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Abstract  

Tracking moving targets using mobile robots is a crucial aspect of robotics. This paper presents a novel approach for tracking a moving 

target in an uncertain environment with various obstacles, even when the target’s trajectory and speed are continuously changing and 

unknown. The proposed method utilizes reinforcement learning, a widely used technique for motion planning problems. However, 

applying reinforcement learning in uncertain dynamic environments poses a challenge due to the continuous state space. To address 

this issue, our algorithm employs an ART2 neural network for classifying the state space. Additionally, to enhance the speed of reaching 

the target, a point is predicted based on the target’s speed, direction, and the robot’s speed. The robot then selects its next move to 

approach this predicted point while avoiding contact with both static and dynamic obstacles. Simulation results demonstrate the 

efficiency of the algorithm, as the robot successfully reaches the target without colliding with any obstacles. 

Keywords: Target Interception; Uncertain environment; Reinforcement Learning; ART2 Neural Network.

Nomenclature and Units 

NN Neural Network  

ART Adaptive Resonance Theory 

RL Reinforcement Learning 

SS Safe State 

FS Failure State 

NSS Non-Safe State 

NNSS Near-Non-Safe State 

RRT Rapidly-Exploring Random Trees 

1. Introduction 

Today, most of the exact, repetitive, and difficult or 

impossible tasks for humans are done by robots. One of 

the key features of automated robots is their ability to 

move and perform specific tasks. Motion planning is 

usually used to change the world situation by calculating 

a sequence of acceptable movements for the robot. For 

example, in path planning, a path without obstacles is 

calculated so that the robot can move from its initial 

position to its final position. This is the simplest issue in 

motion planning, but it requires high computational 

complexity [1]. 

In some cases, the goal of motion planning is not to 

change the world but rather to maintain certain conditions 

related to the world or to achieve a specific understanding 

of the environment. There are various issues in autonomous 

navigation., including environment exploration, environment 

investigation, navigation among movable obstacles 

(NAMO), mapping, localization, motion sequencing, 

energy consumption, and time limits. Tracking moving 

targets is also an important issue in motion planning, 

which arises in various applications such as robot soccer, 

automatic conduct, and caring systems [3][5].   
In most real-world applications, the direction and 

speed of moving targets are not known and constantly 

changing. Additionally, the environment in which the 

robot operates may be unfamiliar and contain both static 

and dynamic obstacles. Under these circumstances, 

effectively tracking and reaching a target in the shortest 

possible time and path is a challenging problem that has 

yet to be properly solved. This paper presents a new 

method for robot motion planning in an uncertain 

https://www.ijrrs.com/article_185952.html
https://www.ijrrs.com/
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://www.sciencedirect.com/topics/computer-science/autonomous-navigation
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dynamic environment with unknown static and dynamic 

obstacles. The goal is to reach a moving target whose 

speed and direction are unknown and constantly 

changing. The proposed method has been implemented 

and validated through various scenarios [7]. 

The paper is organized as follows: Section 2 

provides a literature review on target tracking. In Section 

3, we explain the problem and its characteristics. The 

main components of the proposed algorithm are described 

in Section 4. Section 5 presents the developed algorithm 

for target tracking in a dynamic and uncertain 

environment, and the simulation results are presented in 

Section 6.  

2. Literature review  

Target tracking issues have been studied in several 

studies. Fuzzy logic is one of the most widely used 

methods in target tracking. In [20], the authors presented 

an adaptive control algorithm in which they combine a 

fuzzy logic controller with a predictive method of 

position according to gray theory to track a moving target 

by a mobile robot. In [4], a target tracking control model 

was designed based on a real-time fuzzy method to 

distinguish related tracking behavior. Fuzzy control 

methods have various benefits but disadvantages. For 

example, it is necessary to establish appropriate fuzzy 

control rules concerning the fuzzy control relations of the 

system. When the environment is dynamic, and the target 

is moving, pre-built fuzzy rules will be inefficient [2]. 

Artificial neural networks (ANNs) are another 

approach to solving robot motion planning problems. In 

[17], researchers used neural networks to enable a robot 

to perceive the environment and perform feature 

extraction, which enabled them to determine the fitness 

of the environment for state action functions. Through 

hierarchical reinforcement learning, mobile robot needs 

are met by mapping the current state of these actions. The 

proposed algorithm performs well in all aspects and 

exhibits outstanding performance. 

The potential field method was used to plan the 

speed of a moving robot while tracking a moving target 

[21]. Potential field methods for motion planning of 

moving robots in a static environment have considerable 

shortcomings that have not yet been resolved. These 

shortcomings are even more problematic when targets 

and obstacles are moving. For example, a robot could 

easily get stuck in a local optimum or deadlock, causing 

fluctuation. 

Visual methods are another group of more 

applicable methods for solving target-tracking problems. 

