

80 0.74238 0.62028 0.72650 

90 0.71531 0.58419 0.70079 

100 0.68923 0.55020 0.67599 
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Fig.2. Availability as a function of time 

Table 3. Variation in ( )iR t with respect to time 

Time ( )iR t  
0 1.00000 

10 0.49745 

20 0.18308 

30 0.06013 

40 0.01870 

50 0.00567 

60 0.00172 

70 0.00053 

80 0.00017 

90 0.00006 

100 0.00002 
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Fig. 3. Reliability as a function of time 

Mean Time to Failure (MTTF) 
If ( )iR t is the reliability function obtained by taking 

inverse Laplace transformation of ( )upP s then average 

time to system failure for a continuous valued function 

is:    
0

0

MTTF lim
s

R t dt R s



  . Taking all repair rate to 

zero and the limit as s tends to zero in (54) for the 
exponential distribution; we can obtain the MTTF as: 

2
1 1

1 2 3 1 2 3

3 61
1

2 2 2C C

MTTF
 

        


        

2 1 2

1 2 3 1 2 3

2
1 2

1 2 3

2 12

3 2

36
where 3 2

C C

C
E C

  
       

 
    

 

 
     


     

 
(60) 

Now taking the values of different parameters as 

1 20.020, 0.025, 0.030, 0.040, 0.015C E C        
 and varying 1 2 3 E, , ,  and C     one by one respectively 

as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10  in 
(60), the variation of MTTF, with respect to failure rates 
can be obtained as given in table 4 and figure 4. 

Table 4. Computation of MTTF corresponding to the failure rates 

Failure 
 Rate 

MTTF 

1  2  3  E  C  

0.01 14.41 14.41 15.38 12.37 12.98 

0.02 12.32 12.92 13.69 12.35 11.73 

0.03 10.92 11.80 12.32 12.33 10.68 

0.04 9.88 10.91 11.19 12.32 9.79 

0.05 9.09 10.17 10.23 12.32 9.03 

0.06 8.47 9.54 9.41 12.31 8.38 

0.07 7.96 9.00 8.71 12.31 7.80 

0.08 7.55 8.51 8.10 12.31 7.30 

0.09 7.21 8.09 7.56 12.30 6.85 

0.10 6.80 7.70 7.09 12.30 6.46 
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Fig. 4.  MTTF as a function of failure rates 

Cost Analysis 
For the assumed failure and repair rates in section 6.1 
and corresponding to the state transition diagram, we 
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have computed the incurred profit for two cases when 
the system follows copula repair and general repair in (62 
a) & (62 b). Let the service facility be always available, 
then expected profit during the interval 0, t is 

   1 2
0

t

p upE t K P t dt K t   (61) 

Where 1 2 and K K  are the revenue generation and 

service cost in unit time. For same set of parameters 
defined in (50), one can obtain expression for incurred 
profit as a function of time as: 





1
1.2268 1.1322

2.7672 1.1100
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0.0037
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(62b) 

Setting 1 1K  and 2 0.6,0.5,0.4,0.3,0.2 and 0.1K   

respectively and varying 0,10, 20,30, 40,50, 60, 70,t 
80,90 and 100 units of time, the results for expected profit 
can be obtain as per table 5 and 6 and figure 5 and 6. 

Table 5. Profit computation for different vales of time for 
Copula repair 

Time 
(t) 

K2 

0.6 0.5 0.4 0.3 0.2 0.1 

0 0.00 0.00 0.00 0.00 0.00 0.00 
10 3.80 4.80 5.80 6.80 7.80 8.80 

20 7.25 9.25 11.25 13.25 15.25 17.25 
30 10.35 13.35 16.35 19.35 22.35 25.35 

40 13.13 17.13 21.13 25.13 29.13 33.13 

50 15.58 20.58 25.58 30.58 35.58 40.58 

60 17.73 23.73 29.73 35.73 41.73 47.73 

70 19.58 26.58 33.58 40.58 47.58 54.58 

80 21.14 29.14 37.14 45.14 53.14 61.14 
90 22.43 31.43 40.43 49.43 58.43 67.43 

100 23.45 33.45 43.45 53.45 63.45 73.45 
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Fig.5 Expected profit as a function of time for Copula repair 

