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Abstract  
Detecting unsafe conditions of a lathe is critical to prevent hazards in a workplace. This study proposed an artificial neural 

network (ANN) model to classify the state of a lathe into one of the nine conditions (two normal conditions and seven unsafe 
conditions) based on three-axis acceleration data. The two normal conditions were (1) idle and (2) normal processing. The seven 
unsafe conditions included unsafe states of a lathe (i.e., eccentric rotation, chipping, improper workpiece fixation, and base 
looseness) and a worker (i.e., glove contact, hair contact, and necklace contact). The acceleration data for each condition were 
measured for 30 s using a small lathe and smoothed with the moving average. The datasets were randomly divided into three 
different sets for training (70%), validation (15%), and testing (15%). The ANN model was trained using the training and validation 
sets and its performance was evaluated using the testing set. The testing results showed that the classification accuracy of the ANN 
model proposed in this study (100%) was better than that of a multiclass linear support vector machine model (68%). The procedure 
and the ANN model established in this study can be utilized to detect unsafe conditions of a lathe and other industrial machines. 
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Introduction‡ 
Operating a machine under unsafe conditions is harmful 
because it may evoke unpredictable accidents that cause 
severe injury, and even fatality and material loss. 
According to a 2016 report of industrial accidents, the 
number of people injured by machinery and equipment 
was 9,900, which accounted for 19% of the total number 
of the industrial accidents in Korea; additionally, the 
number of deaths from machinery and equipment was 
220, which was 22.6% of the total deaths [1]. 
Furthermore, Smith [2] reported that 11% of all injuries 
and illnesses in the US mining industry in 2010 were 
caused by machinery. Dźwiarek and Latała [3] also 
reported that 28% of the major accidents that occurred 
from 2005-2010 were caused by the mechanical 
equipment. Furthermore, according to a report by 
Liberty Mutual, US employers spent $48.6 billion on 
medical expenses, productivity loss, and administrative 
expenses for workers' injuries. Finally, research by 
Colorado State University estimated that the direct and 
indirect costs for workplace injuries to be about $128 
billion [4]. Therefore, an early detection of unsafe 
conditions of the operating machine with superior 
accuracy performance is strategically crucial to prevent 

                                                           
‡.Corresponding author Email: kjung@ulsan.ac.kr 

accident in a workplace as well as to secure the safety of 
workers. 

Accurately detecting unsafe conditions of a 
machine is critical to prevent industrial accidents; 
however, the classification accuracy needs to be 
improved. Advanced classification methods such as 
artificial neural network (ANN) and support vector 
machine (SVM) have been widely applied as classifiers 
in the detection and diagnosis of machine conditions. 
For example, Jiang et al. [5] proposed a probabilistic 
neural network to detect three fault types (i.e., 
imbalance, misalignment, and friction) and reported an 
accuracy of 95.4% at a rotational speed of 5000 rpm. 
McCormick and Nandi [6] used ANN to detect the fault 
conditions of rotating machine based on vibration 
signals with reported accuracy 99%.Samanta and Al 
Balushi [7] also proposed ANN model for fault 
diagnosis of rotating machine with accuracy varied from 
81% to 100%. Next, Rajeswari et al. [8] developed a 
multi-class support vector machine to detect malfunction 
of a bearing installed on a rotating machine by using a 
vibration sensor, and reported an accuracy of 98.8%. 
Samanta et al. [9] used SVM and ANN to detect the 
bearing fault detection with accuracy varied from 
85.1%-100%. Liu et al. [10] also used SVM-based 
model to identify the rotating machinery fault with 
average accuracy 92.5%-97.5%. 
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In addition, existing studies also proposed other 
methods for the detection of unsafe conditions of a 
machine. Li and Chen [11] identified three fault types 
(i.e., unbalance, looseness, and misalignment) of a 
centrifugal fan by using ant colony optimization based 
on values measured from a vibration sensor; however, 
they did not report the quantitative performance. Painuli 
et al. [12] used the K-star algorithm on vibration signals 
to determine the normal and abnormal conditions of a 
lathe and reported an accuracy as 78%. Lastly, Aditiya 
et al. [13] proposed a hidden Markov model based on 
data obtained from an unbalanced state of a rotating 
machine, and reported an accuracy of 88.4%.  