By considering visual feedback, the authors of [6] have 

shown how to capture a moving target using a 

nonholonomic robot. One requirement of these 

algorithms is that the moving target should constantly be 

within sight of cameras or the sensing domain of other 

sensors. Otherwise, these methods will be defeated. 

Therefore, an approach is necessary to make a decision 

when the target cannot be seen or felt by the robot.  

In [2], the ant colony algorithm is presented for 

tracking a moving target whose speed and direction are 

unknown and constantly changing. In this paper, the 

environment is known in advance, and all obstacles are 

considered fixed. In addition, in [30], it is assumed that 

the speed and direction of the target are known. However, 

the speed of dynamic obstacles and the location of static 

obstacles are unknown and calculated by the robot in an 

online manner. In this paper, a new concept, named 

Directive Cycle, is introduced and used to guide the 

robot’s movements. 

One of the challenges in using Q-learning for path 

planning is the large state-action space, which can slow 

down the algorithm and make it impractical. Another 

challenge is to plan the most efficient path while learning 

about the environment. To address this challenge, [22] 

proposed a path-planning approach for a group of robots 

that combines Q-learning with PSO. This approach 

enabled the agents to optimally decide the path by 

thoroughly studying the uncertain environment. The 

proposed work in [22] did not consider dynamic obstacles 

in the environment. In addition to all the challenges in 

unmanned aerial vehicle (UAV) path planning, the 

priorities of the UAV can be different, such as safety, 

energy consumption, and distance to the target to 

maintain a reliable communication link. To address this 

situation, instead of applying dynamic programming or 

geometric-based methods, an offline Q-learning-based 

approach has been proposed for path planning. In this 

approach, the policy concentrates on path length, safety, 

and energy consumption to determine the reward. 

 A new deterministic Q-learning approach for a 

mobile robot has been proposed [24]. This approach uses 

prior knowledge of the distance to the next state and the 

goal from the current state. This efficient use of 

information made the entire path-planning process less 

time-consuming than other approaches. An improved Q-

learning approach has been proposed in [25] for UAV 

path planning in an unknown antagonistic scenario. In 

[26], a Q-function initialization method, along with a new 

action selection strategy, is introduced to enhance 

performance. A-star and Q-learning-based hybrid path 

planning has been proposed in [26], which analyzes UAV 

path planning in terms of local dynamic hierarchical 

planning and global static planning. An adaptive and 

random exploration (ARE) approach has been proposed 

in [27] to address the tasks of UAV path planning. Similar 

to [27], a Q-leaning-based path planning approach in an 

uncertain dynamic environment is proposed in [28], [29]. 

There are still unresolved problems in this field. For 

instance, in certain algorithms, the robot follows the 

actual path of the moving target, which means that it 

cannot reach the target as quickly as possible. Some 
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algorithms are not suitable for situations where the 

direction of the target is unknown and rapidly changing 

or when the environment contains complex obstacles. In 

addition, some algorithms cannot make immediate 

decisions regarding robot movements [2]. Therefore, 

further research is required to resolve these issues. 

3. Problem statement 

The research field of motion planning involves various 

issues. These issues are expressed in different situations 

and classified based on criteria such as obstacle types, 

robot shape, movement limitations, environment 

dimensions, number of robots, environment changes over 

time, information source, and reliability of information 

[1]. Therefore, it is important to describe the topic and the 

specific conditions being considered accurately. 

Robot motion planning problems can be divided into 

two categories based on the robot’s knowledge of its 

surrounding environment: online and offline. In offline 

mode, the robot has complete environmental information 

and plans its moves accordingly. Essentially, the robot is 

aware of the environment in this situation. On the other 

hand, in online motion planning, the robot has very 

limited or no information about the environment and 

obstacles. In this type of problem, various sensors are 

used to gather information about the environment, and the 

robot’s path is designed based on this increasing 

information as it moves. Updating information and 

redesigning the path is continuously performed until the 

robot reaches its target [8]. 

In this paper, a new algorithm is presented for 

solving the target tracking problem in a two-dimensional 

uncertain environment. The algorithm is designed to 

handle a target whose speed and direction are constantly 

changing and unknown. Additionally, the algorithm 

assumes that the locations of both static and dynamic 

obstacles, as well as the speed and direction of dynamic 

obstacles, are unknown and need to be computed by the 

robot in real time. The robot knows the initial location of 

the target but lacks information about its speed and 

direction. 

To ensure successful tracking of the target, the 

algorithm assumes that the robot’s speed is always greater 

than that of the target and obstacles. The robot is capable 

of moving in eight different directions. The main focus of 

the presented algorithm is the ability to make immediate 

decisions about the robot’s next move, considering the 

high dynamics of the environment and the target. 

