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_____________________________________________________________________________________________ 
Abstract 

Lifetime of pipelines is very important for safe and sanitary water transmission pipelines and water distribution networks. For this 
purpose, reliability assessment analysis is a good tool and has made it easy or feasible to make better decisions for inspections during 
maintenance and utilization process. In this study, a non-linear state model of corrosion has been used for the structural analysis of 
corroded water transmission pipelines, stressed by internal pressure and also substance corrosion has beenconsidered simultaneous base 
on a limit state function. In order to take the uncertainty associated with the design and environmental variables into account and to 
obtain failure probability (reliability index), an improved harmony search meta-heuristic optimization algorithm is selected. Sensitivity 
analysis of associated parameters is carried out to measure the effectiveness of each parameteron the probability of pipe failure. Results 
obtained for steel pipeline of Karevandar to Kash water transmission project arediscussed as a case study. 
 
Keywords: Water transmission pipelines; Corrosion reliability assessment; Harmony Search Optimization Algorithm; Failure probability 
__________________________________________________________________________________________________________________________________________________________________________ 

Nomenclature and Units* 
PDF  Probability Density Function  

lsf  Limit State Function 

FX(x)  Probability Distribution Function 

Z  Performance of Structure 

Pf  Probability of Failure 

FORM  First Order Reliability Method 

SORM  Second Order Reliability Method 

MC  Monte Carlo Method 

BHL  Hasofer-Lind Reliability Index 

CDF  Cumulative Distribution Function 

HSA  Harmony Search Algorithm 

IHS  Improved Harmony Search 

HMS  Harmony Memory Size 

HMCR  Harmony Memory Considering Rate 

PAR  Pitch Adjustment Rate 

COV  Coefficients of Variation   

1. Introduction  
Generally, in the engineering problems, we face the 
parameters and variables which are not fixed and 
deterministic. They inherently have random natures that 
makes assessment of these problems uncertain. Due to 
these uncertainties, the need to scientific and systematic 
methods to assess reliability and predict failure 
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probability of the structures is inevitable. In sensitive 
infrastructures such as liquid transmission pipelines 
(e.g. gas, oil or water…), this issue plays a more 
important role. As we know, water pipelines are one of 
the most commonly applied means of transporting 
water all around the world. The increasing number of 
aging pipelines in operation has dramatically soaredthe 
number of accidents. One of the major reasons of 
accidents in water pipelines is corrosion defect. As a 
pipeline ages, it can be affected by a corrosion 
mechanisms, which may lead to a reduction in its 
structural integrity and eventual failure. So, regular 
inspections of pipelines can decrease the risk of any 
undue accident. So, we are faced with a statistical 
problem and decision-making for reliability assessment 
of repairing or replacing pipelines. Studies developed 
by Kiefner [1] and Kiefner and Vieth [2] resulted in the 
well-known ASME B31G criterion [3]. Det Norske 
Veritas published recommended practices for assessing 
corroded pipelines under combined internal pressure 
and longitudinal compressive stress [4]. Based on both 
experimental tests and numerical calculations, the 
proposed empirical formulae comprise single and 
interacting defects, and complex-shaped defects. Nahal 
and Khalif researched the corrosion of pipeline and 
published their work titled “Failure Probability 
Assessment for Pipelines under the Corrosion Effect”. 
They found that both defect depth and fluid pressure 
have significant influences on pipeline reliability [5]. In 
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density function (PDF) ௑݂(ݔ). To obtain the equivalent 
normal mean ߤ௑௘  and standard deviationߪ௑௘, we require 
that the CDF and PDF of the actual function be equal to 
the normal CDF and normal PDF at the value of the 
variable ݔ∗ (design point) on the failure boundary 
described ݃ = 0. Mathematically, these requirements 
are expressed as [13,14], ܨ௑(ݔ∗) = Φ ቀ௫∗ିఓ೉೐ఙ೉೐ ቁ  (2) 

