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Abstract  
The work presented in this paper was to investigate whether a new intelligent decision-making system could have provided analysis 

using data sets and predicted the Buncefield UK catastrophe before it occurred. The new intelligent decision-making system is 
presented. It incorporates reliability engineering tools with multicriteria decision-making methods and artificial intelligence techniques. 
An intelligent system that recognises increasing level(s) and draws awareness to the possibility of additional increases before unsafe 
levels are reached is used to analyse and make critical decisions. The aim was to ensure that the causal factors of failure of the 
Buncefield UK incidents were predicted, ranked and solutions proffered one at a time to ensure that failures with high priority and high 
probability of re-occurrence were addressed. 
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Introduction* 
A defined system that could be used to avoid disaster 

or used during a disaster in the process industry was needed. 
Dynamic environments, such as the process industry, full of 
uncertainties, complexities, and ambiguities, demanded 
faster and more confident decisions [1]. Complex problems 
require a specific type of decision-making process. A new 
intelligent decision-making system that could help alleviate 
risks in process operations and safety engineering was 
created. 

The Buncefield incident [2] was selected to 
demonstrate the identification of failures in systems before 
they occur and implement timely corrective decisions. The 
aim was to determine whether the new decision-making 
system would predict catastrophes using sets of past data.   

Decisions about day to day operations are continually 
made in a process environment. Decision making can be 
considered as a process where alternatives are assessed to 
select a choice or a course of action to fulfil desired 
objectives and goals [3]. Intelligent methods have been 
used in a variety of process systems [4,5]. They have 
addressed more abstract issues and analyses, such as 
forecasting natural gas production in the United States 
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[6,7] and decision making at a management level while 
dealing with incomplete evidence [8] to more-mundane 
technical issues concerning geoscientists and engineers 
such as drilling, [9] reservoir characterisation [10,11], 
production-engineering issues, [12,13]. Intelligent 
systems have been used to address many types of 
problems encountered in process industries. 

The paper evaluates a new intelligent decision-
making system that incorporated reliability engineering 
tools with multicriteria decision-making methods 
(MCDM) and artificial intelligence techniques. The aim 
was to see whether the new decision-making system 
could have predicted the Buncefield UK Incident. 

Background 
The new intelligent decision-making system shown 

in Figure 1 incorporated reliability engineering tools 
(Fishbone diagram (FD), Fault Tree Diagram (FTA), Risk 
Assessment (RA)) with multicriteria decision making 
methods (MCDM) tools (Analytical hierarchy process 
(AHP), Preference ranking organisation method for 
enrichment evaluation (PROMETHEE) and artificial 
intelligence techniques (time series forecasting and rule-
based methods). 
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Figure 1. Intelligent Decision-Making System

FD identified possible fault root causes, and FTA 
developed a fault propagation pathway to provide a 
quantitative probability importance ranking of fault 
causes. A risk matrix was used to rank and prioritise risk 
of events and decide whether the risks could be tolerated 
based on historically statistical data [14]. Use of a risk 
matrix provided risk levels that showed the cruciality of 
the basic events to the predictions from AHP. This 
indicated the significance of a basic event to the forecasts 
from AHP, providing a solution to the crucial causal 
factors to avert catastrophe. Risk assessment aided in 
identifying threats and hazards, recognising the cause and 
effect relationships, including exposure and weaknesses 
to risks, and describing potential risk. A new hybrid 
model was created by combining two decision methods: 
AHP and PROMETHEE [15]. 

The steps taken to implement the system were:  
Step One: Use FD to classify possible fault root 

causes and FTA to develop a fault propagation pathway 
and importance ranking of fault causes as described 
inIkwan et al. [16]. 

Step Two: Using the information on root causes 
from the FD, create a risk matrix. Determine the risk level 
for basic events using historical probability and impact 
values. Obtain real-time data for basic events and 
evaluate together with the risk level using a weighting 
factor as described inIkwan et al. [14]. 

Step Three: Calculate the criteria weights of 
intermediate events in AHP using a hierarchical model 
from the FTA and their probability values. Sequence results 
in PROMETHEE and evaluate each alternative using stored 
data of intermediate events (criteria) to predict risk.  Feed 
results into the automated decision-making system as 
described inIkwan et al. [15].  