4. Proposed algorithm’s components 

The algorithm proposed in this paper consists of three 

main components: reinforcement learning, ART2 neural 

network, and predicting target tracking points. ART2 is 

used to detect the robot’s status concerning the 

environment, based on its distance from obstacles and its 

relative position regarding the target, to determine the 

correct movement of the robot. During the learning 

process, the robot gradually learns to take the best 

possible moves in each state, using reinforcement 

learning. By combining ART2 and reinforcement 

learning, a new neural network called QLART2 has been 

introduced. 

To accelerate the achievement of the target, the 

predicted point to achieve the target is used instead of the 

current position of the target to determine the robot’s 

status in the environment. In this section, we introduce 

the algorithm’s components. 

4.1 Reinforcement learning 

Because of the unpredictable nature of dynamic and 

uncertain environments, most of the proposed solutions 

for navigating robots in such environments do not work 

in every situation. As a result, artificial intelligence 

approaches have acquired attention from researchers in 

recent years, aiming to improve robots’ ability to navigate 

based on the knowledge acquired through experiments in 

the work environment. 

The reinforcement learning algorithm is an artificial 

intelligence method in which a learning agent can acquire 

correct behavior by interacting with the environment 

[31]. In this method, the agent and the environment 

interact with each other in a sequence of discrete time 

steps, denoted as t=0, 1, …. At each time step t, the agent 

receives the state of the environment, represented as 𝒔𝒕 ∈
𝑺, where S is the set of all possible states. 

Then, it chooses an action, 𝑎𝑡 ∈ 𝐴(𝑠𝑡), based on the 

current state, where 𝐴(𝑠𝑡) is the set of all actions that the 

robot can choose in the state 𝑠𝑡. In the next step, the agent 

receives a numerical reward, 𝑟𝑡, and finds itself in a new 

state, 𝑠𝑡+1. The goal of the learning agent is to maximize 

the sum of received rewards in the long term [9]. 

In [10], the Q-learning method of the reinforcement 

algorithm is used to avoid collision of the robot with 

obstacles. In the reward function used in this study, the 

value of the target tracking state is 1, the value of the 

collision with obstacles state is -1, and the value of the 

other states is 0. In this study, the distances between the 

robot and the target and obstacles were used as input. 

Reinforcement learning has been combined with 

other techniques like fuzzy logic and neural networks in 

certain algorithms. An example in [11] presents a hybrid 

approach that utilizes fuzzy logic and reinforcement 

learning. It is composed of two fundamental components: 

obstacle avoidance and target attainment. The behaviors 

were created separately but merged to select the 

appropriate behavior during implementation. Both of 

these behaviors are fuzzy engines that map the 
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environment state to a fuzzy output, which represents the 

desired operation. In this method, fuzzy rules are 

constructed using reinforcement learning. 

A combination of the probabilistic roadmap 

approach and the Q-learning algorithm was used for a 

dynamic environment [12]. If an obstacle blocks the 

designed path, the Q-learning algorithm determines the 

best possible action. Based on this work, it appears that 

reinforcement learning is a good approach to solving 

motion planning problems in unknown or uncertain 

environments. 

4.1.1 Q-learning 

Q-learning is one of the most common methods of 

reinforcement learning. In this method, Q is an action-

value function that approximates the optimal action-value 

function Q∗ [32]. The Q values are updated as follows: 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 [𝑟 +  𝛾max
𝑎′
(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]  (1) 

Where 𝑄(𝑠, 𝑎) is an action-value function of taking 

action in state s. 𝑄(𝑠, ′ 𝑎′) is an action-value function in 

the resulting state(𝑠′) after acting, 𝛼 is the step-size 

parameter between 0 and 1, 𝑟 is an immediate reward and 

𝛾 is the descending rate [9]. According to (1), 𝑄(𝑠, 𝑎) is 

calculated according to the immediate reward, 𝑟, and 

delayed reward. In this formula, delayed reward, 

𝛾max
𝑎′
(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎), is related to subtracting the 

maximum achievable value in the next state and the value 

of the current state. 

If, in each state, a sufficient number of actions are 

executed in that case, the Q values will converge to the 

optimal value Q* with probability 1. Q-learning can also 

be extended to update states that have occurred in more 

than one step [19]. Once sufficiently trained, learning 

agents can take appropriate actions in any state. 

4.2 ART2 Neural Network 

Neural networks are one of the most efficient methods of 

pattern recognition and have been used in various fields 

because of their high efficiency in learning training data. 

Neural networks, which attempt to create a mapping 

between input and output patterns, are suitable tools for 

classification and clustering because of their ability in 

parallel processing and nonlinear characteristics [16]. 

One of the key issues in neural networks, including RBF 

and MLP, is the fixed number of categories or patterns in 

most of them. 

Adaptive resonance theory (ART) neural networks 

can classify arbitrary sequences of input patterns in a 

stable and self-organized manner. If a new input pattern 

is used, ART detects it as a new pattern and adds it to the 

existing patterns without any difficulty in identifying 

previous patterns. ART is an unsupervised neural 

network. This type of NN can automatically increase its 

memory when sample patterns increase. They are able to 

acquire new knowledge without losing the previous 

patterns. These NNs can automatically increase their 

memory when patterns of samples increase. They 

perform steady classification through unsupervised 

competitive learning and self-organization mechanisms 

and can realize online learning with various data types 

and an unknown number of classes. 

