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Abstract 
Spare parts provision is a complex problem and requires an accurate model to analyze all factors that may affect the required number 
of spare parts. The number of spare parts required for an item can be effectively estimated based on its reliability. The reliability 
characteristics of an item are influenced by different factors such as the operational environment, maintenance policy, operator skill, 
etc. However, in most reliability-based spare parts provision (RSPP) studies, the effect of these influence factors has not been 
considered. Hence, the statistical approach selected for reliability performance analysis must be able to handle the effect of these 
factors. One of the important models for reliability analysis by considering risk factors is the proportional hazard model (PHM), which 
has received less attention in the field of spare parts provisioning. Thus, this paper aims to demonstrate the application of the available 
reliability models with covariates in the field of spare part predictions using a case study. The proposed approach was evaluated with 
data from the system of fleet loading of the Jajarm Bauxite mine in Iran. The outputs represent a significant difference in spare parts 
forecasting and inventory management when considering covariates. 
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1. Introduction 
It is evident that there is no such system without failure, 
and it is impossible to design a system without failure. 
Therefore, it is necessary to adopt appropriate and well-
scheduled activities regarding support and spare parts to 
ensure the desired level of availability throughout the 
system's life [1]. However, spare parts provisioning is a 
complex problem and requires an accurate analysis of 
many factors that may affect the required number of spare 
parts. 

The availability of spare parts is an important factor 
that can increase the system's performance and 
effectiveness. The downtime of a failed system can be 
significantly reduced if all spare parts needed for the 
repair are immediately available. On the other hand, if 
spare parts are not immediately available, their waiting 
time can cause costly production losses. Moreover, 
overstocking unnecessary spare parts or the obsolescence 
of too many stored units can lead to huge losses due to 
investment costs. Hence, as an important part of product 
support activity, accurate spare parts prediction has to be 
considered seriously in the design and operation phases 
[2, 3]. Spare parts prediction and optimization is a 
complex problem and requires identifying all influence 
factors and selecting an appropriate model for  

quantifying their effect on the required number of 
spare parts. Some of the important influence factors are 
the operational conditions, including climatic conditions 
(temperature, wind, snow, dust, ice, etc.), the skill of the 
operator and maintenance crew, the history of the repair 
activities carried out on the machine, etc., [4, 5].  

All production systems typically need maintenance 
and the installation of spare parts, performed regularly to 
ensure product reliability. Whereas for increasing the 
performance of the production system, keeping spare 
parts of critical components should be carefully 
considered because it causes to enhance system efficiency 
and prevent unplanned stoppages. In this way, the 
performance indexes such as availability, reliability, and 
maintainability of the product are important and have a 
vast influence on product support. 

The first step in the reliability-based spare parts 
provision is to identify the item's reliability performance 
and failure rate. After that, the number of required spare 
parts and the probability of spare part availability can be 
estimated [6]. However, to have an effective prediction, 
any factors that influence the reliability and performance 
of the item must be considered. The reliability 
performance of an item can be influenced by different 
factors such as the operational environment, geographical 
location, design material, maintenance history, operator 
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and crew skill, etc., [7, 8]. The factors that may influence 
the reliability performance of an item are referred to as 
covariates. Ignoring such covariates may lead to wrong 
results in reliability performance analysis and, 
consequently, in spare parts provisioning [8–10]. 

Kumar presented a concept for developing a service 
delivery strategy for industrial products with a special 
reference to mining systems in 2003. In this work, some 
factors that influence service delivery strategy are 
studied, and suggested approaches for service delivery 
strategy building to reduce these gaps, which would help 
reach customer satisfaction and fulfill operational 
commitments [11]. Ghodrati and Kumar, for the first 
time, discussed the required spare parts (hydraulic seal of 
hydraulic jacks of open pit loaders) based on product 
design characteristics and operating environment for 
conventional and functional products [12]. In 2004, S. 
Kumar studied the various sides of spares and service 
management from a maintenance, repair, and operations 
point of view [13]. Ghodrati and Kumar 2005 focused on 
the reliability and hazard rate of hydraulic brake pumps 
used in mining loaders and how to calculate required 
spare part requirements based on influencing factors [14]. 
These researchers also determine the number of required 
spare hydraulic jacks concerning the effect of the external 
factors, except time, on the reliability characteristics of 
components through the proportional hazard model [15]. 
Ghodrati 2007 attempted to analyze the risk of ignoring 
the effects of operating environment factors on the output 
of a process in the form of system downtime and loss of 
production by fault tree analysis and event tree analysis 
[16]. Ghodrati et al. proposed a mathematical model for 
spare parts prediction at the component level for the 
bucket lifting cylinder of the loader in the Swedish 
mining industry [17]. These researchers 2012 studied the 
influence of operating environmental factors on the 
failure rate of the wheel loader’s brake pads data obtained 
from an open-pit iron ore mine in Iran for three years. The 
spares management software (SMS) was used [18]. 
Barabadi et al. presented the application of PHM to spare 
parts provision and demonstrated electricity meters in the 
power distribution system in Jajarm, Iran [19]. Recently, 
Barabadi et al. demonstrated the application of RRMC  
for the provision of spare parts for drill bits in the Jajarm 
Bauxite Mine, Iran [20]. In 2015-2018, Ali Nouri 
Qarahasanlou demonstrated the application of the Cox 
regression method for mining fleet and spare tire analysis 
of dump trucks in Sungun mine, Iran [21–28]. 

