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Abstract 

The iHLRF algorithm is a popular iterative algorithm for determining the failure probability in structural reliability problems. It belongs 

to the family of first-order reliability methods (FORM) and is known for its fast convergence and remarkable simplicity. However, in 

cases where the limit state function oscillates significantly near the design point, which often occurs in high nonlinear limit state 

functions, the iHLRF algorithm may suffer from convergence issues. To address these convergence issues, this paper proposes three 

two-step direction determination techniques for first-order analysis. These techniques are based on two-step root-finding methods with 

a higher convergence rate than existing methods. The proposed techniques aim to improve the accuracy and robustness of the iHLRF 

algorithm, especially in cases where the limit state function shows highly nonlinear behavior. A numerical example with high nonlinear 

limit state functions in standard normal space is presented to demonstrate the proposed techniques' efficiency and capability. The 

performance of each proposed technique is compared with other existing methods, highlighting the advantages and limitations of each 

approach. Overall, this paper aims to contribute to developing more accurate and reliable methods for determining the reliability index 

in structural reliability problems, with the potential to be applied in various engineering fields. 

Keywords: Reliability analysis method; Two-step root-finding; Step direction; Convergence rate; Nonlinear limit state function.

1. Introduction 

Accurately determining the probability of failure 

in reliability analysis problems requires multiple 

integrations, which is time-consuming. Simulation 

methods are among the alternative methods to direct 

integration. Monte Carlo simulation and importance 

sampling, are two well-known methods that require 

thousands of simulations to determine the probability of 

failure [1]–[9]. For this reason, the implementation 

of iterative approximate methods for determining the 

probability of failure has been investigated. Iterative 

approximation methods are among the other reliability 

analysis techniques to determine the failure probability 

based on the statistical moments of the random variables. 

These methods start by searching for an initial response 

vector and finding the design point in a few iterations with 

the intended approximation. One simple and fast iterative 

method for solving reliability problems is the first-order 

reliability method (FORM). This method involves 

expanding the limit state function around the design 

point, which is called the most probable point (MPP), 

using the Taylor series [10].  

Choosing the appropriate method to achieve the 

right linearization around the design point is one of the 

key steps in the first-order reliability method (FORM), 

and the result is accessing an iterative process to reach the 

problem solution. Hasofer and Lind first introduced the 

method. They introduced the concept of the reliability 

index, which is equal to the shortest distance from the 

origin to the point located on the limit state 

function in standard normal space [11], [12]. Then, it was 

improved by Rackwitz and Fiessler to a comprehensive 

form for use in problems with non-normal random 

variables [13]–[15]. In their proposed method, due to 

considering the unit value for the step size, 

severe convergence problems arose, similar to the 

problems in the initial Newton root-finding methods. 

Zhang and Kiureghian addressed this issue by controlling 

the merit function and considering an appropriate step 

size value [16], using the Armijo rule to optimize the 

merit function. 

However, FORM is limited in solving high-order 

nonlinear limit state functions due to its first-order 

approximation by Taylor series expansion, which is used 

in the linear fitting of the limit state function. Another 

method proposed to overcome this limitation is the 
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second-order reliability method (SORM) [17], which 

employs a second-order Taylor series expansion and 

higher-order derivatives. However, this approach faces 

challenges in problem-solving when the number of 

random variables increases. 

Another approach presented by researchers to 

improve the efficiency of the FORM method is to provide 

new linearization of the limit state function. For example, 

in the reference [18], the univariate function method was 

implemented to linearize the limit state function. Another 

solution is to use statistical moments of the random 

variables, such as the third and fourth-moment methods, 

where the limit state function is transformed from 

physical space to standard normal space using statistical 

information of the random variables before starting the 

problem-solving process. The failure probability is 

determined in the next step using the abovementioned 

methods [19]–[21]. The numerical nonlinear optimization 

algorithm is another approach to finding design points in 

the structural reliability problem. Well-known instances 

in this regard include Gradient Projection (GP), 

Augmented Lagrangian Method (ALM), and Sequential 

Quadratic Programming (SQP) [22]–[25]. SQP, a popular 

robust optimization method, is a gradient-based method 

to implement inequality and equality constraint problems. 