Step Four: Combine priority numbers from the AHP 
with forecasted stored data for the intermediate event 
(criteria) predicted with time-series using an average 
weighting function.Feed results into the automated 
decision-making system.  

Step Five: Create a rule-based matrix using 
conditional statements to make decisions about which to 
prioritise within the same cell. The inputs are results from 
steps four and five, and the output could be ‘No Action 
Needed’, ‘Low Priority’, ‘Medium Priority’, ‘High 
Priority’, or ‘Urgent Action Needed’.  

Step Six: Enact control measures based on the output of 
step six and risk levels of basic events. Once control measures 
have been implemented, the RTD would update, feed into 
theExcel algorithm, and display the system updates on the 
human-computer interface (HCI).  

Leak in a storage tank 
The leakage of hazardous substances in process 

industries has always posed a threat to employees and 
residents living near these industries; it has also resulted 
in significant environmental damage [17]. An industrial 
accident could result in substantial economic losses, 
several days of downtime, legal complaints, and stock 
devaluation. The problem “leak in a storage tank” was an 
undesirable event. The aim was to provide a systemic 
intelligent decision-making system that could analyse a 
complex decision problem, such as recognising a 
potential leak in a storage tank and deciding what to do 
about it. Systems that could lead to a leak in a storage tank 
were identified. A Fishbone diagram was used as a 
system identification method as described inIkwan et al. 
[16]. The FTA showed the relationship between basic 
events that lead to overall failure. At the top of the FTA 
was the unwanted event “leak in a storage tank”, with 
several failures connected beneath until the basic events 
are reached. Basic events are the root causes that led to 
the overall failure under investigation. Figure 2 shows the 
FTA for the leak in a storage tank incident. 

 

 

Figure 2.Fault Tree Diagram of a leak in a storage tank

The probabilities of basic events or undesired events 
were determined to calculate the risk of hazards. Twenty 
intermediate events (B), twenty-two basic events (X) and 
three secondary events (S) were defined (Table 1), and 
fault probabilities that led to the top event (T) were 
determined using data from research on fuel storage [18, 
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19, 20]. Table 1 illustrates the description of events that 
could lead to a leak in a storage tank. 

Table 1. Index and description of events in the FTA 
diagram 

Ind
ex 

Descripti
on 

Ind
ex 

Descripti
on

Inde
x Description 

T 
A leak in 
a storage 

tank 
X1 

Wrong 
Operating 
Procedure 

B17 Crack 
Formation Leak 

B1 

Managem
ent 

limitations 
X2 Understaff

ed B18 Social 
Environment 

B2 

Equipmen
t 

Failure/Ha
zardous 
State of 

Tank 

X3 
Inadequate 

Safety 
Check 

B19 Natural Disaster 

B3 
Environm

ental 
Effect 

X4 Maintenan
ce Error B20 Thermal 

Climate 

B4 
Lax 

Supervisio
n 

X5 
ATG 

Device 
Failure 

S1 3rd party 
construction 

B5 Maintenan
ce Culture X6 

Failure to 
Respond 
to ATG 
Alarm 

S2 Earthquake/hurr
icane 

B6 Overfill X7 
IHLA 
Device 
Failure 

S3 Flooding 

B7 
Tank 
Safety 
System 

X8 

Failure to 
Respond 
to IHLA 
Alarm 

X18 Malfunctioning 
Instrumentation 

B8 
ATG 

System 
Failure 

X9 

Failure to 
Carry Out 
Manual 
Checks 

X19 DCS Alarm 
Fails 

B9 
IHLA 

System 
Failure 

X10 

Failure to 
Inspect 
Flow 
Rates 

X20 Tank Breaking 

B10 

Tank 
Operation 
Inspection 

Failure 

X11 
Level 

Indicator 
Failure 

X21 Corrosion 

B11 
Level 

Indicator 
Failure 

X12 
High High 

Alarm 
Failure 

X22 Leak Detection 
Alarm 

B12 Operator 
Failure X13 Operator 

Failure   

B13 
Pumps/Dr
ains/Valve

s 
X14 ESDV 

Failure   

B14 
Design & 
Instrument

ation 
X15 

Relief 
Valves 
Failure 

  

B15 
Loss of 
Leak 

Tightness 
X16 

Flow 
Control 
Valve 

  

B16 
Catastroph

ic Tank 
Rupture 

X17 

Valve 
Status 

Opened/Cl
ose 

  