The learning agent can classify various states of the 

environment during the learning phase using ART2 NN 

in the Q-learning algorithm. In addition, the learning 

agent can learn appropriate behavior in every state. In this 

study, we used the architecture shown in Figure 1 for 

ART2. 

Suppose input vector 𝑋 is an analog N-dimension 

vector, then 𝑋 =  {𝑥0, 𝑥1, … , 𝑥𝑛−1}.There are 𝑁 

processing unit in layer 𝐹1, each of which has six 

neurons, 𝑧𝑖 , 𝑞𝑖 , 𝑢𝑖, 𝑣𝑖 , 𝑝𝑖 , 𝑠𝑖. Each of these neurons has two 

filters which are used to improve the features and to 

eliminate noises of the input signal. The input signal, 

which is processed in the 𝐹1 layer, will be transferred to 

the 𝐹2 layer via bottom-up weights that are called long-

term memory. In the F2 layer, the winning neuron,𝑗∗, is 

selected through competition with other neurons. Then, 

the top-down weight coefficient of the neuron 𝑗∗, i.e., 

𝑤𝑗∗𝑖, gives signals to 𝑝𝑖  node of 𝐹1 layer.  

 

Figure 1. ART2 NN Architecture [14] 

At this point, the node 𝑝𝑖  is equal to a linear 

combination of the normalized noise-less input, 𝑢𝑖, and 

the center of the winner node’s pattern, 𝑤𝑗∗𝑖. The 

similarity between the input vector and the center of the 

winner node’s pattern is evaluated by calculating the 

norm of node 𝑟. If the similarity is less than a predefined 

threshold 𝜌, then the orienting subsystem is activated and 

sends a reset signal to layer 𝐹2. As a result, the attention 

subsystem ignores the winner node. It repeats the 
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competition between other nodes, each representing a 

pattern of the inputs, to find a pattern that has an adequate 

match with the input. If the input vector is not sufficiently 

similar to any of the 𝐹2 layer’s nodes, it is added to the 

𝐹2 layer as a new pattern and chosen as the winner node. 

Here, the winner’s weights are updated. 

4.3 ART2 NN based reinforcement learning 

In motion planning problems, the robot operates in a 

continuous state space, whereas reinforcement learning 

algorithms are typically used to solve Markov behavior 

problems with discrete and limited information. Applying 

RL algorithms to a continuous state space may lead to 

dimensionality issues. To address this problem, we 

incorporate the ART2 neural network alongside Q-

learning to incrementally cluster the continuous state 

space of an uncertain environment through interaction 

with the environment online. 

 

Figure 2. QLART2 NN architecture [14] 

Figure 2 illustrates the structure of the Q-learning 

algorithm based on ART2 NN, also known as QLART2. 

This structure consists of six layers. Layer A serves as the 

input layer and represents the state space to be detected 

by the learning agent. Layers B, C, and D are responsible 

for noise reduction and feature enhancement processing 

of the input. Layer E serves as a pattern recognition layer. 

Layer F is the output layer, where each neuron represents 

one of the decisions that the learning agent can make. 

Each neuron in layer E, which corresponds to a 

pattern in the state space, is connected to all neurons in 

layer F. The weights of these connections are denoted as 

𝑧𝑗𝑘, represent the estimated value for the action-value 

function 𝑄(𝑦𝑗 , 𝑎𝑘), where each weight corresponds to a 

specific pair of state space-behavior space patterns [15]. 

The general steps of the QLART2 algorithm are as 

follows: 

 Applying the vector of the environment state to the 

input layer enhances features and decreases the 

noises of the input vector through layers B, C, and 

D. 

 Applying modified input vector to layer E for 

doing competitive learning and selecting 

appropriate space state patterns. 

 Competition in layer E to find winner behavior 

based on bottom-up weights, which can be 

adjusted based on Q-learning. 

 The evaluation of the results of selected behavior 

in the environment by the learning agent and the 

identification of the state in which the learning 

agent, after performing the selected behavior, has 

been entered. Then, the new state space is detected 

by the A to F layers. 

 The Modification of weights among winner 

neurons of F and E layers, based on immediate 

reward, which resulted from selected behavior, 

and delayed reward, which was generated by 

following optimal policy. 

Figure 3 shows the general steps of the algorithm. 

 

 

Figure 3. General steps of the QLART2 algorithm 

Now, we describe the various steps of the algorithm 

in more detail. 

