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Abstract

The Duane and Crow-AMSAA reliability growth model has been traditionally used to model systems and products undergoing
development testing. The Non-Homogeneous Poisson Process (NHPP) with a power intensity law has been often used as a model for
describing the failure pattern of the repairable systems and the maximum likelihood (ML) estimates are used to calculate the
unknown parameters widely. This study proposes the statistical analysis method of different stages and different level data based on
Bayes analysis techniques. To this end, the Bayesian reliability growth model of multiple stages is coupled with the Weibull
distribution product. By using the unique properties of the assumed prior distributions, the moments of the posterior distribution of
the failure rate at various stages during a development test can be found. In this paper, it is assumed that the scale parameter has a
Gamma prior density function, and the growth parameter has a Uniform prior distribution. Monte Carlo simulations are used to
compute the Bayes estimates. Finally, the results obtained from the proposed method by implementing it on an application example
are compared with Crow-AMSAA data and show that the proposed model has higher accuracy than the existing traditional methods.

Keyword: Reliability Growth; Non-Homogeneous Poisson Process (NHPP); Bayes Analysis; Weibull Distribution; Monte Carlo
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Nomenclature
a Parameter of Gamma Distribution Introduction
b Parameter of Gamma Distribution Reliability growth models are models that are used to
L Likelihood function estimate or predict the improvement of mechanical
m Number of stages system reliability as a function of the amount of system
. testing that is carried out. Reliability growth test will be
" Number of failures done when the design of the product has met setting
N Cumulative number of failures function so that the designer can find design defects to
R Reliability improve it, therefore it is important to do a reliability
T Mission time growth test in the system development in order to
remove design, manufacture and operation defects, and
A Scale parameter improve product reliability.
S Shape parameter
® Density function Traditional reliability growth modeling began with
T Gamma function the empirical observations by Duane [1] on
developmental testing programs for relatively complex
CL Confides level aircraft apparatuses. For the systems he was tracking, on
ML Maximum likelihood a log-log scale, the cumulative number of failures, N(T),
MTBF mean time between failure tended to increase linearly with the cumulative test time,
MCMC  Markov Chain Monte Carlo T. Since then, many reliability growth moc}e.ls have bee.n
) developed. Crow [2] showed that this empirical model is
NHPP Nonhomogeneous Poisson Process
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essentially a Non-Homogenecous Poisson Process
(NHPP) with a Weibull intensity function. This
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statistical extension became what is known as the Crow-
AMSAA (NHPP) model. The Crow-AMSAA model is
designed for tracking the reliability within a test phase.
A development-testing program may consist of several
separate test phases. In recent years, there has been
much effort to develop the Crow-AMSAA model and
create better models for mechanical systems [3-6].
Wang et al. [7] studied a reliability growth testing
allocation problem to series-parallel systems that
consider parameter uncertainty in the Crow-AMSAA
models. They assumed the parameters of the model to be
known as uncertain-but-bounded values. Lee and his
colleagues [8] used the Crow-AMSAA model to analyze
the reliability growth of multiple launch rocket
components by using test data obtained from the
development phase. Recently, the Crow-AMSAA model
was developed by Nadjafi and Gholami [9] using the
normal distribution and maximum likelithood (ML)
estimate and proved its effectiveness on the data of an
acrospace system. The main purpose of this study is to
develop a model for the growth of reliability with a
normal distribution based on the NHPP. Also, to
evaluate the reliability model with the given failure data,
the maximum likelihood estimation technique was used
to estimate the effective parameter in reliability growth.
Although current study proposes the statistical analysis
method of different stages and different level data based
on Bayes analysis techniques and gave the Bayesian
reliability growth model of multiple stages Weibull
distribution product.

Given that the reliability growth models predict the
reliability at different stages of the developmental
process, depending on the nature of a process, various
models can be used to estimate the desired parameters.
Reliability growth models can be deterministic or
probabilistic. They can be based on the classical or the
Bayes estimation method. The classical approach to
reliability growth estimation normally is in the form of a
mathematical formula with one or more parameters to be
estimated from the data collected at ecach stage of
development. Estimates of these unknown parameters
are usually obtained using Maximum Likelihood (ML)
or least-squares estimators and are anticipated to reflect
the characteristics of the system.