In the industry applications, instead of high 
accuracy, the detection model should also consider 
various types of unsafe conditions of machine. However, 
previous studies have only focused on unsafe conditions 
for a machine in their classification studies. For 
instance, Rajeswari et al. [8] and Aditiya et al. [13] only 
considered two conditions (normal and abnormal) in 
their classification model, while Jiang et al. [5] included 
three faulty types (imbalance, misalignment, and 
friction) of a machine. In other words, most of the 
aforementioned studies only emphasized the machine 
side (e.g., cutting tools and bearings). However, 
industrial accidents are mostly caused by unsafe human 
acts (88%) rather than by the machine itself (10%). 
Although the detection of unsafe conditions caused by 
human errors(non-machine factors) while operating 
lathe machine is highly important, it has not been 
comprehensively investigated since previous studies 
have only focused on the machinery-related causative 
factors in the development of detection model. Thus, a 
study that simultaneously considered both of machine 
and non-machine factors in the development of detection 
model for unsafe conditions of lathe is needed.  

The present study was aimed at establishing an 
artificial neural network (ANN) model to detect various 
unsafe conditions of a lathe based on three-axis 
acceleration data measured from an accelerometer. ANN 
models have demonstrated preeminent performance in 
detecting faults in various fields, providing good and 
stable accuracies [5-7, 14-18]. Thus, we used an ANN 
model to establish a practical model with good accuracy. 
To define the unsafe conditions of a lathe, a 
comprehensive analysis of the accident statistics for a 
lathe has been conducted in this study. The 
representative unsafe conditions generated from both of 
the machine and non-machine factors considered in this 
study including (1) eccentric rotation, (2) chipping, (3) 
improper workpiece fixation, (4) base looseness, (5) 
glove contact, (6) hair contact, and (7) necklace contact. 
A three-axis, position-based acceleration sensor was 
installed on the motor unit of a lathe to measure the 
trembling movement of the machine while it was in 
operation. A standard feed-forward ANN model was 
established using the acceleration data measured for 
each unsafe condition, and its performance was 

quantitatively evaluated and compared with that of a 
support vector machine-based model. 

The rest of the paper were organized as follows: 
after a brief introduction on the background and 
motivation of this study, the next Section of Method and 
Materials describes the equipment, experimental design, 
data acquisition, the development of ANN and SVM 
models, as well as the statistical analysis used in this 
study. The Results Section presents the results of the 
proposed models in classifying the unsafe conditions of 
the lathe. The Discussion Section discusses and 
summarizes the significance of the study also provides 
several future research ideas regarding the applicability 
of the proposed model for various industrial 
applications. Lastly, the Conclusions Section concludes 
the main findings of this study. 

Method and Materials 

Equipment 
A small lathe machine (Model Z20002M, Shenzhen 
Zhouyu Intelligent Technology Co., Ltd., China) was 
used in this study. The main components of the lathe 
were a unit motor, headstock, tailstock, bed, slider, base, 
spindle, and three-jaw chuck, as depicted in Figure 1. 
The unit motor, headstock, and three-jaw chuck of the 
lathe were coupled, and the overall size of the machine 
was 220 mm (length) × 140 mm (width) × 150 mm 
(height) with a weight of 3.3 kg. 

 

 

Fig.1. Lathe used in this study 

The diameter and length of the workpiece used for 
the lathe were 2 mm and 135 mm, respectively. The 
height from the base of the lathe to the center of the jaw 
chuck was 25 mm. Additionally, the distance between 
the jaw chuck and the tailstock was 135 mm. The travel 
distances of the z-axis slider (tool shelf) and x-axis 
slider (carriage) of the lathe were 30 mm and 160 mm, 
respectively. Next, the motor speed of the machine was 
up to 20,000 rpm/min; however, it can be dropped to 
2,000 rpm/min while machining a metal. In addition, the 
workpiece materials for the lathe can be gold, silver, 
copper, aluminum, plastic, wood, or acrylic.  

This study used a three-axis, position-based 
acceleration sensor (Phidget Spatial Precision 3/3/3 
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High Resolution, Phidgets, USA) to measure the 
trembling movement of the lathe. The specifications of 
the acceleration sensor of Phidgets used in this study 
were listed in Table 1 [19]. The acceleration sensor 
decomposes the gravitational acceleration into three 
axes (x, y, and z) and measures the vector value on each 
corresponding axis. The gravitational acceleration in the 
three axial directions was obtained while attaching a 
sensor onto the lathe. A custom program was coded for 
this study to collect the acceleration data from the 
sensor. The acceleration data were measured 62.5 times 
per second in three axial directions; these data were 
tabulated in an Excel file to be processed further in the 
data analysis. 