In statistical approaches for reliability modeling, the 
required number of spare parts is calculated based on the 
reliability performance of the item. Hence, to quantify the 
effect of operational conditions on the required number of 
spare parts, their effects should be quantified on the 
reliability performance of the item. However, in most of 
the available studies, operating time is the only variable, 
and operational conditions have not been considered as 
variables [1], [29–33]. Therefore, there is a lack of 
implementation of RRMC, such as the proportional 
hazard model for spare part predictions. 

The proportional hazard model (PHM) is a valuable 
statistical procedure to estimate the reliability 
performance and failure rate of an item subjected to 
covariates. The main assumption in PHM is that the effect 
of covariates is time-independent; therefore, this model is 
not applicable for estimating the item spare parts in the 
presence of time-dependent covariates. The time-
dependency of covariates, such as ambient temperature, 
can directly affect inventory management and spare part 
planning. Therefore, any method used for spare parts 
provision must be able to handle the time-dependency of 
the ambient temperature. 

The literature review firstly shows a shortage of 
application of reliability models with covariates for spare 
part predictions. This paper aims to show the application 
of RRMC for the provision of spare parts for bucket teeth 
in Jajarm Bauxite Mine, Iran. Bucket teeth are among the 
important parts of the crane shovels, and any shortage of 
these items can lead to the stoppage of production in the 
mine. The operational conditions in a mine are more 
severe than in most other industries. It is believed that the 
operational conditions influence the reliability 
characteristics of the Bucket teeth in Jajarm Bauxite 
Mine. Hence, it is important to investigate this subject and 
accurately estimate the number of spare parts needed, 
considering the effect of operational conditions, to reduce 
downtime. 

Moreover, because different types of bucket teeth 
can be used for the loading process, it is important to find 
the most cost-effective one to minimize the cost of the 
loading process. Considering the operating conditions, 
the bucket teeth' reliability can provide essential 
information for such a type of cost analysis. The rest of 
this paper is organized as follows: In Sections 2, 3, and 4, 
the basic concept and methodology for spare parts 
prediction using RRMC and RSPP are discussed. In 
Section 5, the application of this methodology is 
demonstrated by a case study. Furthermore, this section 
shows how an appropriate RRMC can be found for 
specific data sets. Finally, Section 6 provides the 
conclusions. 

2. Reliability analysis considering 
Covariates Effects 

The RRMC can be broadly categorized into two main 
groups: parametric and non-parametric models. In the 
parametric method, such as the family of accelerated 
failure time models, the lifetime of a system is assumed 
to have a specific distribution, such as lognormal. 
However, if the historical data does not follow the 
selected distribution and the assumptions about the 
parametric method are incorrect, parametric methods may 
be misleading. On the other hand, in the non-parametric 
method, such as the proportional hazard models family, 
no specified distribution is assumed for the lifetime of a 
system [30–33]. Reliability models have been developed 
based on the method suggested by Kaplan and Meier [29] 
and Nelson [31]. A major contribution to the concept of 
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non-parametric models for modeling the effects of 
covariates is the proportional hazard model (PHM) 
suggested by Cox [32]. In general, the basic theory of 
these non-parametric models is to build the baseline 
hazard function using historical failure data and the 
covariate function using covariate data. The baseline 
hazard function is the hazard rate that an item will 
experience when the effect of the covariates is equal to 
zero. The covariate function shows how the baseline 
hazard model will change due to the covariates' effect. 
Figure 1 shows the most available RRMC [33–35]. In 
these Models, the number of failures of the item in a 
specific period can be calculated after identifying the 
distribution of failure data using the appropriate model. 
Finally, the required number of spare parts can be 
calculated using an existing model such as Birth and 
Death or Palm's Theorem and other factors such as 
expected preventive maintenance frequency and repair 
rate for the repairable items [6]. This continuous 
procedure needs to be updated by upcoming historical 
data. 