When experimental data are limited, as they often
are inexpensive or time-consuming testing and
development percentage, it may be desirable to use prior
information in conjunction with the data to estimate
unknown parameters. Hence, Bayes methods may be
desirable as they allow prior information to be
incorporated into the inferential procedure. The Bayes
approach to reliability growth estimation usually begins
with an assumption of a prior distribution. The estimates
of the prior distribution parameters are updated as
samples from each development stage are collected.
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Several authors have proposed Bayes reliability
growth models. The original work by Smith [10]
developed a Bayes algorithm to estimate the reliability
of a system during the development period. Fard &
Dietrich [11] used Bayesian approaches for analyzing
reliability growth that proposed a Bayesian analysis of
the problem where failure causes are lumped into one
category and a jointly ordered uniform prior is assumed
for the reliability of the system at each stage. Robinson
and Dietrich [12] propose a nonparametric reliability
growth model based on Bayes analysis techniques.

Lu and his colleagues [13] by considering the
system debugging test phase as a Non-Homogeneous
Poisson  Process (NHPP) and the reliability
demonstration test phase as a homogenecous Poisson
Process established a joint likelihood function between
the failure intensity of these two steps. The Bayesian
method was used to obtain the upper limit of the failure
intensity. A degradation model with a random failure
threshold is proposed by Huang et al. [14] for the
evaluation of the reliability of the multi-stage system by
the Bayesian approach. Ming et al. [15] investigated
Bayesian reliability growth models of the mechanical
systems using new Dirichlet prior distribution when the
sample of the system is small.

Ruiz and his colleagues [16] developed a Bayesian
framework to analyze accelerated life testing data in
reliability growth. In this study, it is assumed that the
failure modes of components of the system have
multiple competing failure modes and the time to failure
of each failure mode follows a Weibull distribution.
Park et al. [17] used the Bayesian method to estimate the
parameters of the reliability growth model when the
number of sample data for the fault information is small
and showed that the estimation accuracy of the Bayesian
method is more accurate than that of Maximum
Likelihood (ML) Estimation. Using multi-stage data in
the product development test, Wang et al. [18] proposed
a scaling factor method to calculate reliability growth
and then wused Bayesian posterior estimation to
determine reliability parameters using the Markov Chain
Monte Carlo (MCMC) sampling method.

In this paper, the reliability growth of a system with
m development process stages is studied. It is assumed
that failures are removed after each testing phase. In this
regard, the moments of the marginal distribution at
various stages during a development test are used and
the proposed model is compared with the Crow-
AMSAA model based on relative and mean square
prediction errors. The quality and reliability index of the
considered system is not constant due to the removal of
failures on each state. Therefore, the assessment is not
accurate and effective when using the traditional
reliability growth model. Thus, according to these
problems, in this paper, Bayes estimates are derived for
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analyzing reliability growth with the assumption of an
underlying distribution to describe the time to failure
during any stages. In Bayesian statistics, the posterior
parameter distribution is used for calculating parameter
point estimates, to construct interval estimates or to
predict future process values and provide the multistage
Bayes reliability growth model of Weibull distribution.
It should be assumed some prior distributions of the
unknown parameters. Therefore, in this study, it is
assumed that the scale parameter has a Gamma prior
density function, and the growth parameter has a
Uniform prior distribution. In the following, Monte
Carlo techniques are used to compute the Bayes
estimates. Then, the results of Bayes estimates have
been compared with the traditional reliability growth
model by a worked example.

Modelling framework Equipment

Depending on the characteristics of the system, some
strategies and a number of phases could be created in the
testing program. Indeed, the test program is applied to
catch errors and defect in each phase of the defined
lifecycle of the system. So, the number of test phases is
determined in such a way that all the predicted and also
the unpredicted failures in terms of project management
are removed until the requirements of the user are
satisfied. The reliability growth testing program
provides opportunities to identify the weaknesses and
failure modes in the design and manufacturing process.
So, management makes decisions regarding the
management strategy in each stage of the test program to
correct problems or not correct problems and the
effectiveness of the corrective actions. Assuming the
reliability growth process of the product includes m
stages and each stage is independent. The number of
failures in each stage is ny, ..., n,. Product time to
failure is Weibull distribution in the ith stage, its hazard

function is A(t)=ABt#7", if the mission time is 7, then
the product reliability of the ith stage is:
Ry =Ry (T 2T) = exp(-4t") (1)

