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Abstract
In this paper, the conditional estimation of the Weibull and its related parameters are introduced. Some interesting properties of 

this estimator in contrast with the well-known maximum likelihood estimators have been investigated. This task is done under the 
famous sampling plan type-ii censoring scheme. Because of the complex behavior in the calculation of the likelihood function of the 
presented scheme in this situation without loss of generality, this problem fixed with the Gumbel (log-Weibull) model. The one to 
one transformation between these models and satisfying in their parameters enabling us for utilizing this alternative model. Finally, 
the comparison of this method and maximum likelihood estimation are provided through some numerical results. 
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Introduction*

Weibull distribution is commonly used in reliability 
studies. It is used for modeling the observed failures of 
many different types of components and phenomena. In 
some situations, statistical inference about its parameters 
in quality control and some engineering problems is of 
interest. Depending on a kind of sampling plan, and 
based on the maximum likelihood estimation, the 
performance of estimating in this model can differ. On 
one hand, the observation number in the engineering 
problems is almost few. On the other hand, it is clear 
that the maximum likelihood estimators have not a good 
performance in such situations. The behavior of 
Bayesian estimators is often like the maximum 
likelihood estimators. One of the most applicable 
sampling strategies in engineering problems is the type-
II censored order statistics scheme. For a 
comprehensive, perfect, and complete discussion on 
censored sampling scheme, the reader can refer to 
Balakrishnan and Cramer [2]. The main problem of 
estimating parameters under this scheme is a major fault 
occurrence, especially for large scale parameters in 
confrontation with Weibull models. A routine solution 
of this end is utilizing Gumbel or extreme value 
distribution, which have the capacity of one to one 
transformation between corresponding random variables 
and related parameters. Yet, the problem of bad 
performance of maximum likelihood estimators (MLES) 
is still holding on but a little better than previous 
estimating.  
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However, in the situations of having a location-
scale family of distributions for sampling, some authors 
proposed a conditional method of estimating. This 
method was introduced by Lawless [10] and was applied 
in some inferences problem by Lawless [11] and 
Lawless [9]. A generalize conditional strategy of 
estimating in the location-scale family of distribution 
done by Viveros and Balakrishnan [17]. In continuing, 
the conditional Bayes estimators have been discussed in 
some quality control disciplines by Haghighi [5]. In 
addition, in this concept the conditional strategy has 
been used alone in Haghighi et.al. [7]and Haghighi and 
Costagliola [6]. The aforementioned paper uses the 
conditional method for the estimation of the Weibull 
parameters and introduces a new control chart for the 
Weibull quantile function. Utilizing conditional 
estimators arising from the point that if U(.) and T(.) be 
two statistics proposed for estimating the parameter, 
Thus E[TU] is a new unbiased statistics that have a 
small variance than T(.). It can be shown that the 
variance can be small and smaller until the U(.), be 
sufficient statistics, but in the case of non-existence 
sufficient statistics like the Weibull model, it is 
straightforward that conditioning on an ancillary 
variable can improve our estimations.  

The combined Bayes and conditional method have 
effectively used in Haghighi [5] for quality control 
disciplines focusing on constructing the new control 
charts for the Weibull shape and quantile parameter. In 
the Bayes method, choosing a good prior distribution is 
so important but the presented method has focused on 
improper Jeffreys prior to or proportions this prior. The 
extension of this prior has been considered in this study 
and the best of these priors has been identified. In 
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continue, the efficient performances of the presented 
strategy are established by some comparison results 
through mean squared errors (MSE) and mean absolute 
errors (MAE). In addition, this method is applicable for 
estimating any related parameters for the Weibull 
distribution and has not an exception for estimating 
particular parameters. 