The PHM model is based on the proportional 
assumption (PH assumption) that the covariates are time-
independent variables, which means that the ratio of any 
two hazard rates is constant concerning time [36]. 

The effects of covariates were made by the method 
known as the proportional hazard model (PHM), which is 
suggested by Cox [36, 37]. In PHM, the hazard rate for 
an item is a product of the baseline hazard function, ߣ଴ (t) 

of the item and a function ߰ ,ݖ)  incorporating the effect (ߙ
of covariates. The generalized form of PHM that is most 
commonly used is written as [32]: 

(1)       , ,
0

t z t z     

The common form of the PHM is log‐linear, 
expressed as the following equation [15], [16]: 

(2)          ,
0 0

1

n
t z t z t exp z

i i
i

     
 

     
  

The reliability influenced by the covariates  is given 
as [12]: 

(3)      , 10

n
exp z

i iR t z R t i


 
      

Where ݐ)ߣ, ,ݐ)ܴ and ,(ݖ  are the hazard and (ݖ
reliability functions, respectively; ߙݖ = ∑ ௜௡௜ୀଵߙ௜ݖ  ߙ ;
(column vector) is the unknown parameter of the model 
or regression coefficient of the corresponding n 
covariates (z) (row vector consisting of the covariate 
parameters), indicating the degree of influence of each 
covariate on the hazard function; and ߣ଴(ݐ) and ܴ଴(ݐ) are 
the baseline failure rate and baseline reliability, 
respectively. 

As mentioned earlier, in the PHM, the proportional 
assumption (PH assumption) is that the covariates are 
time-independent variables, so the ratio of any two hazard 
rates is constant concerning time [36]. 
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Figure 1. Reliability regression models with covariates [38] 
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Different approaches have been used to determine 
whether (PH) assumption fits a given data set. The 
graphical procedure, a goodness-of-fit testing procedure, 
and a procedure involving time-dependent variables have 
been used most widely in PH assumption evaluations 
[37]. There are two general approaches to checking the 
time-dependency of covariates i) graphical procedure and 
ii) goodness-of-fit testing procedure [32]. The developed 
graphical procedure can generally be categorized into 
three main groups i) cumulative hazards plots, ii) average 
hazards plots, and iii) residual plots [8]. For example, in 
the cumulative hazard plots, the data will be categorized 
based on the different covariate levels that will be 
checked for time dependency. Hence, if the assumption 
of PH is justified, then the logarithm plots of the 
estimated cumulative baseline hazard rates against time 
for defined categories should be shifted by an additive 
constant coefficient of covariates. In the other world, they 
should be approximately parallel and separated, 
corresponding to the different values of the covariates. 
Departure from parallelism of the above plots for 
different categories may suggest that ݖ௥ is a time-
dependent covariate. For a review of other graphical 
approaches, see [8], [39], [40]. Similar to the cumulative 
baseline hazard rate, a Log-log Kaplan-Meier curve over 
different (combinations of) categories of variables can be 
used to check the assumption of PH. A log-log reliability 
curve is simply a transformation of an estimated 
reliability curve that results from taking the natural log of 
an estimated survival probability twice. If we use PHM 
models and the estimated log–log reliability curves for 
defined categories on the same graph were plotted, the 
two plots would be approximately parallel [8]. In the 
Residuals plots at the first step, the residual should be 
estimated by using the estimated values of the cumulative 
hazard rate, ܪ଴(ݐ௜),  and the regression vector ߟ as: 

(4)      exp
0

e H t z
i i r r

   

If the PH assumption is justified, then the logarithm 
of the estimated reliability function of ݁௜ against the 
residuals should lie approximately on a straight line with 
slope -1 [8], [41]. 