1. Initializing parameters: The neurons in each of 

the six layers A, B, C, D, E, and F are initialized 

to zero. The coefficients of layers B, C, and E, 

denoted as a, b, and e, respectively, are 

initialized with arbitrary values. The input 

vector is N-dimensional. The filter factor and 

the number of neurons in layer E are set to 𝜃 =
1

√𝑁
 and 𝑀 =1, respectively. The number of 

neurons in layer F is equal to the number of 
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possible behaviors. If i and j represent neurons 

in layers D and E, respectively, the weight 

vectors between layers D and E are initialized 

as follows: 

            𝑤𝑖𝑗 = 0, 𝑤𝑖𝑗 =
1

(1−𝑑)√𝑁
  (2) 

 

2. The learning process is carried out by following 

steps 3-15 for each learning scenario. Increasing 

the number of learning scenarios brings the robot 

closer to its optimal behavior. However, the 

number of scenarios should not exceed a certain 

limit to avoid overfitting and reducing the robot's 

optimal efficiency. Each scenario concludes when 

a stop condition is met. The stop condition can be 

based on a specific time limit, a certain number of 

inputs applied to the network, or the completion 

of a specific task, such as placing the robot in the 

final state 𝑋𝑒𝑛𝑑. 

3. The robot is placed in the initial state space, 𝑋0, 

and the timer becomes zero. 

4. At time t, the robot enters the state 𝑋𝑡, where 𝑋𝑡 =
𝑥0𝑡 , 𝑥1𝑡 , … , 𝑥𝑁𝑡 represents the input to layer A. If 

𝑋𝑡 corresponds to the termination state 𝑋𝑒𝑛𝑑, it 

indicates that the robot has completed the current 

learning scenario and returns to Step 3. Otherwise, 

the process continues to Step 5. 

5. Each neuron in the B layer is updated as follows: 

              𝑧𝑖 = 𝑥𝑖 + 𝑎𝑢𝑖 , 𝑞𝑖 =
𝑧𝑖

(𝑒+||𝑍||)
  (3) 

6. Neurons of layer C are updated as follows: 

            𝑣𝑖 = 𝑓(𝑞𝑖) + 𝑏𝑓(𝑠𝑖), 𝑢𝑖 =
𝑣𝑖

(𝑒+||𝑉||)
  

            𝑓(𝑥) = {
0,       0 ≤ 𝑥 ≤ 𝜃
𝑥,             𝑥 ≥ 𝜃 

}  
(4) 

7. The neurons in layer C are updated as follows: 

             𝑝𝑖 = 𝑢𝑖 , 𝑢𝑖 =
𝑝𝑖

(𝑒+||𝑃||)
   (5) 

8. Values of 𝑀 neurons in layer E are determined as 

follows: 

    𝑦𝑗 = ∑ 𝑝𝑖
𝑁
𝑖=1 𝑤𝑖𝑗  (6) 

9. The winner neuron in layer E is determined 

through a competitive mechanism, where 𝑦𝑗∗ =

𝑚𝑎𝑥 𝑦𝑗|𝑗 = 1, 2, … , 𝑀. Afterwards, the 

feedback signal, 𝑤𝑗𝑖 , is sent to 𝑝𝑖  neurons of the D 

layer: 

               𝑔(𝑦𝑗) = {
𝑑,            𝑗 = 𝑗∗

0,           𝑗 ≠ 𝑗∗
  

  𝑝𝑗 = 𝑢𝑖 +∑ 𝑔(𝑦𝑗)
𝑀
𝑗=1 𝑤𝑗𝑖  

(7) 

10. At this point, the modifying threshold is tested. 

Values of 𝑟𝑖 neurons of layer D are computed as 

follows, based on 𝑢𝑖 node and modified 𝑝𝑖  node: 

𝑟𝑖 =
𝑢𝑖+𝑐𝑝𝑖

(𝑒+||𝑈||+𝑐||𝑃||)
  (8) 

where, 

||𝑅|| = √∑ 𝑟𝑖
2𝑁

𝑖=1   

If ||𝑅||  ≤  𝜌, then the current winner neuron is 

reset, and this process is repeated for the 

remaining nodes of layer E. The algorithm 

continues from step 11. Otherwise, the algorithm 

continues with step 12. 

11. If all the neurons of layer E are reset, it means that 

the input vector is not similar enough to any of the 

previously identified state space patterns. 

Therefore, a new neuron, 𝑦𝑀+1, is created in layer 

E as the winner node.  
12. The input-output weight vectors of the E layer’s 

winner node are updated as below: 

𝑤𝑗∗𝑖 = 𝑑𝑢𝑖 + [1 − 𝑑(1 − 𝑑)]𝑤𝑗∗𝑖  , ∀𝑖  

𝑤𝑖𝑗∗ = 𝑑𝑢𝑖 + [1 − 𝑑(1 − 𝑑)]𝑤𝑖𝑗∗  , ∀𝑖  
(9) 

13. 𝑎𝑘∗  is selected as output action among the layer F 

nodes based on a defined mechanism or a 

probability function. 