௑݂(ݔ∗) = ଵఙ೉೐ ߶ ቀ௫∗ିఓ೉೐ఙ೉೐ ቁ   (3) 

 
Where Φ is the CDF for the standard normal distribution and ߶ is the PDF for the standard normal distribution. By 
manipulating these equation, we can obtain expressions for ߤ௑௘  
and ߪ௑௘ as follows: 
௑௘ߤ  = ∗ݔ − ௑௘ߪ (4)  [((∗ݔ)௑ܨ)Φିଵ]௑௘ߪ = ଵ௙೉(௫∗) ߶ ቀ௫∗ିఓ೉೐ఙ೉೐ ቁ  (5) 

 
The main aim is to calculate ߚு௅ with Harmony Search 
evolutionary algorithm in space  ߉. To achieve this, one has to 
solve a constrained optimization problem that is 

2
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Solving Eq. (6) is equivalent to solving the relaxed 
form obtained by penalty method 
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(7) 

Where is the penalty function and ߣ is the penalty 
coefficient (strictly positive). The solution ݑ∗ of Eq. (6) 
or (7) is called the design point and enables us to 
calculate the reliability index as 
ு௅ߚ  =  (8)  .‖∗ݑ‖
 

The choice of the penalty coefficient ߣ in Eq. (7) is 
crucial for the convergence of the search toward the 
solution of Eq. (6). In case of equality constrained as it 
is addressed in this paper, the penalty coefficient will be 
searched by an iterative process from a low value 
because the search space is a hyper-surface. According 
to [7], an appropriate sequence of ߣis ߣ௜, such that ߣ௜ାଵ = ଴ߣ ௜ andߣ2 = 0.1. The value of ߣ will be 
considered suitable when the quantity ߦ(ܩ(ܶିଵ(ݑ))) 
In Eq. (7) is small enough (<10ିସ for example). For each 
problem solved in this paper, the corresponding ߣ and the 
control parameter ߦ(ܩ(ܶିଵ(ݑ))) are supplied. 
 
3. Improved Harmony Search 
HS algorithm is based on natural musical performance 
processes that occur when a musician searches for a better 

state of harmony, such as during jazz improvisation. Jazz 
improvisation seeks to find musically pleasing harmony (a 
perfect state) as determined by an aesthetic standard, just 
as the optimization process seeks to find a global solution 
(a perfect state) as determined by an objective function 
[15]. 

The pitch of each musical instrument determines 
the aesthetic quality, just as the objective function value 
is determined by the set of values assigned to each 
decision variable. The HS algorithm works as follows: 
 
Step 1. Initialize the problem and algorithm parameters. 

The optimization problem is defined as Minimize ݂(ݔ) subjected to ௜ܺ௅ ≤ ܺ ≤ ௜ܺ௎(݅ =  1, . . . , ܰ). ௜ܺ௅ and ௜ܺ௎ are the lower and upper bounds for decision 
variables. The HS algorithm parameters are also 
specified in this step. They are the harmony memory 
size (HMS), or the number of solution vectors in the 
harmony memory; harmony memory considering rate 
(HMCR); bandwidth (ܾݓ); pitch adjusting rate (PAR); 
and the number of improvisations (K), or stopping 
criterion. 
 

Step 2. Initialize the harmony memory (HM). 
The initial harmony memory is generated from a  normal 
distribution in the ranges [ ௜ܺ௅, ௜ܺ௎], (݅ = 1,2, … ܰ) as shown 
in Eq. (9): 
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(9) 

Step 3. Improvise a new harmony. 
Generating a new harmony is called improvisation. 