When the covariate is time-dependent, the 
component will have different failure rates based on the 
different values of time-dependent covariates. In this 
situation, the stratified Cox regression method can be 
used for data analysis [4]. The “stratified Cox model” is 
an extension of the PHM that allows for control by 
“stratification” of a predictor that does not satisfy the PH 
assumption. In this model, when there are n levels for the 
time-dependent covariates, each level is defined as a 
stratum. Under this circumstance, historical data will be 
grouped in different strata. Then, for each stratum, 
separate baseline reliability functions are computed, 
while the regression coefficients for all strata are equal. 
The hazard rate using the stratification approach can be 
written as follows in the ݏ௧௛ stratum [15, 36]: 

(5)    0
1

 ,       1, 2, ,
n

s s i i
i

t z t exp z s r  


 
   

 
  

Covariates influence the component reliability in the ݏ௧௛ stratum [12]: 

(6)     ,       1,2, ,10

n
exp z

i iR t z R t s ris s


 
       

Where ߣ௦(ݐ, ,ݐ)and ܴ௦ ,(ݖ  are the hazard and :(ݖ
reliability functions in the ݏ௧௛ stratum, ߙݖ = ∑ ௜௡௜ୀଵߙ௜ݖ , 
and ߙ (column vector) is the unknown parameter of the 
model or regression coefficient of the corresponding n 
covariates (z) (row vector consisting of the covariate 
parameters), indicating the degree of influence that each 
covariate has on the hazard function. ߣ଴௦(ݐ) and ܴ଴௦(ݐ) 
are the baseline failure rate and baseline reliability in the ݏ௧௛ stratum. As with the original stratified Cox regression 
method, the model has two unknown components: the 
regression parameter ߙ and the baseline failure function ߣ଴௦(ݐ) for each stratum. The baseline failure functions for 
r remain completely unrelated in the different strata. If the 
"s" subscript suffix in Eqs. 5 and 6 are removed, PHM 
and reliability functions will be achieved [15, 16]. 

According to PHM, the hazard rate of an item is the 
product of a baseline hazard rate, ߣ଴ (t) that depends on 
time only, and a positive function, which describes how 
the hazard rate changes as a function of covariates as: 

(7)    
1

; exp
0

1

p
t z t z

i i
i

  
 
     

  

Where zi , i=1,2,…,n, are the covariates associated 
with the item and ߟ௜, i=1,2,…,n, are the model's 
regression parameters defining the effects of each 
covariate. An estimate of the ηi parameters can be 
obtained by maximization of the partial likelihood 
function [5]. The baseline hazard rate represents the 
hazard rate an item will experience when all covariates 
are equal to zero. PHM in the form of Eq.1 can only 
handle time-independent covariates. In the presence of 
time-dependent covariates, the extension of PHM or 
Stratification approach can be used. According to the 
extension of PHM, the hazard rate of an item can be 
calculated as follows: 

(8)       
1 2

; ; exp
0

1 1

p p
t z z t t z z t

i i j i
i j

   
 
       

  

Where ߟ௜ and δj are column vectors consisting of the 
regression parameters, zi is a time-independent covariate 
and zj(t), is a time-dependent covariate, p1 is the number 
of time-independent covariates and p2 is the number of 
time-dependent covariates. The method of maximum 
likelihood can be applied for the estimation of ߟ௜ and δj. 
The reliability function in the presence of time-dependent 
and time-independent covariates is given by: 

(9)        
1 2

; ; exp
0

1 1

p p
R t z z t R t z z t

i i j i
i j

 
 
       
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3. Reliability-based Spare Part 
Provision considering Covariates 

RSPP is one of the popular mathematical models used in 
spare parts provisioning based on renewal theory. The 
renewal process model provides a way to describe the rate 
of occurrence of events (in our case, the number of 
failures) over time. Because non-repairable components 
are discarded, it is reasonable to assume that the number 
of spare parts required equals the number of failures. The 
renewal process can be used whenever the failure rate is 
not constant. Whenever the failure rate is constant, we use 
the homogeneous Poisson process as a special renewal 
process case to forecast spares' demands. It is important 
to note that the above statement is valid only for non-
repairable spares (components) [15]. Suppose the 
operation time (and planning horizon) of the machine in 
which part (component) is installed is quite long, and 
several replacements must be made during this period. In 
that case, the average number of failures in time t, E[N(t)] 
= M(t) will stabilize to the asymptotic value of the 
function as [17, 42]: 

(10)     
2 1

2

t
M t E N t

T

 
       

Where ߞ denotes the coefficient of variation of the 
time to failure and is defined as [17]: 

(11)  
 T

T


 

Where തܶ is the average time to failure for 
replacements of a part and ߪ(ܶ) is the standard deviation 
of time to failure [17], [42]. If the time of planning 
horizon (t) is large, then N(t) in Eq. 10 Is approximately 
normally distributed (based on a central limit theorem) 
with mean = ܰ(ݐ)തതതതതത. The approximated number of spares 
( ௧ܰ) needed during the period of planning horizon with a 
probability of shortage = 1 −  :is given by [17], [42] ݌