Table 1. The specifications of the acceleration sensor 

Variable Value 
Acceleration measurement max ± 2 g 
Acceleration measurement resolution 76.3 µg 
Acceleration bandwidth 497 Hz 
Accelerometer white noise σ 280 µg 
Accelerometer minimum drift σ 40.6 µg 
Accelerometer optimal averaging period 398 s 
Current consumption max 55 mA 
USB Voltage range 4.4 – 5.3 V DC 
Operating temperature range -40° –  85° C 

Data Acquisition 
In this study, the acceleration data were measured for 
two normal and seven abnormal states of lathe as 
depicted in the Figure 2. The normal conditions were 
divided into an idle state (normal 1) and a normal-
processing state (normal 2). The idle state is defined as a 
condition in which the workpiece (diameter = 3 mm, 
length = 4.5 cm) is fixed to the chuck and the lathe is 
operating (Fig. 2a). Alternatively, the normal-processing 
state is the condition in which the lathe is operating 
normally (i.e., the end of the workpiece is in contact 
with the edge of the cutting tool) as shown in Fig. 2b. 

Furthermore, this study defined abnormal 
conditions by analyzing accident cases related to a lathe 
[5,11,20-23]. The abnormal (dangerous) conditions 
included four types of machine malfunctions (i.e., 
eccentric rotation, chipping, improper workpiece 
fixation, and base looseness) and three types of unsafe 
acts committed by a worker or non-machine factors (i.e., 
glove contact, hair contact, and necklace contact). The 
eccentric rotation was simulated by installing a cutting 
tool that deviated 10° from its correct angle on the chuck 
(Fig. 2c), while chipping was simulated by introducing a 
thin chip (length = 30 mm) onto the cutting tool (Fig. 
2d). Next, the improper workpiece fixation to the chuck 
was performed by untightening the workpiece from the 
jaw chuck (Fig. 2e). Lastly, the base or foundation 
looseness malfunction was imitated by loosening the 
base and the body of the lathe as shown in Fig. 2f.  

The last three unsafe or abnormal conditions 
considered in this study that can be caused by human 

error in workplace were glove contact, hair contact, and 
necklace contact. The glove contact was simulated by 
contacting the workpiece with a cotton glove (Fig. 2g), 
while hair contact was imitated by contacting the 
workpiece with a brush (Fig. 2h). Lastly, the necklace 
contact was simulated by touching a necklace to the 
workpiece as shown in Fig. 2i. 

The acceleration data elicited from the lathe was 
measured and quantified by using the following four-
step procedure. Firstly, an acceleration sensor was taped 
on the top of the lathe’s motor and a USB cable (USB 
Mini-B, cable length: 1.8 m) was connected between the 
sensor and a desktop computer. Then, the lathe was 
operated under one of the normal or abnormal 
conditions. Lastly, the acceleration data were measured 
for about 30 s for each condition using the custom 
measurement program coded using C++. Lastly, a 
moving average (time window = 10) was applied for 
1,865 data points (30 s × 62.5 Hz) to eliminate noise 
from the measured data. 
 

 
Fig.2. The illustration of the of the lathe conditions considered 
in this study for two normal states: a) normal 1: idle state and 
b) normal 2: normal-processing state; and seven abnormal 
states: c) eccentric rotation, d) chip attached, e) workpiece 
loose, f) foundation loose, g) cotton glove friction, h) brush 
friction, i) necklace friction. 

Artificial Neural Network 
Artificial neural network (ANN) is one of the supervised 
learning method that inspired from the structure and 
function of the biological neural networks of human 
brain. ANN is known as the most commonly used 
algorithm among others approaches in fault detection 
[18, 24-26]. This computational model interconnects 
many ‘‘neurons” and the output of a neuron can be the 
input of another. The weights of networks are obtained 
through an iterative learning phases according to the 
known input–output patterns [24]. The primary 
advantage of ANN is its ability to learn patterns in very 
complex conditions [26].  