For text shortening and page boundaries, only 
formulas and relationships are presented in the Gumbel 
distribution. The derivation of the results for the Weibull 
distribution is accomplished with a simple 
transformation of linear, and conversions are kept one 
by one in the parameters (Haghighi [5]). It is also worth 
mentioning that if one can find a strategy with the better 
performances in the Gumbel model, it is also held on for 
the Weibull distribution. Moreover, the Gumbel model 
belongs to the location-scale family of distributions 
which help us in constructing the ancillary statistics. 
Therefore, without diminishing loss of generality, in 
section 2, the required relationships in the Gumbel 
distribution are shown, and in Section 3, the numerical 
comparison of the two methods presented in deducing 
the parameters of the location and the scale for u = -
5,0,5, 10 and �= 1,5,10 

Notations and Models
Suppose that Y1, Y2...Yn are some random variables 
following to the Weibull distribution with shape 
parameter �and scale parameter ß. The probability 
density function of this distribution is 
�
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For simplicity the notation of these representation 

is considered as Y ~ W(�� �). 
Taking into account the one-to-one transformation 

Xi = log(Yi). Here, suppose that X1, X2, ...,Xn are some 
random variables following to the Gumbel distribution 
with parameters u and �. The probability density 
function of this distribution is 
�
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For simplicity the notation of these representation 
is considered as X ~ G(#� �).  

The joint probability density function of first r 
ordinary order statistics X1:n, X2:n, ..., Xr:n arising from 
independent and identical random variables X1, X2, ..., 
Xn, is (Arnold et.al. [1]) 
���,-)���.,-)� � � ��/,-�0��0.��0/	
 �
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It is noteworthy that this sampling method can be 
considered as a special case of progressively type-II 
censored order statistics which named as type-II 
censored order statistics sampling scheme. However, the 
maximum likelihood estimators (MLES) based on 
maximizing likelihood function 1, called by #)and 
�Brespectively referred as MLE of #and�. In continuing 
another method of estimating these parameters 
according to the Bayesian conditional strategy are 
introduced. The performance of this manner of 
estimating is constructed as follows. 

Let C(#,�) = *
DEF , m �R+ denote the improper prior 

distribution for two location and scale parameters and 
immediately from 1, the posterior distribution 
C�#� �G�	satisfies. 
C�#� �G�	 � *

D/HE 89: �4
05IJ
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Now, consider two ancillary statisticsK* �JLIJ
DL '�(KM= DLD and moreover pivotal quantity ai= 0�IJLDL  , 

i=1,2,…. , r According to these notations 
��K*� KM	N�'*� 'M � � '@	�K*� KM	 O
KM@�PIM 89:�4 �K* > 'A	KM	@A
*   
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or equivalently 
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Where C is normalizing constant such that 
*
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In order to calculate the Bayesian estimator of Z1 
and Z1, the full conditional probability density function 
of these parameters are required which can be derived in 
the following 
�K*�K*	 O
=@T�T.I=T�T.`�� ; �	=U�T. > 4 =U5T.)� K* � �@A
*   

And 
�KM�KM	 O K@�PIM
7 =T.�4 �T��U5		I`�aI@	�b.`c�H
/dI4 �b.ec�H
5f/56�/56� � KM ���

It is obvious that finding a closed normalizing 
constant for these distribution cannot be manipulating 
essay and we should apply the Gibbs sampling method 
for generating random variables from these two 
probability density functions. Moreover, because Z1 and 
Z2 are the linear combination of parameters #and�, the 
Bayes estimator of these new parameters can keep their 
Bayesian features under the first and the last loss 
functions. However, under the second loss function, 



IJRRS: Vol. 3/ Issue 1/ 2020 / 99 

 

The Conditional Estimation for related Weibull parameters Under ... 

some challenges have appeared. It is perfectly 
understood that with some slight mathematical 
calculations the Bayes estimator of a linear combination 
gMhi �'j > k	under the LinEx loss function isgMhi �'j >k(Lehman and Casella [12]).  

Finally, it is worth mentioning that the similar 
distribution of Z1 is 

l��	 � +m
�
�

n���	
=U0 ; o=h0)� � � �)� ��)� �� o	 � )���  

where it's cumulative distribution function is 

p��	 � ] +m
�
�

n���	
q
�
�I*=Imr(q)�s 
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Hence, the generating random samples from fz1, 
(z1) can be easily done but for fZ2, (z2) some complicated 
problems has been appeared. For calculation conditional 
Bayes estimator of Z1 and Z2, three loss functions have 
considered and these estimators have compared with 
their MLE's. 