(12)   
2 1 1Φ
2

t t
N p

t T T

    
  

Where Φିଵ(݌) is the inverse normal distribution 
function, thus estimation of ௧ܰ need to calculate ߞ in 
different distribution, specified t, and p. There is no 
problem in determining the t and p ,but for ߞ needs to 

obtain the reliable distribution of the failure data of 
components. As mentioned before, PHM or SCRM has 
been used for the model time dataset to incorporate the 
effects of covariates. The problem originates here that 
determining തܶ and ߪ(ܶ) for PHM is no easy task. Thus 
we need to apply changes in the parameter of best fit 
classic distributions (e.g., Exponential, Weibull, 
Lognormal, etc.) in the reliability baseline function for 
considering the covariates. As mentioned previously, a 
major part of the research based on RSPP (about all of 
them) used just two Exponential and Weibull 
distributions instead of the best-fit one. Therefore, in this 
study, we try to fix it. 

4. Spare parts inventory 
management 

The main objective of any inventory management system 
is to achieve an appropriate spare part level with a 
minimum inventory investment and managerial costs, 
which can be achieved, for instance, directly by saving on 
ordering costs by ordering more than what is needed. An 
inadequate level causes unacceptably long downtime; an 
unreasonably high-level causes blocked capital cost in 
inventory [20]. To achieve balance in inventory 
management, the economic order quantity (EOQ) can be 
used and is the lot size that minimizes the total inventory 
cost, concerning both holding and ordering concerning 
the elimination of shortages, and can be calculated as 
[42]: 

(13) 
2DS

EOQ
H


 

Where: "D" is the annual demand (units/year)[equals ௧ܰ in one year], "S" is the cost of ordering or setting up 
one lot ($/lot) and "H" is the cost of holding one unit in 
the inventory for a year (often calculated as a proportion 
of the item’s value). 

For the “continuous review system” as inventory 
position controlling and management, we need to 
calculate the “reorder point (ReP)”. The “reorder point” 
is [12]: 

(14)   Φ

2

ReP d L L
D p

   
  

where d: is average demand, L: is lead time, Φ൫௣ ଶൗ ൯: 

is the confidence level of cycle service and ߪ஽: is the 
number of standard deviations from the mean and 
calculated as [12]: 

(15) 
t

D T
 

 
 

5. Case study 
Except for preventive maintenance activities, spare parts 
for maintenance tasks are usually required at random 
intervals. Hence, due to the uncertainty about the failure 
time, the number of spare parts can be modeled using the 
illustrated probability distribution. The methodology is 
based on four main tasks (Figure 2): 

1. Establishing the context 
2. Data collection, identification and formulation 

of covariates. 
3. Identification of the model of failure data 

considering covariate effects. 
4. Calculation of the required number of spare 

parts. 
5. Inventory management 
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GOF test for fitting best 
model of W.PHM ,Ex.

PHM ,Lo.PHM  ,..

GOF test for fitting best 
model of W.EPHM ,Ex.

EPHM ,Lo.EPHM  ,..

2. Data and information collection
  Failure data 
  Associated observed covariates for each failuer 
 The value/level of observed covarites

Is there any time 
dependent covariates?No Yes

Time-dependency test of 
observed covariates

Proportional Hazard 
Model

Extension of the  
Proportional Hazard 

Mode or 
Stratification approch

 Parameter estimation

1. Establishing the context 
 Setting the scope 
 Setting assumptions 
 Establishing External parameters 
 Establishing Internal parameters
 Etc. 

3. Modeling the effect of the covariates

4. Spare part provision

5. Inventory management
 

Figure 2. A methodology for calculating the required numbers of spare parts considering the effect of covariates

5.1 Establishing the context 
The case study refers to the failure data of the crane 
shovel bucket teeth (݉ = 5) from the Kaj-Mahya 
company in the Jajarm Bauxite Mine. Jajarm Bauxite 
Mine in Iran has 19 main open mines in the city of Jajarm. 
The longitudinal expanse of the mine from west to east 
(namely: Golbini 1-8, Zou 1-4, Tagouei 1-6, and 
Sangtarash) is 16 kilometers. The length of these sections 
is as follows: Golbini: totally 4.7 km, Zou mines: totally 
3.3 km, Tagouei mines, totally 5 km, and Sangtarash mine 
is about 3 kilometers in length. The Jajarm bauxite falls 
in the lens-like layer category. The expanse of bauxite is 
mostly in the form of layers. The mineral lies on the 
karstic-dolomites that make up the Elika formation, 
which lies under the shales and sandstones of the 
Shemshak formation. The bauxite layer is not of even 
thickness and consistent quality. Generally, the bauxite 
layer ranges from less than 1 meter to about 40 meters in 
thickness. The main design characteristics (weight, size, 

maximum load capacity, etc.) of the crane shovels are 
nearly identical. 