Indeed, the initial idea of employing the first-order 

reliability method was triggered by the SQP algorithm. 

In all these methods, the first-order Taylor series 

expansion plays a key role in the initial convergence and 

efficiency. Therefore, it is necessary to reconsider the 

linearization of the limit state function and investigate 

higher-order and multi-step convergence methods. 

Modified Newton-Raphson methods with 

various convergence orders, which are modern root-

finding methods in engineering for finding roots 

of nonlinear equations, can be used to linearize functions 

[26]–[28]. This function linearization is used in the 

FORM method to determine the distance from the design 

point to the origin in standard normal space and improve 

problem-solving convergence. To this end, two-step 

methods such as Double-Newton and Chun and Porta-

Pták methods should be utilized to achieve better 

convergence, especially in high-order nonlinear 

functions, without significantly increasing computational 

cost [29]–[34]. These methods' main feature is increasing 

the convergence order while maintaining the first-order 

derivative. 

In this article, three methods for determining the step 

direction are proposed to improve the convergence rate in 

the FORM method. These methods include Double-

Newton, Chun, and Porta-Pták, which encompass classic 

and modern root-finding methods. Despite increasing 

the convergence order, these methods do not increase 

the derivative order. The main difference between the 

proposed methods lies in the approximation of the 

hyperplane used in solving the problem, which results in 

obtaining different values for the step direction, 

especially in the initial steps of problem-solving. In the 

second section, the modified FORM method or iHLRF is 

introduced, with the process of determining the step 

direction and step size. The third section presents the 

numerical procedure of the mentioned methods to 

determine the step direction. In the fourth section, a 

numerical example is given to examine the performance 

of the proposed methods. Finally, in the fifth section, the 

conclusions are presented. 

2. Modified first-order method 

(iHLRF) 

This method follows an iterative approach to find the 

design point using a recursive line search algorithm, 

expressed as Eq (1) [16]. 

1 .m m m mu u s d    
 

(1) 

um is the vector of random variables at the design 

point, m is the iteration number, sm is the step size, and dm 

is the step direction vector. The first step in this method 

is to determine the step direction. For this reason, the 

method starts with linearizing the limit state 

function using the first-order Taylor series expansion 

around the design point, as expressed in Eq (2). 

       .
T

m m mG u G u G u u u    
 

(2) 

In this method, reaching the limit state surface is 

important as it determines the boundary between safety 

and failure. To determine the limit state surface, it is 

necessary to set Eq (2) equal to zero, and in this case, Eq 

(2) will be transformed into an equation of a hyperplane, 

as shown in Eq (3). 

       . 0   
T

m m mG u G u G u u u  
 

(3) 

According to geometric principles, the distance from 

the origin to the closest point on the limit state surface can 

be obtained by placing the geometric coordinates of the 

origin in the equation of the hyperplane and dividing by 

the magnitude of the gradient vector of the limit state 

function, which is presented in Eq (4). 
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(4) 

Given that the normalized and scaled value of 

the gradient vector is known as the vector α, Eq (4) can 

be rewritten as Eq (5). 
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(5) 

If the limit state function is linear, multiplying Eq 

(5) by the vector  will result in the final solution, which 

will be the same as the distance from the origin according 

to Eq (6). 

1mu      (6) 

For problems with a nonlinear limit state function, 

Eq (6) is not the final solution but is used to determine the 

solution in the next step. Therefore, the value of the step 

direction can be defined as Eq (7). 
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(7) 

The next step in this method is to determine the step 

size, which is estimated using Eq (8). 

, 0.5k

ms b b    (8) 

Where k is an integer that increases if 

the convergence conditions are not obtained. 

The convergence criterion used for this method is 

the Armijo rule, in which the merit function is controlled 

by checking the step size. One of the simplest relations 

for determining the convergence condition is 

summarized as Eq (9). 

   1m mm u m u   
 

(9) 

The function m represents the merit function 

obtained from Eq (10). 