(a) Normal 1 (b) Normal 2 (c) Eccentric rotation

(g) Cotton glove friction (h) Brush friction (i) Necklace friction

(d) Chip attached (e) Workpiece loose (f) Foundation loose

Phidgets
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ANN has a variety of structures, but the most 
extensively used is the feed-forward network trained 
via back-propagation. Thus, in this study, a standard 
feed-forward artificial neural network model was 
developed in Matlab 2017a (Mathworks, Inc., USA) 
with Neural Network Pattern Recognition App to 
classify the normal and abnormal states of the lathe. 
The pattern recognition is a process of training the 
neural network to assign the correct target classes to a 
set of input data. The trained network then can be used 
to classify the unseen data during the training phase.  

The learning or training function to update the 
weights and biases for the back-propagation method 
was activated by using a scaled conjugate gradient 
method. This method can train any network as long as 
its weight, input, and transfer functions have 
derivative functions. The back-propagation is used to 
calculate the derivative of performance with respect 
to the weight and bias [18]. 

The structure of the proposed ANN model used 
in this study consisted of three layers (i.e., an input 
layer, hidden layer, and output layer) that are 
interconnected, as illustrated in Figure 3. The layers 
of the proposed ANN model were fully-connected 
layers in which neurons between two adjacent layers 
are fully pair wise connected. The input layer had 
three units corresponding to the three-axis 
acceleration values on three axes (x-axis, y-axis, and 
z-axis).This layer fed the initial data into the network 
for further processing by the subsequent layer. Thus, 
the input of the proposed neural network model was a 
3 × 16,785 matrix, representing acceleration data on 
three axes for nine lathe states.  

Next, the hidden layer was a set of 10 neurons as 
a default value of the networks. The neurons were 
activated with a transfer function of hyperbolic 
tangent sigmoid function (tan-sigmoid transfer 
function) with output range [-1,1]. In addition, the 
output layer had nine outputs (idle, normal operation, 
eccentric rotation, chip attached, workpiece loose, 
base looseness, friction due to a cotton glove, friction 
due to hair, and friction due to a necklace) to classify 
the state of a lathe. The target data for the networks 
should consisted of vectors of all zero values except 
for a 1 in element i, where i is the represented class. 
Hence, the output of the proposed neural network 
model was a 9 × 16,785 matrix, representing the nine 
states of the lathe. 

Lastly, this study used cross entropy as a loss or 
error function to measure the performance of the 
proposed neural network. Thus, lower the cross entropy 
resulted in higher classification accuracy performances. 
Zero cross entropy indicates no error. The cross entropy 
function was used during the iterative back-propagation 
process in order to optimize the weights of the ANN 
model [27]. 

 

Fig.3. Three-layer feed-forward neural network structure 

The acceleration data collected from the 
experiment of this study were randomly divided into 
three different data sets (i.e., training, validation, and 
testing). The training data was used during the network 
training and for adjusting unit of weights of the 
connection layers. The neural network was trained to 
obtain the underlying relationship between the input 
and the target. Next, the validation data was used to 
measure network generalization and to halt the training 
process once the generalization stops improving. 
Lastly, the testing data sets was used as a completely 
independent measure of the network performance for 
the data which were unseen during the training process.  
In this study, the learning data represented 70% of the 
total data and consisted of 11,749 samples for each 
condition of the lathe. Meanwhile, the validation and 
testing data sets were 15% each, which included 2,518 
samples. 

Support Vector Machine 
A support vector machine (SVM) model was 
constructed to objectively compare the classification 
performance of the proposed ANN model. The SVM 
model uses a supervised classification method based on 
statistical learning theory that constructs an optimal 
separating hyper-plane in high-dimensional space [28-
30]. In this study, we employed traditional or simple 
SVM without kernel modification to fairly compare the 
accuracy performances with our proposed standard 
ANN model in classifying the lathe states.  