 

Case Study: Bunce field Catastrophe 
On Saturday, 10 December 2005, Tank 912 at the 

Hertfordshire Oil Storage Limited (part of the Bunce field 
oil storage depot) was filled with petrol. The tank had two 
forms of level control: an automatic tank gauge (ATG) that 
enabled employees to monitor the filling operation; and an 
independent high-level switch (IHLS), which automatically 
shut down operations if the tank was overfilled. The first 
gauge stuck, and the IHLS was inoperable. There was no 
means to alert the control room staff that the tank was filling 
to dangerous levels. Eventually, large quantities of petrol 
overflowed from the top of the tank. A vapour cloud formed, 
ignited, and caused a massive explosion and fire that lasted 
five days [2].  

The Buncefield incident was selected to demonstrate 
the identification of failures in systems before they occur and 
implement timely corrective decisions. 

The aim was to determine whether the new intelligent 
decision-making system would predict catastrophies. Real-
time data values were entered into the system to emulate the 
information entered under normal conditions. Buncefield 
incident was tested using methods evaluated and described 
in Ikwan et al. [14, 15, 16]. 

A. Representation of identified traits in FTA 
The new system was used to test whether the system 

would identify distinct traits. Five root causes identified 
were: 

i. Maintenance Error (X4)  
ii. Automatic Tank Guage (ATG) Failure 

(X5)  
iii. Failure to respond to Automatic Tank 

Gauge Alarm (X6)  
iv. Level transmitter (X11)  
v. High-High Alarm (X12)  

vi. Inspection of flow rates (X10)  
This paper used the scoring for traits as ‘one = Good’ 

to ‘nine = Extremely Dangerous’[14, 21] Numbers 
greater than nine were also assumed to be “extremely 
dangerous”. The award of Red, Amber, and Green (RAG) 
colours and the scoring shown in brackets equated to Red 
= Fail (7-9), Amber = Warning (4-6), Green = Good (0-
3). 

The six root causes that could have been triggered in 
the system are represented on the FTA model shown in 
Figure 3. 

 

Figure 3. Buncefield incident Root Causes represented 
using a dynamic risk assessment model 
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Risk levels of basic events were calculated and 
evaluated as described inIkwan et al. [14] and shown in 
Figure 3. Figure 3 showed a steady increase in level(s) 
when the RTD was updated. A colour change illustrated 
the pattern showing the “States”. The model indicated 
components with higher failures that required instant 
attention. This was demonstrated by the top event 
showing the highest-rated event. Intermediate events B5, 
B7, AND B11 gave numbers “7”, “6”, and “7”, giving 
“warning” and “fail” state signals to the operator. The 
Top event (T) results showed the value “7”, which meant 
a “fail” state on the system was imminent if corrective 
actions were not taken. To avoid reaching dangerous 
levels, the operator would see which basic events were 
leading to the failure. Figure 3 only shows the operator 
the current state of the Buncefield tank, meaning that the 
operator had to decide that levels might keep increasing. 
Fail ‘states’ of intermediate events from the FTA could 
not be predicted; therefore, intelligent methods needed to 
be applied to predict fail states. Predicting Fail states 
could aid evaluation of causes, safety risk, and timely 
control, and eliminate hidden dangers where necessary. 

Intermediate events B5, B7, AND B11 gave numbers 
“7”, “6”, and “7”, giving “warning” and “fail” state signals to 
the operator. These numbers were inputted into AHP-
PROMETHEE to predict risk [15]. 

B. AHP AND PROMETHEE 
Alternatives were sequenced in PROMETHEE using 

criteria weights calculated in AHP. Tank 3 was assumed to be 
Tank 912, the Buncefield tank. Visual PROMETHEE was 
used for analysis. The data of the model with criteria and 
alternatives are shown in Figure 4. 

 

 

Figure 4. Screenshot of Buncefield incident selection data

Stored data from FTA was applied to PROMETHEE. 
The preference was set to “min” as “min” risk was 
required. For the analysis, a Usual function type was used 
as the preference function.  

PROMETHEE II performed a full ranking combining 
positive and negative priority values. The resulting 
ranking of the negative, positive, and net flow (priority) 
values of the alternatives (Tank 1, Tank 2, Tank 3 (Tank 
912), Tank 4) is ordered in Figure 5.  