The New Harmony vector ݔᇱ = ଵᇱݔ) , ଶᇱݔ , … , ଷᇱݔ ) is 
determined by three rules: memory consideration, pitch 
adjustment and random selection. The procedure works 
as follows: 

For݁ܽܿℎ݅ ∈ [1, ܰ] do 

If݀݊ܽݎ() ≤ ௜ᇱݔ then ܴܥܯܪ = ݆)௜௝ݔ = 1,2, … ,  memory consideration%(ܵܯܪ

if݀݊ܽݎ ≤ ௜ᇱݔ then ܴܣܲ = ௜ᇱݔ ± ݎ ×  pitch adjustment% ݓܾ

ifݔ௜ᇱ > ௜ᇱݔ ௜௎ݔ =   ௜௎ݔ

elseifݔ௜ᇱ < ௜ᇱݔ ௜௅ݔ =   ௜௅ݔ
end 
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end 
else ݔ௜ᇱ = ௜௅ݔ + ()݀݊ܽݎ × ௜௎ݔ) −  ௜௅)%random selectionݔ
end 
end ݔ௜ᇱ(݅ = 1,2, … , ݊) is the ݅th component of ݔᇱ, and ݔ௜௝(݆ =1,2, … ,  is the ݅th component of the ݆th candidate (ܵܯܪ
solution vector in HM. Both ݎ and ݀݊ܽݎ() are uniformly 
generated random numbers in the region of [0,1], and ܾݓ is 
an arbitrary distance bandwidth. 
Step 4. Update harmony memory. 

If the fitness of the improvised harmony vector ݔᇱ = ଵᇱݔ) , ଶᇱݔ , … , ଷᇱݔ ) is better than that of the worst 
harmony, replace the worst harmony in the HM with ݔᇱ. 
Step 5. Check the stopping criterion. 

If the stopping criterion (maximum number of 
iterations ܭ) is satisfied, computation is terminated. 
Otherwise, Step 3 is repeated. 

The most important step of the HS algorithm is Step 
3, and it includes memory consideration, pitch adjustment 
and random selection. ܴܲܣ and ܾݓ have a profound effect 
on the performance of HS. Mahdavi et al. (2007) proposed 
a new variant of HS, called the improved harmony search 
(IHS) [15,21]. IHS dynamically updates ܴܲܣ and ܾݓ 
according to Eqs. (10) and (11): 

max min
min( )

PAR PAR
PAR k PAR k

NI


 

 
   (10) 
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( ) exp
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  
  

  
 
  
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(11) 

Where ܰܫ is the maximum number of iteration, 
and ݇ is the current number of iterations; ܴܲܣ௠௜௡ and ܴܲܣ௠௔௫ are the minimum adjusting rate and the 
maximum adjusting rate, respectively; ܾݓ௠௜௡ and ܾݓ௠௔௫ are the minimum bandwidth and the maximum 
bandwidth, respectively. Parameters of the algorithm 
used in this paper for Corrosion reliability assessment 
are presented in Table 1. 

Table 1. IHS parameters used for test problems 

Parameter Value 
PAR 0.3 

HMCR 0.9 
PAR_min 0.35 
PAR_max 0.99 
bw_min 1e-6 
bw_max 1 
NI 990 
HMS 100 

3. Pipeline Reliability Assessment  
Corrosion is a major problem for steel pipeline despite 
considerable effort and material expenditures spent in 
the last four decades on their failure prevention or in 
research [16,17]. Coating and cathodic protection 
failure do occur because of variety of causes leading to 
localized corrosion. As a consequence, there have been 
several techniques such as those specified in B31G [18] 
or Z184 [19] as well as hydrostatic test to estimate the 
remaining strength of a localized corrosion defect in a 
pipeline. Among the available techniques, B31G is the 
most widely used or accepted technique [20]. 
 