� Absolute Error Loss Functions (AEL) 
u�g� j	 � Gg ; jG  
g*hi �j	= median of)j in posterior density 
function 

� Linear Exponential Loss Functions (LinEx) 
u�g� j	 � =v�wIx	 ; y�g ; j	 ; �)� y � ��  

gMhi �j	=I z{|Z}~�
����[

v  
In present study c = 1 has been considered. 
� Squared Error Loss Functions (SE) 
u�g� j	 � �g ; j	M  
g�hi �j	= mean ofin posterior density function 
In each case, ghi�j	,represent the corresponding 

Bayesian estimator to each of loss functions (Lehman 
and Casella [12]). 

Numerical comparison of two presented 
methods 

 In this section, we provide some comparison results for 
the performance of two presented methods of estimating 
parameters in Gumbel distribution. The location and 
scale parameters of the Gumbel model or equivalently 
the shape and scale parameters of the corresponding 
Weibull distribution is our target parameters for 
estimating. Obviously the same task is also applied for 
estimating another important parameter like as 
reliability, density, survival, and hazard rate functions. 
The MLE estimators of these parameters can be easily 
derived by maximizing the likelihood function 1, but the 
calculation of Bayes estimators have some conflicts. 

 In continue, the famous algorithm is described and 
the method of derivation conditional estimation is 
explained through statistical software R, Core Team, 
[16]. 

Metropolis et al. [13], introduced the Metropolis-
Hastings (M-H) algorithmic rule in the program as a 
general Mont Carlo Markov Chain (MCMC) technique 

and afterward Hastings (Hastings [8]), expanded the M-
H algorithm. One can apply the M-H algorithm to get a 
random sample from any subjectively complicated target 
distribution of any dimension that is known up to a 
normalizing constant. Gibbs sampling method is a 
particular instance of the MCMC method. It can be 
utilized to generate a sample from the full conditional 
probability distributions of two or more random 
variables. Gibbs sampling requires decomposing the 
joint posterior distribution into full conditional 
distributions for each parameter and then sampling from 
them. We propose using the Gibbs sampling plan to 
generate a sample from the posterior density functions 
fz1 (z1) and fz2 (z2) in turn compute the Bayesian 
estimates under given loss functions (Soliman, et.al. 
[14,15]). 

Generating random samples such that distributed as 
similar as Z1 is expressed previously. For such a same 
task in Z2 we propose the following steps: 

I. fix values n = 15, r = 8, R1 = 0, R1 = R2 = ... = R7 
=0, and R8 = 7. 

II. Utilizing the given algorithm in Balakrishnan and 
Sandhu [3], to generating type-II censored order 
statistics arising from independent and identical 
Gumbel random variables under the scheme which 
introduced in previous step. 

III. Calculate MLEs of parameters #)and �)based 
onsamples that generated in previous step, say 
#�and �Brespectively. 

IV. Construct ai = 0�IJLDL � � � ���� � �� 
V. Assume that a fix value of z2 say z2 = 1. 

VI. Generate a random sample z� based on a cdf 2, 
with parameters �=�KM))� � � KM) and �= 
�=��IV. > 4 =U5T.�A
*  

VII. Generate a new random sample t based on a cdf 2, 
with parameters � � 4 Z_* > 'A[� � � _* > '��A
*  
and � = 7. 

VIII. For M= 20000 and N = 100000 calculate CC 

=
4 rEH���4 "��b�H
5	�56�������5�.����

�I� .Hence, 

�VM�_M	 � *
\\ _M@�PIM  

7 =V.�4 �V��U5		I`�aI@	�b.`b�H
/d/56� I4 �b.eb�H
5f/56� � _M � ��  
IX. It is clear that z2belongsto the log concave family of 

distribution. Therefore, using the given algorithm of 
this family of distributions in Devroye [4], and 
generate one random variable from this pdf. 