14. After performing action 𝑎𝑘∗  in the environment, 

the robot moves to the next state, 𝑋(𝑡 + 1). Then, 

an immediate return, which is the reward or 

punishment of a selected action in state 𝑋(𝑡), is 
computed according to the Q-learning evaluation 

function. 

15. Steps 5-12 are repeated to identify the winning state 

space pattern at the moment 𝑡 + 1, 𝑦𝑗∗(𝑡 + 1). 

Then, the maximum value for 𝑄(𝑦𝑗∗(𝑡 + 1), 𝑎), 

which corresponds to the maximum value of 

𝑧𝑗∗𝑘(𝑡 + 1) is estimated. Based on this, all 

weights of F are updated as follows: 
𝑧𝑗𝑘(𝑡) = 𝑧𝑗𝑘(𝑡 − 1) + 𝛼[𝑟(𝑡) + ⋯ 

  𝛾 𝑚𝑎𝑥
𝑎𝑘

(𝑧𝑗∗𝑘(𝑡 + 1)) − 𝑧𝑗𝑘(𝑡)], ∀𝑗, 𝑘 
(10) 

In this step, in fact, the robot enters into the 

learning process of the next input vector, e.g., 

𝑋(𝑡 + 1), and its corresponding state space 

pattern has been detected. So, the learning process 

is continued from step 13 [2]. 

4.4 Predicting the target achieving point 

In this study, to increase the speed of reaching the target, 

a predicted point was used as a sub-target for moving 

regulation. In this method, when the robot sees the target, 

according to the speed and direction of the target and its 

speed, it predicts the point for reaching it. This predicted 

point is the secondary purpose of robot transfer. In this 

method, the dynamic and desired path of the target is 

estimated using many short linear paths. 
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4.4.1 An algorithm to predict the achieving point of 

the goal 

Suppose 𝑡0 is the time required to identify the target by 

the robot. During target tracking, when the target moves 

to a new location, the robot detects it. Suppose the times 

of these moves are 𝑡0, 𝑡1, …, and the location of the target 

in time 𝑡𝑖 is 𝐺𝑖 = 𝐺𝑖(𝑥𝐺𝑖(𝑡𝑖), 𝑦𝐺𝑖(𝑡𝑖)). In each 𝑡𝑖, the robot 

can compute the target speed using the following 

formula: 

𝑉𝐺𝑖 =
𝑑(𝐺𝑖−1,𝐺𝑖)

𝑑(𝑡𝑖,𝑡𝑖−1)
  (11) 

Where 𝑑(𝑥, 𝑦) is the distance between 𝑥 and 𝑦. Both 

consecutive cells traversed by the target create a linear 

path. These linear paths estimate the curve route of the 

target and are calculated as follows: 

𝑦 =
(𝑦𝐺𝑖−𝑦𝐺𝑖−1)

(𝑥𝐺𝑖−𝑥𝐺𝑖−1)
× (𝑥 − 𝑥𝐺𝑖−1)+ 𝑦𝐺𝑖−1

…  

= 𝑘𝑖𝑥 + 𝑏𝑖  

(12) 

Because the estimated procedures are performed 

dynamically, the robot can track the target efficiency even 

if the direction and speed of the moving target change 

continuously. Suppose there is no obstacle in the path of 

the robot. Since the robot moves faster than the target, 

there is a linear path through which the robot and the 

target reach a common point simultaneously. Suppose the 

predicted tracking point is 𝐶(𝑥𝑐(𝑡𝑐), 𝑦𝑐(𝑡𝑐)) (Figure 4). 

Since 𝑡𝑐 is the same for the robot and the target, we can 

write: 

√(𝑥𝑐−𝑥𝐺𝑖)
2
+(𝑦𝑐−𝑦𝐺𝑖)

2

𝑉𝐺
= ⋯ 

√(𝑥𝑐−𝑥𝑅)
2+(𝑦𝑐−𝑦𝑅)

2

𝑉𝑅
 

 

(15) 

In (15), 𝑥𝑐 and 𝑦𝑐 are unknown and can be calculated 

by combining (14) and (13). 𝑥𝑐 is calculated as follows: 

𝐴𝑥𝑐
2 + 𝐵𝑥c + C = 0  (16) 

where, 

𝐴 =
1+𝑘2

𝑉𝐺
2 −

1+𝑘2

𝑉𝑅
2   

𝐵 =
2𝑘(𝑏−𝑦𝐺𝑖)+2𝑥𝐺𝑖

𝑉𝐺
2 −

2𝑘(𝑏−𝑦𝑅)+2𝑥𝑅

𝑉𝑅
2   

𝐶 = 𝑥𝐺𝑖
2 − 𝑥𝑅

2 + (𝑏 − 𝑦𝐺𝑖)
2 − (𝑏 − 𝑦𝑅)

2  

Since 𝐵 − 4 × 𝐴 × 𝐶 = 0, so (𝑥𝑐 , 𝑦𝑐) is unique. 