5.2 Data collection 
Using the developed framework in Figure 2, the failure 
data and associated observed covariates should be 
collected at the first stage. For this aim, the observed 
covariates should be identified. Table 1 shows the 

selected observed covariates. As this table shows, six 
covariates are identified, which may affect the reliability 
of the crane shovel bucket teeth. The number in the 
branches in Table 1 is used to nominate (formulate) the 
covariates. For example, crane shovels are working in 
three shifts named Morning, Afternoon, and Night shifts; 
here, zero, 1, and 2 are used to represent these shifts, 
respectively. Table 2 shows a sample of data. 

Table 1. The identified observed covariates for the loaders 

Covariate 
Covariate 

level 
Covariate Covariate level 

Working Shift (z୵୤) 

Morning 
shift [0] 

Rock Kind (z୰୩) 

H. Bauxite [1] 
Afternoon 
shift [1] 

Night shift 
[2] 

LG. Bauxite [2] 

Humidity (z୮) Continuous 
Covariate 

Kaolin Bauxite 
[3] 

Temperature (z୲) 
Continuous 
Covariate 

Chile Bauxite 
[4] 

System ID 
(Crane shovels 
number) (z୧ୢ) 

DT.1 (1) to 
DT4 (4) 

Tailings [5] 

Dolomite [6] 

To formulate the covariates, we used observation, 
repair shop cards and reports, and the experience of 
managers, operators, and maintenance crews, especially 
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with the field data. The part of data with covariates is 
shown in Table 2. The “Status” shows the event type as a 
censored failure with “0” and complete failure as “1”. 

Table 2. A sample of failure data and their associated 
covariates 

No. TBF(Hs) Status ࢖ܢ ܜܢ  ࢊ࢏ܢ ࢑࢘ܢ ܎ܟܢ 
1 408 1 2 1 1 22 53 
2 422 1 2 5 1 19 28 
3 447 1 1 6 1 8 57 
4 212 1 1 6 1 14 32 

5.3 Reliability model identification 
We present the test of Harrell and Lee (1986), a variation 
of a test originally proposed by Shenfield (1982) and 
based on the residuals defined by Shenfield, now called 
the Shenfield residuals. This study used the goodness-of-
fit (GOF) test to check the PH assumption. The GOF 
testing approach is attractive because it provides a test 
statistic and p-value (P(PH)) for checking the PH 
assumption for a given predictor of interest. The P(PH) is 
used to evaluate that variable's PH assumption. An 
insignificant (i.e., large) P(PH), say greater than 0.10, 
suggests that the PH assumption is reasonable. In 
contrast, a small P(PH), say less than 0.05, suggests that 
the tested variable does not satisfy this assumption [43]. 
Thus, a more objective decision provide by a statistical 
test than a graphical approach. 

Table 3 is illustrated the mean value and the 
statistical GOF test outcomes of influence covariates for 
teeth data. 

Table 3. Statistical test approach results for PH assumption 

Covariates  

R
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te
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pe
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it
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S
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T
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F
 

Pearson 
Correlation (P-

PH) 
.a .a .a -.087 .279 

Sig. (2-tailed)       .681 .176 
N 0 0 0 25 25 

a. Cannot be computed because at least one of the variables is 
constant. 

The P(PH) values given in this table provide GOF 
tests for each variable in the fitted model adjusted for the 
other variables in the model. The P(PH) values are quite 
high for all variables satisfying the PH assumption. Also, 
the log minus log survival plot was used as a graphical 
test for PH assumption. In this test, if the covariates are 
time-independent, log minus log survival plot (LML) or 
log cumulative failure plot versus time graphs for the 
different selected values of covariates yield parallel 
curves. To check the time-dependency of the covariate 
effect on equipment performance, collected data on mine 
equipment were stratified based on rock types and system 
ID. The results show that the plotted curves are parallel 

for five types using LML and log cumulative failure plots. 
For example, Figure 3 shows the results of such analysis 
for teeth in rock types and system ID. Thus, according to 
Figure 2, the PHM can be used to assess the covariates of 
the teeth. 