Here, 1is scale parameter andfis growth
parameter. It is worth mentioning that the major
advantages of using Weibull analysis are that it can be
used for analyzing lifetimes with very small samples
that can cover all regions of the life cycle (includes:
increasing failure rate-IFR, constant failure rate CFR,
and decreasing failure rate-DFR). It also produces an
easy-to-understand plot. After each stage product
reliability continuously raises because of removing
defects, thus
0<R <R,<..<R, <1 @)

Letting N(f) be the cumulative number of failures
observed by time 7, therefore N(f) can be modeled as a
Non-Homogeneous Poisson process (NHPP), i.c., as a
Poisson process with a time-dependent failure rate
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Where w(r) = AT # | that if f> 1 implying wear-out,
p< 1 implying growth and f = | implying constant mean
time between failure (MTBF).

Bayes’ rule provides the framework for combining
prior information with sample data. In this reference, we
apply Bayes’ rule for combining prior information on
the assumed distribution's parameters with sample data
in order to make inferences based on the model. The
prior knowledge about the parameters is expressed in
terms of @A) and ¢(p) called the prior distribution.
The posterior distribution of 1 and f given the sample
data, using Bayes’ rule, provides the updated
information about the parameters A and f. This is
expressed with the following posterior pdf

f(AB|D)= I LA, B)p(De(B)

L(A,B)yp(D)p(f)d Ad B “
Q

Where 4 and f is a vector of the parameters of the
chosen distribution, Q is the range of A and 8, L(4,/)1s
the likelihood function based on the chosen distribution
and data, ¢(4)and ¢@(f)is the prior distribution for each
of the parameters. In other words, a distribution (the
posterior pdf) is obtained, rather than a point estimate as
in classical statistics. Therefore, if a point estimate needs
to be reported, a point of the posterior pdf needs to be
calculated. Typical points of the posterior distribution
used are the mean (expected value).

It is desired that the prior distribution on the failure
rate at each stage be consistent in terms of information
available, and at the same time not be a computational
burden. In this model § is assumed to follow prior
distribution with the density function @(f)=1/5. The

prior distribution of 4, denoted as ¢(4), can be assumed
Gamma  distribution ~ with  density  function
P(1) = [b 7,17*1/r(a)Jexp(—/1b) , where T()is gamma
function, while @ and b represent gamma parameters.

The joint prior distribution on the successive failure
rates is

[Tew 1ab)es)
gk B =—11 (%)

m

[[TTotwrewrads

Q i=l

From Bayes theorem, it is known that the joint
posterior pdf of 4 and S is

TLhGy B 100 g b0y
1y By =—4=

gnlh(ﬂj,ﬁj | n; Yo 1a; b )o(B; M Ad B
=
Where,

(6)
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Implementation of these priors and solving for the
marginal distribution, f (4,5 |D), still remains a
difficult problem. However, it is relatively easy to find
the moments of this distribution and thus an

approximation to the distribution can be found to any
desired accuracy.

The expected value of /5 is obtained by
E(B; |D) = gﬂ,‘ S (4, B; | D)did B

m  n.+a; -1
AT exp(-4; @ +b;))dd (8)
=1

7 ﬁ [/1;1" Y (-4 @+ ))/ﬁi :|d/id/7’

Similarly, the expected value of 4 is obtained by

E(4 |D)=[Af (4 .6; |D)dAdp

|4 op(-x w0 6 Jasan ()

l[ﬂl.”i *a; -1 exp(=4; (T; +b; ))/ﬂi }dﬂdﬂ

We now have the distribution of 4 and S, hence we
can now make statistical inferences on this parameter,
such as calculating probabilities. Specifically, the
probability thatland p fall within a specified
value p(B; <B<fy Ay SA<A;) can be obtained by

integrating the posterior probability density function (pdf), or
CL=p(By S PSPy dy SASHy)

v By
= [ [rav.p1pxzap (n
B
Which is equivalent to:
A By
aecry2= [ [ 1. 1Dxi2ap (12)
00
A By
a-cuyj2=[ [ .p1Dxiap (13)
00

Where CLis the confidence level. The above
equations can be generalized for any distribution having
a vector of parameters yielding the general equation for
calculating Bayesian confidence bounds

XU'BU m
[ 1A, B; |0 (2 L aj b )p(f; Y Ad B
a+cryf2=-2L 0= (14)
[N th(ﬂi,ﬂi [ ni)o(4; |aj ,bi)p(B; dAd B
00i=
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AL 'BL m
(i An h(A;,B; | nj (4 | aj b )p(B; i Ad B
(1-cLyj2= (.LDB,,,:] (15)
I th(/ljsﬁi [ni)p(4 |a; .b; )Yp(B; Y Ad B
00i=

The above equations can be solved to get two-sided
bounds estimate for parameters.