After predicting the achieving point and considering 

it as a secondary goal of the robot, the robot attempts to 

move toward it with respect to defined mechanisms until 

it detects the next change in the direction or speed of the 

target [12]. Because the target path is not a straight line, 

this method can be effective in achieving the target. 

5. Description of the proposed 

algorithm 

In general, we want to find the best possible function for 

each relative position of the robot in the environment. For 

this purpose, we assume that the robot is equipped with 

eight sensors that can calculate their distance to the 

nearest obstacle and have infinite visibility [23]. Sensors 

have been placed in eight directions at regular intervals. 

At each step, the robot sends its distance from the 8 

nearest obstacles in 8 directions, the angles between the 

line connecting it to the target, or forecasted point, and 

the vector (0,1) as input to the ART2 NN. After 

identifying the state of the robot, the best action should be 

determined with respect to reinforcement learning. 

In the learning phase, the weights of the QLART2 

NN change to be close to their optimum values. Once the 

robot has been trained enough with different scenarios, it 

will have appropriate behavior for avoiding contact with 

obstacles and achieving the goal in any environment. 

In this algorithm, it is assumed that the robot knows 

the initial location of the target before its movement. 

When the target comes into sight of the robot, the robot 

predicts a point to reach the target, according to the speed 

and direction of the target, and tries to reach that point 

without contacting obstacles. 

Robot learning is done by placing it in different 

static and dynamic environments; in each of them, the 

target and obstacle navigation and the number of static 

and dynamic obstacles are different. When the robot is far 

enough from obstacles can go straight to the forecasted 

point, and there is no need to save this state in the neural 

network. Otherwise, a nearly optimal action is determined 

for the robot so that the robot is as far away from obstacles 

without deviating from its direct path to the target as 

possible. Modifying the QLART2 NN’s weights is done 

based on the effect of the selected action on the 

environment state. 

Given that it is necessary to consider a reward for 

moving from a safe state to a non-safe state and vice 

versa, we have defined an intermediate state, called near 

non-safe state, which is stored in NN. To define the 

reward function, we assign a reward to each transition 

from one state to another. If S is the last transition state 

the robot has entered currently, SS will be Safe State, NSS 

will be Non-Safe State, NNSS will be Near-Non-Safe 

State, and FS will be Failure State; we can write the 

reward function as follows: 

𝑟 =

{
 
 

 
 

 2,            𝑆 ⊂ 𝑁𝑁𝑆𝑆 → 𝑆𝑆   
    0,            𝑆 ⊂ 𝑁𝑁𝑆𝑆 → 𝑁𝑁𝑆𝑆
−1,           𝑆 ⊂ 𝑁𝑁𝑆𝑆 → 𝑁𝑆𝑆  
   0,            𝑆 ⊂ 𝑁𝑆𝑆 → 𝑁𝑆𝑆      
  1,            𝑆 ⊂ 𝑁𝑆𝑆 → 𝑁𝑁𝑆𝑆 
−2,           𝑆 ⊂ 𝑁𝑆𝑆 → 𝐹𝑆         

  

 

(17) 
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In this way, the robot approaches the optimal 

treatment in each step. Each learning scenario terminates 

when the target is reached, or the given steps have been 

passed. It should be noted that the robot will never collide 

with an obstacle because competition in the neural 

network occurs between acts that do not lead to collision 

with obstacles. However, when weights are updated to 

increase convergence speed in the learning phase, actions 

that lead to collisions receive a penalty. 

6. Implementation and results 

After training the robot with sufficient scenarios, the 

weights obtained between layers E and F of the 

QLART2 neural network, which indicate the optimal 

action in each state, can be used to direct the robot 

toward the goal. The algorithm proposed in this study 

has been effectively implemented and examined in 

different static and dynamic environments. 

The parameters of the neural network were 

considered as follows: 𝑎 = 10, 𝑏 = 10, 𝑐 = 0.1, 𝑑 =
0.9, 𝜃 = 0, 𝜌 = 1, 𝛼 = 0.2, 𝛾 = 0.8, 𝜆 = 0.05. The 

initial weights from layer E to layer F and the weights 

of layer F to layer D are initialized to zero. Because the 

number of inputs is 9, the initial weights from layer D to 

layer F have been initialized by 
1

(1−0.9)√9
 . 

The simulation of the algorithm is divided into two 

phases: learning and testing. In the learning phase, the 

robot is placed in various scenarios where obstacles and 

targets exhibit different behaviors. In the testing phase, 

the robot is placed in new environments that include 

both static and dynamic obstacles. It is able to avoid 

obstacles and reach the target effectively. 