   
2

0.5 .m u u c G u   
 

(10) 

In which the value of c is equal to Eq (11). 

 
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(11) 

If Eq (9) is not satisfied, the step size value, or sm, 

will decrease in each iteration by increasing the value of 

k in Eq (8). It is also possible to consider a final value for 

the step size reduction direction; for example, 

the maximum value of k is 6. The steps described above 

will be used in all of the methods presented below. The 

difference between the methods presented is related to 

determin the value of Δ in Eq (5). The method used in 

the iHLRF algorithm is from the family of Newton 

methods in root-finding problems, which uses the first-

order gradient. Despite its simplicity and high 

convergence rate, especially for highly nonlinear 

functions, it has some limitations. Therefore, in section 

three, a suitable solution will be adopted by introducing 

proposed methods to address these limitations. 

3. Presenting methods to estimate step 

direction 

This section presents some methods used in root-finding 

problems that can also be used for function linearization. 

These methods are in the class of two-step methods, 

whose goal is to determine the direction in finding the 

design point, including Double-Newton, Chun, and Porta-

Pták methods. The reason for using these methods is that 

they do not cause a significant increase in computational 

cost up to convergence, especially for highly nonlinear 

functions [29]–[34]. The output of these methods is a 

new form of the hyperplane equation used in the iHLRF 

method, and they differ only in calculating the step 

direction. 

3.1 The First Method: Double-Newton 

The Double-Newton method is one of the advanced two-

stage methods in the family of Newtonian root-finding 

methods. It has predictive and corrective items, and its 

one-dimensional form for finding the root of a function is 

expressed as Eq (12) [26], [29]. 
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(12) 

In which zk is the predictive point, calculated by the 

first-order Taylor expansion around the design point xk, 

which is the current estimate of the root at iteration k, and 

x is the estimation of the root at the next step. The second 

part in Eq (12) can be rewritten and used to linearize the 

function, as shown in Eq (13). To this end, the value of 

the gradient zk can be replaced by the gradient xk, which 

does not make much difference in the results. 
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(13) 

The vector form of Eq (13) for G(u)=0, where u is a 

vector of random variables, is given by Eq (14). 
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(14) 

Using Eq (14), a new form of the hyperplane 

equation and the calculation of Δ (Eq (4)) are obtained. The 

coefficient b in Eq (14) controls convergence in this method, 

and its value has been chosen empirically as -0.5. Thus, the 

step direction vector in this method is given by Eq (15). 
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(15) 

3.2 The Second Method: Chun 

The second method is an iterative method with 

fourth-order convergence for solving nonlinear 

equations, and its root-finding form is expressed by Eq 

(16) [30]. 
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(16) 

The second part in Eq (16) can be rewritten and used 

to linearize the function, as shown in Eq (17). 
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(17) 

The vector form of Eq (17) for G(u)=0, where u is a 

vector of random variables, is given by Eq (18). 
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(18) 

The second part in Eq (18) is the hyperplane 

equation obtained in this method, which determines the 

step direction. Thus, using Eq (18), a new form of 

the hyperplane equation and the calculation of Δ (Eq (4)) 

is obtained, and using them, the step direction vector in 

this method is taken as Eq (19). 
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(19) 

3.3 Third Method: Porta-Pták 

The third method is a third-order convergence method 

that combines Newton's and Steffensen's methods to 

determine the simple and real roots of nonlinear 

equations with one variable, and its relations are given by 

Eq (20) [21-24]. 
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(20) 

The second part in Eq (21) can be rewritten and used 

to linearize the function, as shown in Eq (22). 
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(21) 

The vector form of Eq (21) for G(u)=0, where u is a 

vector of random variables, is given by Eq (22). 
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(22) 

The second part in Eq (22) is the hyperplane 

equation obtained in this method, which determines 

the step direction. Thus, using Eq (22), a new form of the 

hyperplane equation and the calculation of Δ (Eq (4)) is 

obtained, and using them, the step direction vector in this 

method is taken as Eq (23). 
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(23) 