 

Figure 5.Net Flow table showing Buncefield incident 

“Tank 1” was the first order (least likely to develop 
a leak), “Tank 2” was second, “Tank 4” was the third-best 
alternatives, and “Tank 912” had the highest probability 
for a leak to occur. This ranking was important as it 
determined the alternatives with minimum and maximum 
risk. This meant that the new system would have flagged 
Tank 912 on the HCI, ensuring attention was given to the 
tank, which could have averted catastrophe. 

The action profile in Figure 6 shows a disaggregated 
view of the strengths and weaknesses or the uni-criterion 
net flow scores for Tank 912.  

 

 

Figure 6. Traits contributing to Buncefield Tank 912 
incident 

PROMETHEE II complete ranking results predicted 
that Tank 912 was most likely to leak. Figure 6 shows the 
criteria: maintenance culture, level indicator, and safety 
management systems on the negative axis, meaning these 
criteria should be the area of focus. 

A geometrical GAIA plane showed the quality value 
for the analysis for the Buncefield catastrophe. It showed 
the dispersion of criteria depending on the values of the 
alternatives (tanks). In the GAIA plane, vectors 
represented the criteria, and squares represented the 
alternatives. The length of a vector of a specific criterion 
gave the effect of that criterion on the alternative. The 
quality value was calculated as 84%. 

C. Data forecasting with time series 
Holt-Wintersmultiplicative seasonality method [22] 

was used in generating forecasted models. Intermediate 
events: maintenance culture (B5), safety management 
systems (B7), and level indicator (B11) gave numbers 
“7”, “6”, and “7” in Figure 3. A scale of 1- 9 where 1 
meant the least important and 9 meant most important 
was used.  
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i. Bunce field – Maintenance Culture 
Maintenance culture (Figure 7) forecasted that the 

next quarter would be ‘7.3’ and would further increase to 
“7.7” and then “10” if no action was taken because the 
system identified maintenance reports were not being 
logged on the system. In this system as the trait increased 
in value, then the system would automatically escalate the 
warning. 

 

Figure 7. Bunce field – Maintenance Culture 

ii. Buncefield - Tank Safety Management System 
Safety management system (Figure 8) forecasted the 

next day would be a “6.5” and would further increase to 
an “8.8” and then “10” if no action were taken. The 
system knew that the ATG had failed because of the 
“flatline” warning. It would continue to increase because 
the operator did not respond by clicking on the pop-up on 
their screen within a set period; eventually, alarms would 
sound. The operator ignored the warning activated at 
Buncefield because warnings were often triggered. In this 
system as the trait increased in value, then the system 
would automatically escalate the warning, and a 
supervisor would be alerted. 

Figure 8. Bunce field - Safety Management System 

iii. Bunce field - Level Indicator Failure 
Level indicator failure (Figure 9) forecasted that the 

next day it would increase to a “7.1” and then an “8.7”. 
The new system had other sensors that could alert 
operators if an overfill was imminent. The storage tank 
was connected with a safety instrumentation system (SIS) 
that connected the transmitter and the emergency shut 

down valve (ESDV). This SIS enabled automatic closure 
of the ESDV and sound when the fuel had reached the 
‘High High’ level. 

 

Figure 9. Bunce field - Level Indicator Failure

A weighting function (Equation 1) was used to 
allocate more weight to forecasted data for Tank 912 with 
respect to priority vectors obtained from AHP [16] 
because the aim was to predict future risk of failure. 

         (1)   

Wi was the weighting factor, and Xi was the 
variables (real-time data for intermediate events/traits and 
priority ranking). The weighting function of real-time 
data was 0.6, and the Priority rank was 0.4. The priority 
ranking was evaluated and calculated as described 
inIkwan et al. [15].                                                    

Table 2. Forecasted Time Series Values Mixed with 
AHP Priority Ranking 

Identified Traits Forecast Priority Ranking 
(PR) AHP Results 

Tank Safety 
Management 

System 
6.52 8 6.964 

Level Indicator 
Failure 7.11 9 7.677 

Poor Maintenance 
culture 7.38 4 6.366 

D. Automated Decision-Making System  
The results from the MCDM prediction were fed into 

an Automated decision-making system.  
The input and output variables were: 

i. Predicted alternative (tank likely to 
leak) obtained from AHP and PROMETHEE.  