Application Example

To illustrate the application of the proposed model, an
example that incorporates many of the above aspects
discussed above is outlined. At the start of development
testing, some failure rate information is available from
similar equipment that is already operational.

Assuming the mechanical engine will undergo
multiple stages and different level tests in the
development process. So, it is necessary to make a
reliability growth plan in order to improve test
efficiency. It should be noted that: the specifications
(information, number of failures and other relevant
issues) of the system studied in this paper are based on a
mechanical system used in reference [19]. Here, our
goal is to access a real and functional system so that we
can implement the proposed model on it.

Table 1. The data of each stage [19]

Test stage Nlll?lbel‘ of Test time (hr.)
failures

The first stage 26 90

The second stage 9 102

The third stage 4 258

A reliability growth example, comprising of three
stages, is shown in Table 1.As can be seen from Table 1,
the first stage of the testing program is 90 hours, in which
26 failures occurred, and after the completion of the test in
the first stage, it is assumed that all errors have been
eliminated. In this phase, some predicted an also
unpredicted weaknesses and failure modes in the design
and manufacturing process are identified, and then
appropriate corrective actions (or redesigns) are taken.
Then the second stage of the test begins and lasts 102 hours
and 9 failures are recorded in this time period. Indeed, a
corrective action, or fix, for a problem failure mode in the
previous typically removes a certain amount of the mode's
failure intensity, but a certain amount will remain in the
system. After removing the defects in the second stage, the
final stage of the test is performed, and after 258 hours, the
test is terminated and 4 failures are recorded in this stage.

In order to judge whether the reliability of the product is
growing after the test or not, should be identified the test data
follow or not the Eq. (2). For this purpose, the MTBF plot
on a loglog scale with the average confidence
interval/credible interval is presented in Figure 1 and shows
that the product has some given value of a measure of
reliability at the start of a test period and at the end of this
period the value of this measure has changed hopefully, it
will be improved. So, the "growth" occurred.
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As it is shown in Table 1 and Figure 1, the number of
failures in each phase has been reduced and the reliability has
been increased. In general, the first prototypes produced during —_ First stage
the development of a new complex system will contain design, o pecivd stage

o
S

manufacturing, and/or engineering deficiencies. Due to these g e S
deficiencies, the initial reliability of the prototypes may be £ i
below the system's reliability goal or requirement. In order to | r
identify and correct these deficiencies, the prototypes are often = /

subjected to a rigorous testing program. During testing,
problem areas are identified and appropriate corrective actions - e
(or redesigns) are taken. In (Cumulativs Test Time)

(@

A reliability growth program is a well-structured
process of finding reliability problems by testing,
incorporating corrective actions, and monitoring the
increase of the product's reliability throughout the test
phases. The term "growth" is used since it is assumed that
the reliability of the product will increase over time as the
design changes and fixes are implemented. However, in
practice, no growth or negative growth may occur. So, in 3
real-world applications, corrective action may not be Ry ‘ T W
effective. But the proposed model could be representing all i

phases of the lifecycle (wear-out, infant mortality, useful Fi 1. The reliability (l:l)1 oot of different st @
. ; igure 1. The reliability growth effect of different stages; (a
life) of the product by using the S parameter. Bayes model, (b) Crow-AMSAA model

=

In (Cumulativs MTBF)