According to the methodology steps in Figure 2 on 
the left side of the algorithm (step 3), the GOF test needs 
to fit the best baseline function for data. The Akaike 
information criterion (AIC) and Bayesian information 
criterion (BIC) can be used to find the best fit distribution 
for the baseline hazard rate [44]. The candidate 
distribution with the smallest AIC and BIC value is the 
best fit distribution to model the baseline hazard rate [45–
47]. The AIC and BIC procedures are applied to select the 
best fit distribution for the baseline hazard rate under two 
different ways for model estimation (complete and 
backward stepwise) with different distributions (Weibull, 
Exponential, Lognormal, and Log-Logistic). As a result, 
the Weibull PHM is the most suitable model for the data, 
as it has the smallest AIC or BIC among all the models. 
Therefore, the model with unobserved heterogeneity can 
better estimate the teeth data's reliability. Table 4 shows 
the values of the AIC and BIC for the different nominated 
distributions for the baseline hazard rate with the same 
covariates. 

 
(a) 

 
(b) 

Figure 3. The Log minus log graph for the time between 
crane shovels based on rock kind (a) and system ID (b) 
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Table 4. Goodness of fit of different reliability models 

Model AIC BIC 

Weibull Model - Estimation stepwise 349.77 354.259 

Weibull Model - Estimation complete 359.469 369.944 

Exponential Model - Estimation complete 357.74 368.215 

Lognormal Model - Estimation stepwise 425.314 425.314 

Lognormal Model - Estimation complete 403.838 414.313 

Log-Logistic Model - Estimation stepwise 356.132 362.118 

Log-Logistic Model - Estimation complete 360.922 371.397 

In stepwise methods, the score statistic is used to 
select variables for the model. In this study, 
corresponding estimates of α are obtained by a backward 
stepwise method and tested for their significance based 
on the Wald statistic (P-value). SYSTAT software is used 
to estimate the value of the regression vector. The 
asymptotic distribution of the Z statistic is chi-square 
with degrees of freedom equal to the number of 
parameters estimated. In the backward stepwise 
procedure, the effects of one covariate, Temperature (ܜܢ)", is found significant at the 10% level. The estimates 
of α (coefficient of covariate) and parameters of two 
parameters of Weibull baseline distribution (Shape and 
Scale) are listed in Table 5. 

Table 5. Estimation of reliability baseline parameters and 
covariate coefficient 
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  Shape 1.34 0.23 5.904 0 

Scale 238.77 123.30 1.94 0.05 

Temperature (ܜܢ) 0.33 0.97 0.03 0.03 

E
xp

on
en

tia
l 

Lambda 229.38 693.29 0.33 0.74 

The operational reliability considering the 
environmental conditions are represented respectively as: 

(16)  
 0.0311.344

,
238.766

exp z
tt

R t z exp
          

The reliability and hazard rate of the teeth of crane 
shovels is now calculated and plotted for the mean value 
(150C), low value (-70C) and high value (200C) as 
normal, cold and hot weather of zt, as shown in Figure 4. 
The results show the teeth in hot weather are less reliable 
than those in other weather conditions. As can be seen, 
their reliability reaches about 58% after about 100 h of 
operation. There is a 93% and a 95% chance that teeth 
will work without failure for 24 h in normal and cold 

weather, respectively. The results can help engineers and 
managers make decisions about operation planning, 
maintenance strategy, sales contract negotiations, spare 
parts management, etc. 

5.4 Spare part-provision 
According to the existing literature, if the distribution of 
the baseline hazard rate of an item is Weibull, the 
covariates effect only changes the distribution's scale 
parameter, and the shape parameter remains unchanged. 

 

Figure 4. Comparison of reliability performance of teeth in 
normal, cold, and hot weather 

Therefore, the shape parameter (ߚ) and scale 
parameter (ߟ), of the Weibull distribution considering the 
effect of covariates are defined by [15, 17, 42]: 

(17) 
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The തܶ௦ and ߪ௦(ܶ) of the Weibull distribution and the 
Power Low Process (PLP) can be calculated based on the 
shape and scale parameter, expressed as [15], [17], [42]: 
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The number of required spare parts for teeth is calculated 
using Eq.s 18 and 19 for considering the effect of 
covariate and without them of operation with the 
probability of storage equal to 95%. The results of the 
analysis for five years show in Table 6. In this table, spare 
parts consumption for the next 1 to 5 years has been 
calculated with considering the effects of covariates (zt=0 
in Eq.16) and without considering the effects of 
covariates (zt= mean value of temperature in Eq.16). For 
example, in the next two years, parts consumption will be 
approximately 41 unit with the effect of the covariates in 
mind and 29 without it. 
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Table 6. Spare part-provision based on WPHM 