ii. Value obtained from using a weighting 
function with priority ranking where PR<4 
meant low priority ranking, 4<PR<7 meant 
medium priority ranking, PR> 7 meant high 
priority ranking and RTD of criteria (where 
RTD<4 meant low data source ranking, 
4<RTD<7 meant medium data source ranking, 
RTD> 7 meant high data source ranking). 
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iii. Value obtained using RTD of basic 
events where (RTDB<2 meant very low data 
source reading, 2<RTDB<4 meant low data 
source reading, 4<RTDB<7 meant medium data 
source reading, 7<RTDB<9 data source reading 
and RTDB >9 very high data source reading). 

iv. The output variable which was the 
decision to take could be ‘No Action Needed’, 
‘Low Priority’, ‘Medium Priority’, ‘High 
Priority’ or ‘Urgent Action Needed’. 

A rule-based system was used to apply rules to all 
data being fed into the decision-making system. The 
representation used for IF-THEN rules is shown in 
equation 2 [23]. 
(2)  

where xi (i = 1, 2, . . ., n) are input variables and y is 
the output variable.  

Here, A1, A2, . . ., An and B are the linguistic terms 
used for the input and output variables, respectively. The 
output generated by each rule were totaled into a single 
output. 

Using equation 2, IF-THEN rules were used to 
depict the representation from the given four inputs to the 
single output. Since a single rule was not usually enough, 
two or more rules were needed that could play off one 
another [24]. 

In this paper, a set of 60 IF-THEN rules for each trait 
and 720 rules in total was created. They depicted all 
possible combinations of the given four input variables 
with five possible output terms (Table 3).  

Table 3.60 rules generated for Level Indicator Failure 

If 
Alternative 
predicted 
to fail is 

And 
Criteria 

is 

And 
Criteria 
weight 

ranking: 
RTD of 
Main

Criteria 
(PRT) 

Real 
time data 
of basic 
event 

(RTDB) 