Table 2. Comparison of Bayes and ML estimation of 4 and 8

ML estimation Bayes estimation
Crow-AMSAA The first stage The second stage The third stage
parameters
Lower  Upper Lower  Upper Lower  Upper Lower  Upper
e 950, 95% MM bond  bond M pond  bond M pond  bond
A 2.193  0.843  5.706 0.617 0529 0.853 0.289  0.153  0.356 0.378 0.219 0518
S 0471 0355  0.655 0.812  0.652 0912 0433  0.253  0.697 0.134  0.031 0.312
Table 3.Hyper parameters of prior distribution
Prior Distribution The first stage The second stage The third stage
Uniform Low High Low High Low High
° 0.770 0.845 0.405 0.465 0.105 0.165
Gamma Shape Scale Shape Scale Shape Scale
31.763 0.0208 20.203 0.0135 15.844 0.0252
In Figure 1 the reliability growth in the test values are different along with the upper and lower
development phase has been compared in the proposed bands at each stage of the test.
method and Crow-AMSAA model and has shown that the ~As it was mentioned before, each stage of the
growth of reliability in the Crow-AMSAA model is testing program is independent however, in the real-
constant in all of the stages, while in Bayesian method, the world system, the stage of test development is
growth of reliability in each stage is changed and shown dependent. So, in this study, based on the Bayesian
separately. theory it is assumed that after phase terminating, all
Bayes estimators of A and B were compared with failures are corrected and the system is new. Therefore,
ML estimators, which were obtained from the Crow- this assumption leads o a lqwer accuracy of
AMSAA model. Tables 2 give the statistical properties calculations, and it’s possible the estimated parameter A,
of the Bayes and ML estimation of the parameters A and and also B in each phase have been deviated from the
B. As can be seen from Table 2, the values of the actual values.

unknown A and B parameters for the Crow model with
the 95% confidence interval for the whole test phase
were 2.193 and 0.471, respectively. While with the
Bayesian estimation in the proposed method, these
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Figure 2. Hazard function; (a) Bayes model, (b) Crow-
AMSAA model

Figure 2 shows the hazard function versus
cumulative test time on a log-log scale with the average
confidence interval/credible interval based on Bayes
estimation at each stage and ML estimation.

Figures 3 to 5 show the joint prior and posterior
distribution of (4, f) in each of the first, second, and
third stages, respectively along with the histogram,
which based on 5000 iterations in Monte Carlo
simulations.

As previously explained, the prior distribution of
scale and growth parameter is assumed the Gamma and
the Uniform distribution, respectively, and the joint prior
distribution for each stage of the test is shown in Figure
3-4-5 part (a). The shape and scale parameters of the
Gamma distribution and the constant value of the
Uniform prior distribution for each stage are given in
Table 3. Figs. 3-4-5 part (b) also shows the joint
posterior distribution of (4, ) with quantiles from 0.5 to
0.990. It should be noted that in the Figs. 3-4-5 part (a),
the contours of quantiles are coinciding with each other.

It is clear that the above results are obtained for a
specific system in a multi-stage test process with
specific conditions and will naturally be different for
other systems. However, it has been shown that the
efficiency of the proposed method to examine the
reliability of the system is better than traditional models
in multi-stage processes.
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Figure 3. Contour plot of the (a) joint prior distribution & (b)
posterior distribution of (4, ) for first stage
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Figure 5. Contour plot of the (a) joint prior distribution & (b)
posterior distribution of (4, f) for third stage

As previously mentioned, in the proposed model,
the Bayesian model is used to estimate the unknown
parameters, which requires a prior distribution for the
unknown model. In this study, the Gamma and Uniform
distributions are used for the prior distribution, and a
specific value is used for the hyper parameters of this
distribution. To this purpose, reliability growth analysis
and improving the reliability of various multi-stage
systems using the proposed model with different sample
sizes, different sampling schemes, different parameter
values, and different priors are proposed for future work.

Conclusions

In this paper, the statistical analysis method of different
stages of test data based on the Bayesian reliability
growth model of multiple stages Weibull distribution
product is investigated. By using the unique properties of
the assumed prior distributions, the moments of the
posterior distribution of the failure rate at various stages
during a development test were obtained. Monte Carlo
technique is performed to compute the approximate Bayes
estimates and the corresponding credible intervals. Bayes
estimates based on Gamma and Uniform priors’
distribution for scale and growth unknown parameters
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have been compared with the corresponding ML
estimates. Consequently, it was found that the results of
the worked sample show the proposed method is adaptive
in engineering. It was indicated that unlike traditional
models such as the Crow-AMSAA model, the quality and
the reliability index of products based on the proposed
model is not constant and the performance of the
proposed model for multiple mechanical stage systems in
the development process was much better than that of the
ML estimate of the traditional model.