The three-axis acceleration data (x-axis, y-axis, and 
z-axis) were regarded as a predictor of the SVM and 
randomly partitioned into training (70%) and testing 
(30%) sets. The class labels of the SVM were the same 
as the ANN model. We employed a one-against-all 
strategy to construct the multiclass SVM classifiers, in 
which a binary SVM for each class was generated to 
distinguish members of that class from non-members of 
other classes [29,31]. A linear kernel function was used 
to construct the SVM model in Matlab. Lastly, the 
performance of the SVM model was quantified in terms 
of the classification accuracy for the learning and testing 
sets.  
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Statistical Data Analysis 
A one-factor analysis of variance (ANOVA) was 
conducted using Minitab v17.0 (Minitab Inc., USA) at 
significance level of α = 0.05 to investigate whether the 
acceleration data are significantly different based on the 
conditions of the lathe. The independent variables of this 
study were the nine conditions of the lathe. Meanwhile, 
the dependent variables were the acceleration data 
measured for each axis. Since the number of data points 
for each axis (1,865) is high, which can cause inflation 
in the degrees of freedom of the error term, this study 
used average values (five for each axis) of every 373 
data points, which resulted in 36 degrees of freedom for 
the error term; this is slightly greater than the large 
number required for the central limit theorem. In 
addition, Tukey tests were also employed for post-hoc 
analysis of the significant independent variable at the 
same significance level (α = 0.05). 

Results 

In this section, the statistical analysis and the classification 
results on the lathe unsafe conditions are presented. The 
statistical analysis of ANOVA revealed that the average 
acceleration along the x-axis was significantly different 
among the states of the lathe, as shown in Figure 4a (F(8, 
36) = 425.12, p< 0.001). Tukey tests showed that five out 
of nine states of the lathe were distinguished into different 
groups. Next, the average acceleration on the y-axis was 
also significant, as depicted in Figure 4b (F(8, 36) = 
134.45, p< 0.001). However, Turkey tests found that only 
four out of nine were clearly grouped into different groups. 
Lastly, the average acceleration on the z-axis differed 
significantly, as displayed in Figure 4c (F(8, 36) = 1479.47, 
p< 0.001). Tukey tests revealed that all states of the lathe, 
with the exception of one, were distinguished into different 
groups. 

The performance of the ANN model proposed in this 
study achieved perfect performance on cross-entropy, as 
shown in the learning curve (Figure 5). It can be observed 
that the training and validation performances on cross-
entropy were overlapped each other. The learning curve 
demonstrated how the network’s performance improved 
during the network’s training. During training and 
validation phases, the cross-entropy that used to evaluate 
the ANN model performance tends to decrease as the 
epoch increased, eventually converging at about 40 epochs. 
The epoch represents the number times that the training 
algorithm passed through the entire training data. A well 
trained ANN model should have very low cross-entropy 
value at the end of the training [27]. In this study, the cross-
entropy value was less than 10-5 or close to zero at about 40 
epochs. The physical interpretation of this value would be 
that the desired outputs or a set of target categories and the 
ANN’s outputs in the training set on average have become 
very close to each other. In other words, the model has 
suitably fit to the training data sets. As a result, the training 
and validation performances in this study reached 100%.  

 

(a) Acceleration of the x-axis 

 

(b) Acceleration of the y-axis 

 

(c) Acceleration of the z-axis 

Fig.4. Acceleration data for normal and abnormal conditions 
of the lathe on each axis (different letters indicate significant 

differences) 

Furthermore, these results indicate that the ANN 
was well trained with the learning data set and correctly 
classified 2,518 samples in the validation set into either 
normal and abnormal states of the lathe. In addition, 
there were considerable variations in the values of the 
acceleration data on three-axis as shown in Fig. 4. These 
phenomena resulted in better training of the ANN and 
ultimately revealed a high performance on the 
classification accuracy.  
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The ANN model showed perfect classification 
accuracy (100%) for the testing data set, which is better 
than that of the multiclass linear SVM model (68%). 
This study established a multiclass linear SVM in order 
to compare the performance of the proposed ANN 
model. The classification accuracies of the linear SVM 
for the learning and testing data sets were 68.5% and 
68.3%, respectively. 

 

Fig.5. The learning curve of the training and validation 
performances according to epochs of the proposed ANN model 

Discussion 

The present study developed an artificial neural network 
(ANN) model to detect normal and abnormal or 
dangerous conditions of a lathe machine based on 
acceleration sensor data on three-axis. The normal 
conditions were divided into two states: idle and normal 
processing. The abnormal conditions were defined by 
analyzing accident cases and consisted of seven unsafe 
conditions of lathe: eccentric rotation, chipping, 
improper workpiece fixation, base looseness, glove 
contact, hair contact, and necklace contact. A small lathe 
machine was operated to measure data transmitted from 
an acceleration sensor. As a result, it was determined 
that the accuracy of the ANN model developed in this 
study was 100%, which was significantly better than a 
model based on a support vector machine (SVM). The 
findings of this study can be utilized to detect unsafe 
conditions in real-time to reduce industrial accidents and 
secure the safety of workers. 