 
 

Fig. 2. Corrosion defect parameters 
 

For comparison purposes, the B31G equation for 
predicting the burst pressure of corroded pipelines is also 
considered in the reliability and sensitivity analysis [3]: 

௕ܲ஻ଷଵீ = ௕ܲ௜ ቂ ଵି(ଶ/ଷ)(ௗ/௧)ଵି(ଶ/ଷ)(ௗ/௧)ெషభቃ  (12) 

ܯ = ට1 + 0.8(௅஽)ଶ(஽௧ )  (13) 

where L is the axial length of the defect projected 
onto the pipe, d is the average depth of corrosion, t is 
pipe thickness in mm and M is Folias factor. The d 
parameter can be made more realistic by taking a 
sufficient number of depth measurements inside the 
corroded region. In B31G method, it is suggested that 
the area of metal loss (A) is calculated from the overall 
axial length and maximum depth of the corroded area 
and by considering the corroded area as either a 
rectangle or a parabola. Although the parabolic method 
was found preferable to the rectangular method, both 
methods were found to consistently fail to correctly 
estimate the actual failure stress.  

To assess the probability of burst of a pipe with 
corrosion defects, it is necessary to relate the values of 
the operating internal pressure with the pipeline burst 
pressure. The corresponding limit-state function can be 
written as follows: where ௕ܲ is the burst pressure of the 
corroded pipe and ଴ܲ is the internal operating pressure 
[20]. Thus, the limit-state function is given by ݃(ܺ) = ௕ܲ − ଴ܲ  ݃(ܺ) = ቀଵ.ଵఙ೤ଶ௧஽ ቁ ×  [1 − [଴.ସ(ܦ/݈)ଵ.଺(ݐ/݀)0.9435 − ଴ܲ                          

(14) 
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In order to perform the corrosion reliability 
assessment of steel pipeline by the proposed algorithm 
and to validate its application, Statistical properties of 
random variables related to Khash Water transporting 
steel pipe are presented in Table 2. The result has also 
been compared with classical methods such as Monte 
Carlo Simulation method (MC).  

As stated in the previous section, tuning of the 
penalty parameter is crucial, it is why its value used for 
the convergence is supplied in this paper for each 
addressed example. The value of ߦ(ܩ(ܶିଵ(ݑ))) Eq. (7) 
must be close to 0. It will be considered close to 0 if its 
absolute value is lower than10ିସ. This is a necessary 
condition to have the global optimum. 

4. Results and Discussion  
The history of Reliability index convergence for 
corroded pipe is shown in figures 1 and 2. Also, the 
probability failure of the considered steel pipeline 
obtained by proposed HSA and MC method is 
presented in Table 3.  

It is clear that the proposed algorithm gives a good 
agreement with the approximation method of the more 
time-consuming method of Monte Carlo simulation, 
which is usually considered as the benchmark method. 

 

Table 2. Statistical properties of variables 

Var. Dist. 
Bias 

factor 
Mean Std. dev. 

d normal 1 1.8mm 0.09mm 

l normal 1 200mm 12mm 

t normal 1 6.7mm 0.07mm 

D normal 1 7000mm 0.51mm ߪ௬  Log. 
normal 

1.1 420Mpa 39Mpa 

଴ܲ  Gumbel 1 10Mpa 0.1Mpa 

 

 

Fig. 3. History of beta convergence of proposed pethod (Iteration) 

Figures 5 and 6 show the ratio between reliability 
index to depth of corrosion and internal pressure, 
respectively. It is clear that by increasing the internal 
pressure and depth of corrosion, probability failure of 
pipelines has increased too, but rates of reduction for 
reliability indices of these variables are different. So 
that by decreasing the reliability index from 5.25 to 4.5, 
corrosion depth and internal pressure variation rates 
approach to 10.7 and 18.5 percentage, respectively. 
Also, maximum internal pressure and depth of 
corrosion can be obtained using these figures. For this 
purpose, we used two levels of failure (low failure 
probability or LFP with ߚ = 5.25 and medium failure 
of probability or MFP with ߚ = 4.5). Maximum 
internal pressures of this pipeline for the two mentioned 
levels of failure were obtained 11.67 and 13.98. 
Furthermore, maximum depth of corrosions achieved 
for these levels of reliability are 0.72 and 1.24, 
respectively.  