References

[1] Duane, J., “Learning curve approach to reliability
monitoring”, IEEE Transactions on Aerospace, 2(2)
(1964) 563-566.

[2] Crow, L.H., Reliability analysis for complex,
repairable systems, Army Material Systems Analysis
Activityaberdeen Poving Ground MD, 1975.

[3] Rani, R. Misra, “ML Estimates for CROW/AMSAA
Reliability Growth Model for Grouped and Mixed
Types of Software Failure Data”, [International
Journal ~ of Reliability, Quality and  Safety
Engineering, 11(04) (2004) 329-337.

[4] Sun, A., Kee,E., Yu,W., PopovaE., GrantomR.,
RichardsD., “Application of Crow-AMSAA analysis
to nuclear power plant equipment performance”, in:
13th  International — Conference on  Nuclear
Engineering, 2005, pp. 1-6.

[5] Barringer, H.P., “Use Crow-AMSAA reliability growth
plots to forecast future system failures”, (2006).

[6] Tang, Z., Zhou, W., Zhao, J., Wang, D., Zhang, L.,
Liu, H., Yang, Y., Zhou, C., “Comparison of the
Weibull and the crow-AMSAA model in prediction
of early cable joint failures”, IEEE Transactions on
Power Delivery, 30(6) (2015) 2410-2418.

[71 Wang, W., Xu, Y., Hou, L., “Optimal allocation of test
times for reliability growth testing with interval-valued
model parameters”, Proceedings of the Institution of
Mechanical Engineers, Part O: Journal of Risk and
Reliability, 233(5) (2019) 791-802.

[8] Lee, Y., Ryu, J., Son, K., Song, S., Kim, S., Park,
W., “A study on the reliability growth of multiple
launch rocket system using accelerated life testing”,
Journal of the Korea Institute of Military Science
and Technology, 22(2) (2019) 241-248.

[9] Nadjafi, M., Gholami, P., “Developing of Reliability
Growth Model Based on Nonhomogeneous Poisson
Process with Normal Distribution”, Journal of
Mechanical Engineering University of Tabriz,
JMEUT-1906-2491, Accepted to Online Publish on
2020 (forthcoming).

[10] Smith, A., “A Bayesian note on reliability growth
during a development testing program”, [EEE
Transactions on Reliability, 26(5) (1977) 346-347.

[11] Fard, N.S., Dietrich, D.L., “A Bayes reliability growth
model for a development testing program”, /EEE
Transactions on Reliability, 36(5) (1987) 568-572.



84 /IIRRS / Vol. 3/ Issue 1/ 2020

[12] Robinson, D., Dietrich, D., “A nonparametric-
Bayes reliability-growth model”, IEEE
Transactions on Reliability, 38(5) (1989) 591-598.

[13] Lu, L., Yang, J.-p., Wang, M., “A Bayes Method for
Assessing  Large-Scale  Electronic ~ Equipment
Reliability During External Field Test”, in:
Proceedings of the 6th International Asia Conference
on Industrial  Engineering and Management
Innovation, Springer, 2016, pp. 237-244.

[14] HuangJ., KongD., CuilL., “Bayesian reliability
assessment and degradation modeling with calibrations
and random failure threshold”, Journal of Shanghai
Jiaotong University (Science), 21(4) (2016) 478-483.

[15] Ming, Z., Ling, X., Bai, X., Zong, B., “The Bayesian
reliability assessment and prediction for radar system
based on new Dirichlet prior distribution”, in:

M. Nadjafi, P. Gholami

Journal of Physics: Conference Series, 2016, pp. 1-
11.

[16] Ruiz, C., Pohl, E., Liao, H., Sullivan, K.M., “A
Bayesian framework for accelerated reliability
growth testing with multiple sources of
uncertainty”, Quality and Reliability Engineering
International, 35(3) (2019) 837-853.

[17] Park, C., Lim, J., Lee, S., “Parameter Estimation of
Reliability Growth Model with Incomplete Data
Using Bayesian Method”, Journal of the Korean
Society for Aeronautical & Space Sciences, 47(10)
(2019) 747-752.

[18] Wang, B., Jiang, P., Li, W., Space Product
Reliability Evaluation in Two-stage Development
Based on Scaling Factor, IEEE Access, (2020).
[19]Proust, M., Reliability and Survival Methods,

(2014).