Then 
Decision 

is 

Tank 1 
Level 

Indicator 
Failure 

PRT<4 RTDB<2 No action 
required 

Tank 1 
Level 

Indicator 
Failure 

PRT<4 2<RTDB<4 No action 
required 

Tank 1 
Level 

Indicator 
Failure 

PRT<4 4<RTDB<7 low 
priority 

Tank 1 
Level 

Indicator 
Failure 

PRT<4 7<RTDB<9 Medium 
Priority 

Tank 1 
Level 

Indicator 
Failure 

PRT<4 RTDB>9 High 
Priority 

Tank 1 
Level 

Indicator 
Failure 

4<PRT<7 RTDB<2 No action 
required 

Tank 1 
Level 

Indicator 
Failure 

4<PRT<7 2<RTDB<4 low 
priority 

Tank 1 
Level 

Indicator 
Failure 

4<PRT<7 4<RTDB<7 Medium 
Priority 

Tank 1 
Level 

Indicator 
Failure 

4<PRT<7 7<RTDB<9 Medium 
Priority 

Tank 1 
Level 

Indicator 
Failure 

4<PRT<7 RTDB>9 High 
Priority 

Tank 1 
Level 

Indicator 
Failure 

PRT>7 RTDB<2 Medium 
Priority 

Tank 1 
Level 

Indicator 
Failure 

PRT>7 2<RTDB<4 High 
Priority 

Tank 1 
Level 

Indicator 
Failure 

PRT>7 4<RTDB<7 High 
Priority 

Tank 1 
Level 

Indicator 
Failure 

PRT>7 7<RTDB<9 
Urgent 
action 

required 

Tank 1 
Level 

Indicator 
Failure 

PRT>7 RTDB>9 
Urgent 
action 

required 

Tank 2 
Level 

Indicator 
Failure 

PRT<4 RTDB<2 No action 
required 

Tank 2 
Level 

Indicator 
Failure 

PRT<4 2<RTDB<4 No action 
required 

Tank 2 
Level 

Indicator 
Failure 

PRT<4 4<RTDB<7 low 
priority 

Tank 2 
Level 

Indicator 
Failure 

PRT<4 7<RTDB<9 Medium 
Priority 

Tank 2 
Level 

Indicator 
Failure 

PRT<4 RTDB>9 High 
Priority 

Tank 2 
Level 

Indicator 
Failure 

4<PRT<7 RTDB<2 No action 
required 

Tank 2 
Level 

Indicator 
Failure 

4<PRT<7 2<RTDB<4 low 
priority 

Tank 2 
Level 

Indicator 
Failure 

4<PRT<7 4<RTDB<7 Medium 
Priority 

Tank 2 
Level 

Indicator 
Failure 

4<PRT<7 7<RTDB<9 Medium 
Priority 

Tank 2 
Level 

Indicator 
Failure 

4<PRT<7 RTDB>9 High 
Priority 

Tank 2 
Level 

Indicator 
Failure 

PRT>7 RTDB<2 Medium 
Priority 

Tank 2 
Level 

Indicator 
Failure 

PRT>7 2<RTDB<4 High 
Priority 
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Tank 2 
Level 

Indicator 
Failure 

PRT>7 4<RTDB<7 High 
Priority 

Tank 2 
Level 

Indicator 
Failure 

PRT>7 7<RTDB<9 
Urgent 
action 

required 

Tank 2 
Level 

Indicator 
Failure 

PRT>7 RTDB>9 
Urgent 
action 

required 

Tank 3 
Level 

Indicator 
Failure 

PRT<4 RTDB<2 No action 
required 

Tank 3 
Level 

Indicator 
Failure 

PRT<4 2<RTDB<4 No action 
required 

Tank 3 
Level 

Indicator 
Failure 

PRT<4 4<RTDB<7 low 
priority 

Tank 3 
Level 

Indicator 
Failure 

PRT<4 7<RTDB<9 Medium 
Priority 

Tank 3 
Level 

Indicator 
Failure 

PRT<4 RTDB>9 High 
Priority 

Tank 3 
Level 

Indicator 
Failure 

4<PRT<7 RTDB<2 No action 
required 

Tank 3 
Level 

Indicator 
Failure 

4<PRT<7 2<RTDB<4 low 
priority 

Tank 3 
Level 

Indicator 
Failure 

4<PRT<7 4<RTDB<7 Medium 
Priority 

Tank 3 
Level 

Indicator 
Failure 

4<PRT<7 7<RTDB<9 Medium 
Priority 

Tank 3 
Level 

Indicator 
Failure 

4<PRT<7 RTDB>9 High 
Priority 

Tank 3 
Level 

Indicator 
Failure 

PRT>7 RTDB<2 Medium 
Priority 

Tank 3 
Level 

Indicator 
Failure 

PRT>7 2<RTDB<4 High 
Priority 

Tank 3 
Level 

Indicator 
Failure 

PRT>7 4<RTDB<7 High 
Priority 

Tank 3 
Level 

Indicator 
Failure 

PRT>7 7<RTDB<9 
Urgent 
action 

required 

Tank 3 
Level 

Indicator 
Failure 

PRT>7 RTDB>9 
Urgent 
action 

required 

Tank 4 
Level 

Indicator 
Failure 

PRT<4 RTDB<2 No action 
required 

Tank 4 
Level 

Indicator 
Failure 

PRT<4 2<RTDB<4 No action 
required 

Tank 4 
Level 

Indicator 
Failure 

PRT<4 4<RTDB<7 low 
priority 

Tank 4 
Level 

Indicator 
Failure 

PRT<4 7<RTDB<9 Medium 
Priority 

Tank 4 
Level 

Indicator 
Failure 

PRT<4 RTDB>9 High 
Priority 

Tank 4 
Level 

Indicator 
Failure 

4<PRT<7 RTDB<2 No action 
required 

Tank 4 
Level 

Indicator 
Failure 

4<PRT<7 2<RTDB<4 low 
priority 

Tank 4 
Level 

Indicator 
Failure 

4<PRT<7 4<RTDB<7 Medium 
Priority 

Tank 4 
Level 

Indicator 
Failure 

4<PRT<7 7<RTDB<9 Medium 
Priority 

Tank 4 
Level 

Indicator 
Failure 

4<PRT<7 RTDB>9 High 
Priority 

Tank 4 
Level 

Indicator 
Failure 

PRT>7 RTDB<2 Medium 
Priority 

Tank 4 
Level 

Indicator 
Failure 

PRT>7 2<RTDB<4 High 
Priority 

Tank 4 
Level 

Indicator 
Failure 

PRT>7 4<RTDB<7 High 
Priority 

Tank 4 
Level 

Indicator 
Failure 

PRT>7 7<RTDB<9 
Urgent 
action 

required 

Tank 4 
Level 

Indicator 
Failure 

PRT>7 RTDB>9 
Urgent 
action 

required 

 
One example rule was: 

“IF alternative predicted to fail is ‘Tank 912’,  
AND criteria is ‘level indicator failure’,  
AND combination of priority vector ranking, and RTD of 
criteria is ‘PRT> 7’,  
AND RTD of basic events is ‘7<RTDB<9’, 
THEN Decision is “High Priority”. 