X. Call the generated random variable Z1s and z2s 
Moreover repeat this step for S = 1,2,...,100000 and 
afterward delete the first 20000th and construct new 
vectors Z1s and Z2s with length 80000. It is 
straightforward to see that 
g*hi �K�	 � T��������		�T��������		

M ,gMhi �K�	 �
; $%& e4 ��c��

�tttt
*ttttt�
Mttt* f � '�()g�hi �K�	 �

4 V��
�tttt) � � � ���)*ttttt�
Mttt*  
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Now, based on the above- mentioned examples, the 
Bayes estimators of Z1 and Z2, can be calculated and 
subsequently the Bayes estimators of #)and)�.will be 
calculated .The number of repeated in each tables is 1000000. 

Table 1. Estimation criterion 1 

True  values 
of parameters Bias MSE MAE 

# � ;�  
� � �  

0.68680050 
-0.04166361 

0.63839000 
0.21870780 

0.70501050 
0.38150950 

# � ;�  
� � �  

-0.93424835 
0.05166332 

4.32319800 
4.49697100 

1.62188400 
1.62527700 

# � ;�  
� � ��  

-2.88157680 
0.10755720 

22.1155700 
18.0756800 

3.71012200 
3.25669600 

# � �  
� � �  

0.68716310 
-0.04246840 

0.63873880 
0.21780420 

0.70513560 
0.38138020 

# � �  
� � �  

-0.93734297 
0.05174331 

4.32370200 
4.50535600 

1.62178800 
1.62830300 

# � �  
� � �� 

-2.87358300 
0.10011000 

22.0749800 
17.9499900 

3.70312600 
3.24967700 

# � �  
� � �  

0.68562740 
-0.04257320 

0.63654430 
0.21866210 

0.70387780 
0.38165130 

# � �  
� � �  

-0.93823280 
0.05137040 

4.33715900 
4.52099100 

1.62496700 
1.62886800 

# � �  
� � ��  

-2.87603700 
0.10698600 

22.0890500 
18.0351600 

3.70735800 
3.25654700 

# � ��  
� � �  

0.65110020 
1.13773740 

0.56575350 
1.44024000 

0.67037940 
1.13773740 

# � ��  
� � �  

-0.93614990 
1.05268570 

4.32951100 
5.60223000 

1.62322800 
1.71455800 

# � ��  
� � ��  

-2.87460300 
1.11072600 

22.0702600 
19.2965000 

3.70402900 
3.24181500 

Table 2. Estimation criterion 2 
True  

values of 
parameters 

Bias MSE MAE 

# � ;�  
� � �  

0.8722585 
-0.0479138 

0.791762 
0.4196371 

0.8722585 
0.1637934 

# � ;�  
� � �  

-0.89537 
-0.04946586 

0.8310668 
0.04220974 

0.89537 
0.1640008 

# � ;�  
� � ��  

-1.176859 
0.09995236 

1.385527 
0.04999095 

1.176859 
0.1791974 

# � �  
� � �  

0.6835907 
-0.04048524 

0.5058638 
0.4148003 

0.6836182 
0.1622532 

# � �  
� � �  

-0.9004636 
0.04918261 

0.839695 
0.04233654 

0.9004636 
0.1642744 

# � �  
� � ��  

-1.17571 
0.09990332 

1.382866 
0.04973746 

1.17571 
0.1786718 

# � �  
� � �  

0.6806113 
-0.04001441 

0.5016124 
0.04170052 

0.6806389 
0.163145 

# � �  
� � �  

-0.900369 
0.05015226 

0.8393726 
0.04250714 

0.900369 
0.1644665 

# � �  
� � ��  

-1.176583 
0.01089497 

1.384879 
0.4598741 

1.176583 
0.5843977 

# � ��  
� � �  

0.0729195 
0.125118 

0.4612334 
0.4633722 

0.5853499 
0.5870599 

# � ��  
� � �  

-0.1040864 
0.1218691 

0.4626862 
0.4643177 

0.586616 
0.5874308 

# � ��  
� � ��  

-0.3145018 
0.1265605 

0.4995298 
0.4652878 

0.6156897 
0.5883557 

The last table denotes the behavior of Conditional 
Bayes estimators of the corresponding parameters under 
LinEx loss function. The similar tables for another loss 
functions are omitted. Finally, as you can see the new 
strategy of estimating has so good performance in 
comparison with MLES. 
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