Next year 
number 

Spare part-provision 
with covariates without covariates 

1 21.49 15.67 
2 40.24 29.09 
3 58.51 42.09 
4 76.52 54.89 
5 94.37 67.55 

The result of the data analysis of the case study 
shows that the required number of spare parts according 
to the WPHM approach is more than ignoring the effect 
of covariates. In addition, 

5.5 Spare part inventory management 
We start with the following assumptions: 

 The cost of one tooth equals 20 USD$ 
 The cost of ordering one lot equals 2 USD$ 
 The annual holding cost equals 2 USD$ of the 

part cost 
 The average lead time is five days 
 The cycle service confidence level is 95% 
For more explanation and to show the effect of 

temperature covariates in the analyses, the required spare 
parts are calculated by Eq.16 with zt= mean value of cold 
and hot weather temperature. The Table 7 provides the 
number of spare parts provisions in next 5 years 
considering the influence factor. For example, in the next 
two years, parts consumption in cold weather will be 
approximately 25 in mind and 45 in hot weather. As the 
Table shows, there is a big difference between cold and 
hot weather spare part required that is about in hot 
weather two times bigger than a cold one. 

Table 7. Required number of spare parts for different weather 
conditions over five years 

Year 
spare part provision 

Cold weather Hot weather 
1 13.60 23.60
2 25.14 44.31
3 36.31 64.50 
4 47.28 84.43 
5 58.12 104.19 

The economic order quantity (EQO) and reorder 
point (ReP) concerning annual demand rates in different 
scenarios are calculated in Table 8 for considering and 
ignoring the condition. The table showed that, 
considering the covariate effect for one year, whenever 
the inventory position reaches 6.56 units/teeth, we should 
order 3.04. However, ignoring the covariate, the EOQ and 
RP of teeth for one year are equal to 5.6 and 2.51, 
respectively. In comparison, the EOQ and RP in both 
conditions, with or without considering the operating 
environment's effect, illustrate the significance of these 
factors and their role in the actual life of the parts. In other 
words, the operating environment parameters should be 
considered in machine-process management, in this case, 
the loaders. 

Table 8. Economic order quantity 

Year 
With covariates Without covariates 

EOQ 
Reorder point 

(RP) 
EOQ 

Reorder point 
(RP) 

1 6.56 3.04 5.60 2.51 
2 8.97 4.44 7.63 3.65 
3 10.82 5.56 9.18 4.56 
4 12.37 6.54 10.48 5.35 
5 13.74 7.44 11.62 6.07 

6. Conclusion 
The operational environment may significantly influence 
the required number of spare parts. Hence, any method 
used for spare parts provision must be able to quantify 
such effects. The reliability-based spare part provision 
considering the effect of covariates, can be used to 
quantify the effect of the operational environment. In 
these methods, the operational environment can be 
considered a covariate. Then their effects on the 
reliability characteristic and, consequently, on the 
required number of spare parts can be analyzed. Available 
regression methods such as PHM can be used by properly 
defining the covariates for spare parts provision to 
quantify the effect of influence factors. However, it is 
necessary to examine the historical data to find an 
appropriate model that fits the data more appropriately. 
The results of the reliability analysis of the teeth in the 
Jajarm mine using WPHM show that the reliability of a 
part in cold weather is higher than in other conditions. 

The noticeable difference in spare parts estimation is 
caused by considering and neglecting the temperature 
effect. Moreover, the temperature significantly affects the 
teeth' reliability characteristics and, consequently, the 
required number of spare parts. The analysis shows that 
spare parts consumption for the next 1 to 5 years has, with 
and without considering the effects of covariates, almost 
38 percent (37.14%, 38.36%, 39.00%, 39.41%, and 
39.71%, respectively). This difference in the 
consumption of spare parts for hot and cold weather is 
almost 42% 42.36%, 43.25%, 43.71%, 44.00%, and 
44.21%, respectively). The economic order quantity 
almost 18 percentage (17.11%, 17.63%, 17.90%, 18.07% 
and 18.20% respectively) and reorder point calculation 
show an almost 22% (21.04%, 21.60%, 22.01%, 22.35% 
and 22.63% respectively) difference between the two 
cases. For future studies, the influence of intangible 
factors can be considered. Also, using new approaches 
such as machine learning, data mining, and deep learning 
will provide estimation power and, as a result, more 
correct decisions for management if there is a sufficient 
data bank. 
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