 

 
Fig. 4. History of Beta convergence for MCS (iteration) 

Table 3. Obtained resultsof reliability index   

Method Reliability 
Index 

Failure 
Probability 

Iteration 

Monte Carlo 3.5869 0.161×10-3 6621 

Proposed 
Algorithm 

3.5803 0.166×10-3 617 

 

 

Fig. 5. Reliabilty index against d 
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Fig. 6. Reliabilty index against internal P0 

4.1. Sensitivity Analysis 
In this section, sensitivity analysis of associated 
parameters is carried out to measure the effectiveness of 
each parameter on the probability of pipeline failure. 
Fig. 7 shows reliability index variation rate against 
coefficient of variation of random variables. Among the 
random variables, maximum difference of reliability 
index is achieved from depth of corrosion and pipeline 
thickness. Also, it is obvious that by increasing C.O.V 
of corrosion length, there is no significant change in 
reliability index. So, it can be considered as a 
deterministic variable with a standard deviation close to 
0. Next variable that plays the second level of 
importance and affects the reliability of pipeline is 
Thickness. Most variation of failure probability in 
return of this variable obtained from COV is less than 
0.3. As shown in Fig.7, changes of diameter and 
internal pressure have a similar pattern, approximately. 
Variation of beta index against yield stress (Fy) starts 
when COV of Fy takes values less than 0.1. As it can be 
seen, reliability index decreased dramatically from 3.5 
at 0.1 to 1 at 0.6 that shows the importance of this 
parameter and the sensitivity of beta index to this 
variable. 
 

 

Fig. 7. Reliabilty index against variation of random variable COV 

Fig. 8 shows maximum value of load applied to 
pipeline (internal pressure) against depth of corrosion to 
pipe thickness (d/t), according to the mentioned level of 
reliability.  

 

Fig. 8. Applied load against proportion of depth of corrosion to pipe 
thickness 

Variation of tolerable pressure for the values of 
corrosion depth to thicknesses less than 0.1 is negligible 
(about 2 Pa). Curve slopes of reliability level increased 
for the values of corrosion depth to thicknesses more 
than 0.2 that shows the intensity of failure for this 
range. In addition tocorrosion, reliability of pipes 
depends on their thickness. In fact, the pipelines can be 
better utilized for values of less than 0.1(d/t); otherwise, 
repairing, replacement or reduction of applied load 
(pressure) would be crucial. 
 
6. Conclusion 
Reliability methods can be considered as reliable ways 
for health monitoring and failure probability prediction 
of infrastructures to propose a confident scheme for 
utilization and maintenance of the existing and new 
pipelines. In this paper, a non-linear state model has 
been used for the structural analysis of corroded 
pipelines stressed by external forces. External load and 
substance corrosion have beenconsidered simultaneous 
base on limit state function and harmony search meta-
heuristic optimization algorithm has been selected for 
relaibility assessment instead of the time-consuming 
MC method, not only because of the advantage of its 
facility of implementation, but also for the possibility to 
deal with high non-liner and discontinuse limit state 
functions and capability of obtaining reliability index 
and failure propability without any need to derivaition. 
It can be seen that the result yielded is quasi-exact with 
respect to that yielded by MC classical methods.  

Failure probability and reliability assessment have 
been obtained for the pipes used in Karvandar to Khash 
water transporting pipeline. Medium and low levels of 
failures defined and according to these levels, 11.67 and 
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13.98 resulted as maximum of internal pressures. 
Corrosion length random variable does not have a 
significant effect on failure (for values greater than pipe 
radius) and can be considered as a deterministic 
variable. Whereas depth of corrosion has visible and 
remarkable affect, qua with increasing of d, failure 
severity increases. It can be concluded that for a less 
than 0.1ratio of corrosion depth to thickness, verified 
pipe is at an acceptable level of utilization. Otherwise, 
repair, replacement or reduction of applied load is 
proposed and for values greater than 0.3, pipe 
replacement is strongly recommend.  
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