4. Numerical simulation 
This section presents an example to evaluate and compare 

the efficiency and the convergence of the proposed 

methods. A nonlinear limit is employed. These cases will 

also exhibit greater severity after transforming the random 

variables to non-correlated standard normal variables. Due 

to neglecting the effects of transforming random variables 

between the physical space and the standard normal space 

and better observing the effects of the proposed methods, 

the third-moment method [19] transforms the limit state 

function into a function of non-correlated standard normal 

variables. Then the final results of the proposed methods 

are compared with iHLRF and importance sampling 

methods [1], [16], [35]. The starting point is the origin in 

the standard normal space. 

This example has a linear limit state function in the 

physical space given by Eq (24), where coefficients are 

considered for random variables [19], [21], [36], [37]. 

  1 218 3 2G X X X     (24) 

Table 1 presents the specifications of the random 

variables, statistical moments to use in the third-moment 

transformation method. 

Table 1. Probability Distribution of Random Variable   
Skewness Variance Mean Distribution Var 

2.0 1.0 1.0 Exponential X1 
2.0 1.0 1.0 Exponential X2 

The correlation coefficient between the two 

variables is equal to -0.403653. To solve this example, 

firstly, using the statistical information in Table 1, 

the limit state function is transformed by the third-

moment method into a function composed of non-

correlated standard normal variables, resulting in Eq (25). 

This example is linear in the physical space. Still, it 

becomes nonlinear after transformation using the third-

moment method, where the second-order terms and the 

product of random variables are observed. 

  2

1 1 1 2
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1.26 1.53 0.72 ...
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G u u u u u

u u

 
 

(25) 

The solution to this example using the importance 

sampling method for Eq (25) with a coefficient of variation of 

0.2 for 7800 simulations equals 2.70404. The final result is 

presented using the treated methods in Figure 1. 

 
Figure 1. Results of Various Methods 
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Based on Fig 1, it can be seen that all methods have 

reached the final result, but the steps taken to reach this 

result, especially in the initial steps, are different from each 

other. In the first step, the iHLRF method had the largest 

movement, and the Double-Newton, Chun, and Porta-Pták 

methods had less movement, respectively. This is due to 

the difference in convergence order of each method 

compared to the others, which is reflected in the step 

direction and, ultimately, in the step size. After completing 

the second step and reaching the third step, the results are 

near the limit state function. In other words, different 

methods have converged to similar values. The contents 

discussed in this section and the response of each random 

variable until final convergence for each method are 

presented in Figure 2. 

 

(a) 

 

(b) 

Figure 2. Results of Various Methods; (a): The First Variable; 

(b): The second variable Changes in each step 

5. Conclusion 

This article presented three types of mathematical 

relationships for determining the step direction using 

modern and classical two-step root-finding methods, 

which were used to solve complex problems. A single 

example was studied in this article to evaluate the 

methods and compare their differences with the iHLRF 

method. Although all methods achieved a similar final 

solution, the steps taken by these methods, especially in 

the initial steps, were different from each other. The 

presented example showed that the Chun and Porta-Piták 

methods had shorter steps and smoother convergence 

behavior compared with the iHLRF method. In contrast, 

the Double-Newton method resulted in larger movement 

in each computational step. As the results approached 

the limit state surface, the oscillations between the 

methods gradually decreased, and similar behavior were 

observed between the methods. However, the Double-

Newton method was a simple method and continued to 

have larger displacements until it approached the limit 

state surface in problems with higher nonlinear orders. 

Although these methods achieved the final solution, the 

accuracy of this solution was still in the first-order 

methods due to the use of first-order derivatives to 

calculate the step direction. To improve 

the computational accuracy of the final result, combining 

methods such as the SORM method can be used after 

determining the final result using any of these methods. 

Ultimately, the results demonstrate the high flexibility of 

these methods in analyzing reliability problems. As a 

scope of future research, it is recommended to study other 

modern root-finding methods, such as 3 and 4-step 

methods with convergence orders of 6 and 8, is 

recommended. 
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