Table 6. Profit computation for different values of time for 
general repair 

Time 
(t) 

K2 

0.6 0.5 0.4 0.3 0.2 0.1 

0 0.00 0.00 0.00 0.00 0.00 0.00

10 3.54 4.54 5.54 6.54 7.54 8.54

20 6.73 8.73 10.73 12.73 14.73 16.73

30 9.58 12.58 15.58 18.58 21.58 24.58

40 12.13 16.13 20.13 24.13 28.13 32.13

50 14.37 19.37 24.37 29.37 34.37 39.37

60 16.32 22.32 28.32 34.32 40.32 46.32

70 17.99 24.99 31.99 38.99 45.99 52.99

80 19.39 27.39 35.39 43.39 51.39 59.39

90 20.52 29.52 38.52 47.52 56.52 65.52

100 21.41 31.41 41.41 51.41 61.41 71.41
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Fig.6. Expected profit as a function of time for general repair 

Conclusion 

This paper studies the reliability characteristics of a 
complex repairable standby system consisting of three 
subsystems in series configuration under catastrophic 
failure. First Subsystem-L is composed of three identical 
units in parallel configuration working under 1-out-of-3: 
G policy, second subsystem-M has two identical units 
working under 1-out-of-2: G: policy, while the third 
subsystem have one unit that working under a-out-of-a: 
G policy. Explicit expressions have been derived using 
supplementary variable technique. Warm standby 
redundancy has been used as an effective technique for 
improving the reliability of system design.  

Table 2 and Figure 2 give the analysis of 
availability of the system in three different possibilities. 
One can clearly observe that availability of the system 
initially decreases with respect to time and later on it 
seems to be constant as the time increases. Table-3 and 
figure 3 give information for reliability of the system at 
different values of time. The graph showing a steep fall 
in reliability from the top to the lowermost in a very 
short period based on the failure rate of units. From 
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table-2 and 3, one can observe that corresponding values 
of availability are greater than the values of reliability, 
which highlights the requirement of systematic repair for 
any complex systems for desirable performance. 
Additionally, availability is more in case (a) as 
compared to other cases that indicates that copula repair 
is far better than general repair.  

Table 4 and figure 4 yield the MTTF of the system 
with respect to variation in failure rate

1 2 3 E, , ,  and C    
respectively, when other parameters were kept constant. 
MTTF of the system is decreasing concerning different 
failure rates. MTTF of the system is the highest for the 
failure rate of subsystem-3 and is the lowest concerning 
the catastrophic failure that indicates subsystem-3 is 
responsible for proper operation of the system. The 
MTTF in case of deliberate failure is almost the same 

for all E . An acute examination from table-5 and 6 and 

figure-5 and 6 reveals that expected profit increases as 
service cost K2 decreases, while the revenue cost per 
unit time is fixed at K1=1 in case of both copula and 
general repair. The calculated expected profit is 
maximum for K2= 0.1 and minimum for K2=0.6. We 
observe that as service cost decreases, profit increase 
with variation of time. In general, for low service cost, 
the expected profit is high in comparison to high service 
cost. Conclusively, copula repair is more effective repair 
policy for better performance of repairable systems. 
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Appendix 1 

The state transition probability of the system are 
calculated under the presumption that the system is in 
state S0, will remain in the state S0 during the time 
[ , ]t t t  and it will not move to any other state and if it 

is  failed  then after repair it will approach to state S0. If 
the failure rate to move the state S1, S5, S7 and S8 during 
the time [ , ]t t t  is 1 2 33 ,  2 ,   and Ct t t t       , then 

the rate that it will not move to the states will be

1(1 3 ),t  2 3(1-2 ),  (1- ) and (1- )Ct t t     . The state 

transition probability that the system is in state S0 during 
 and [ ]t t t   is  
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