So, if the new system had been in place, then the 
operator would have seen the ‘High Priority’ on the HCI 
and known there was a fault. 

E. Control Measures 
All processes, including the risk levels, were 

evaluated to ensure that all basic events were tackled for 
Tank 912 and its contributing criteria. Prioritisation of 
risks allowed decision-makers to act on the most 
significant risk to facilitate appropriate resource 
allocations and avoid, eliminate, reduce, or control risk 
[23]. Control measures were assigned to causal factors of 
the Buncefield incident using the (ANSI/ASSP Z590.3) 
model described by Lyon et al.[25] and shown in Table 4. 
For example,  
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IF alternative predicted to fail is ‘Tank 912’ 
AND criteria are “Level Indicator” 
AND combination of priority vector ranking and RTD of 
criteria is ‘PRT> 7’ 
AND RTD of basic events is ‘7<RTDB<9,’ 
THEN Decision is ‘High Priority’.  

The control treatment strategy, in this case, was 
“Engineer”. The corrective control measure was “operator 
should verify tank status as there are inconsistencies in the 
tank level”.      

Table 4 showed that there were four “high priority” 
events. The operator would immediately see on the HCI that 
the ATG and Level indicator failure risk levels were “very 
high” and act promptly. The operator would decide which to 
attend to first based on the RTD of the basic event “9” and 
risk level. Therefore, the operator would attend to the ATG 
first before attending to other events.  

The new system ensured that the causal factors of 
failure of the Buncefield incident were predicted, ranked 
and solutions proffered one at a time to ensure that 
failures with high priority and high probability of re-
occurrence if left hidden, were given consideration first. 
This helped to ensure that no causal factors to failure were 
left unattended in the system, a situation that could create 
future re-occurrence. 
Table 4: Control measures that would be enacted for 
Buncefield Incident

 

Discussion and Conclusion 
The aim was to determine whether a new intelligent 

decision-making system could provide analysis using 
data sets and predict the Buncefield UK catastrophe 
before it occurred.  The new intelligent decision-making 
system incorporated reliability engineering tools with 
multicriteria decision-making methods and artificial 
intelligence techniques. 

FD was used for system identification, and FTA 
showed how basic events interacted, leading to the overall 
failure. A model was also used for visual representation of 
relationships between hazards. It was impossible to update 
and integrate the total risk figures in response to changes in 
the actual real-world environment or subsequent 
improvements using Fishbone, FTA, and qualitative risk 
assessment methods; therefore, a dynamic risk assessment 
model was incorporated.  

Dynamic risk assessment supported critical decision 
making by quantifying, aggregating, and understanding 
current risk when decisions were made. It aided in 
applying real-time data to intelligent decision making.  
Real-time data values were entered into a database to 
emulate the type of information that might be entered 
under normal conditions. The six root causes that could 
have been triggered in the system and led to the 
Buncefield incident were described, and their 
representation on the FTA model was discussed. This 
would have given the operator a real-time insight into the 
current state of Buncefield Tank 912, and warnings would 
have been escalated if they were ignored.  

Although Dynamic risk assessment could show the 
current state of risk of basic events in the Buncefield 
incident, it did not predict future risk. It also could not 
provide prioritised and preventive measures for each 
basic event to eliminate their influences. Therefore, other 
methods such as AHP, PROMETHEE, time series 
forecasting, and rule-based methods were evaluated. 

The new system ensured that the causal factors of 
failure of the Buncefield UK was predicted, ranked and 
solutions proffered one at a time. This helped to ensure 
that no causal factors to failure were left unattended in the 
system. The new intelligent decision-making system 
could provide analysis using data sets and predicted the 
Buncefield UK catastrophe before it occurred.   

The new system will be applied to other case studies 
in the process industry such as the Texas Refinery [27] 
and CAPECO incident [28]. 
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