Although there were some conditions overlapping 
in each axis, they could be separated if we considered 
combinations of all axes. For example, for the x-axis, 
the eccentric rotation (mean ± SD: -0.35 × 0.02) and 
base looseness (0.26 × 0.02) conditions were largely 
different. Alternatively, the chip attached (0.14 × 0.02) 
and workpiece loose (0.12 × 0.02) conditions were quite 
similar to each other. However, the chip attached (0.35 × 
0.02) and workpiece loose (-0.06 × 0.02) conditions for 
the z-axis were largely different. Based on these results, 
the classification accuracy of the ANN model was very 
good when all three axes data are used in the training 
phase of ANN.  

To objectively evaluate the classification 
performance of the proposed ANN model, this study 
compared the ANN model with a multiclass linear SVM 
model. Both ANN and SVM methods have been widely 
used to solve various supervised classification problems. 
As aforementioned, this study compared the proposed 
standard ANN model with the linear multiclass SVM 
without any kernel adjustment in order to establish a 
fairly comparison between the models. As a result, the 
ANN model in this study worked better than the SVM 
with a linear kernel. The ANN classification accuracy of 
this study was more than 31% higher than the linear 
SVM method. These results indicated the effectiveness 
of the proposed ANN model in classifying the state of a 
lathe into either normal or abnormal states based on 
acceleration sensor data. The superiority of the ANN 
method over the SVM method can be explained based 
on the fact that the ANN can capture nonlinear patterns 
in the data, while the linear SVM failed to do so. 

Although this study has delivered promising 
results, two future studies are needed in order to 
improve the applicability of the ANN model for 
industrial settings. First, the effect of the sampling rate 
should be investigated in future works. Acceleration 
measurements of this study were sampled at 62.5 Hz/s 
and successfully identified various abnormal conditions. 
However, a higher number of measurements per second 
may be required if the rotation speed of a lathe machine 
is significantly faster than the lathe used in this study 
(20,000 rpm). Thus, it is necessary to conduct an in-
depth study to determine the appropriate number of 
acceleration measurements that need to be taken per 
second to apply the results of this study to a lathe 
machine with a faster rotation speed. Second, it is also 
recommended to develop a transfer learning model to 
extend the applicability of this ANN model. Transfer 
learning is a method used to re-train a pre-learned deep 
network to fit into a new environment. The transfer 
learning can enable the ANN model proposed in this 
study to be applied to other types of machines (e.g., 
milling machines and drilling machines), as well as to 
unsafe conditions that were not considered in this study. 

 

Conclusions 

This paper aimed at developing an artificial neural 
network (ANN) model to classify the lathe states into 
either normal and abnormal conditions based on three-
axis acceleration sensor data. The normal conditions 
were divided into two states: idle and normal processing. 
Meanwhile, the abnormal conditions consisted of seven 
unsafe conditions of lathe: eccentric rotation, chipping, 
improper workpiece fixation, base looseness, glove 
contact, hair contact, and necklace contact. A small lathe 
machine was operated under the predetermined nine 
conditions and their acceleration data were measured 
using an acceleration sensor. The acceleration data on 

Epochs



                 IJRRS: Vol. 3/ Issue 1/ 2020 / 33 

 

Detecting Unsafe Conditions of a Lathe using an Artificial Neural Network … 

three-axis then were fed into the neural network to 
classify the states of lathe. An objective comparison of 
the classification performance between ANN and SVM 
classifiers was also completed in this study. The result 
of this study revealed that the performance of the 
proposed ANN model (100%) has been found to be 
substantially better for testing data set than that of linear 
multiclass SVM (68%). The findings showed promising 
results and the potential application of ANN as classifier 
in the lathe condition detection. In sum, we expect that 
the proposed ANN model of this study would be helpful 
in the development of the unsafe conditions detection 
system of the lathe operation in real-time to prevent 
industrial accidents and consequently improve safety of 
workers. 
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