The robot's speed remains constant at 1 m/s in 

different scenarios, and its location at any given moment 

can be calculated using the following formula: 

[𝑝𝑥𝑖 , 𝑝𝑦𝑖]
𝑇 =  [𝑝𝑥(𝑖−1), 𝑝𝑦(𝑖−1)]

𝑇 + 𝑣[𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃]∆𝑇  (18) 

In which [𝑝𝑥𝑖 , 𝑝𝑦𝑖]
𝑇 represents the location of the 

robot at time 𝑖, 𝑣 is the speed of the robot, and 𝜃 is the 

direction of it, which can be one of the values 0, 45, 90, 

135, 180, 225, and 270. ∆𝑇 is the elapsed time for the 

robot to move to a new location. 

In this section, first, we will show the effect of 

predicting the achieving point to the target on the speed 

of reaching the target. Then, we will study one of the 

learning scenarios. Finally, we will compare a sample of 

found path in a scenario with the optimal path in that 

scenario. The color area in the figures is the visibility 

region of the robot. 

6.1 The effect of predicting the target 

interception point 

Predicting the target interception point can result in increasing 

the speed of reaching the target by the robot. Error! 

Reference source not found. shows this case. In this figure, 

the target starts its movement from [23, 22]𝑇 and moves 

vertically with the speed of 𝑣𝑡𝑎𝑟 = [0,−0.65]𝑇. The obstacle 

at first is located in the point [6, 4]𝑇  and moves with the speed 

of 𝑣𝑜𝑏𝑠 = [0.35, 0.35]
𝑇 . The first position of the robot is 

[2, 2]𝑇. As can be seen in Error! Reference source not 

found.(a), if the robot moves directly to the target, it will reach 

the target in 86 steps. While pursuing the predicted point for 

reaching the target, 73 steps are necessary, as shown in Figure 

4(b). 
Other scenarios were conducted to check the 

increase in the speed of reaching the target when pursuing 

the predicted intercepting point by the robot. However, 

we do not consider them because they are similar to the 

example above. 

 
(a) 

 
(b)  

Figure 4. The impact of the following predicted point on 

reaching the target by the robot. (a) The robot moves directly 

towards the target and reaches it in 86 steps; (b) The robot 

moves towards the predicted point to archive the target and can 

reach it in 73 steps. 
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6.2 Training phase 

As previously mentioned, if the robot is sufficiently 

trained during the learning phase, it can navigate through 

obstacles in the testing environment and reach the target. 

In this section, we will describe a sample training 

scenario. Then, we will examine the impact of increasing 

the number of learning scenarios on the quality of the 

obtained answer. 

It is important to note that in each scenario, the 

stored weights from previous scenarios have been used 

as the initial weights for the QLArt2 NN. 

In a sample training scenario that we selected to 

describe, the target started moving from point [9, 2]𝑇  with 

a velocity 𝑣𝑡𝑎𝑟 = [0.65, 0.65]
𝑇. The obstacle moved in a 

horizontal motion starting at point [4, 17]𝑇  and with a 

velocity 𝑣𝑜𝑏𝑠 = [0.65, 0]
𝑇. In this scenario, the robot 

started its motion at point [9, 31]𝑇 , as shown in Error! 

Reference source not found..  At the beginning of the 

scenario, the target is within the robot’s visibility range. 

So, the robot predicts the intercepting point and moves 

directly towards it, assuming there are no obstacles in its 

path. At point  [12, 20]𝑇, the robot gets close to the 

obstacle, and there is a possibility of collision in the next 

two moves. Hence, the QLART2 NN is used to determine 

the next action for the robot, ensuring that it avoids 

colliding with the obstacles and stays as close as possible 

to its original path toward the predicted point to reach the 

target.  

 

Figure 5. The effect of the robot’s movement towards the 

predicted point to reach the goal.  

The effect of increasing the number of scenarios 

in the learning phase is observable in Figure 6. In 

Figure 6(a), the network has passed 10 scenarios for 

training, and it can be seen that the obtained path is 

not very suitable and, in this case, the robot takes 76 

steps to reach the goal. In figures (b) and (c), the 

number of training scenarios is 40 and 60, 

respectively, and the robot takes 61 and 55 steps to 

reach the goal. In Figure (d), the network has 100 

training scenarios, and the obtained path is very close 

to the optimal path. In this case, the robot takes 46 

steps to reach the goal. Increasing the number of 

learning scenarios reduces the influence of the 

starting point on choosing the next move, allowing 

the robot to move toward the goal in a direction with 

a higher probability of seeing the goal. Table 1 

summarizes the results of running the algorithm in 7 

different environments using the above example 

networks, showing the overall average number of 

steps required for the robot to reach the goal in each 

environment. In these environments, the robot’s 

speed is slightly higher compared to the example 

above, resulting in fewer steps needed to reach the 

goal. Examining the data in this table also confirms 

the accuracy of the stated information. 

Table 1. Results of algorithm execution in 7 different 

environments 

 

20 Training 

scenarios 

40 Training 

scenarios 

60 Training 

scenarios 

100 Training 

scenarios 

𝐸1 33 32 28 24 

𝐸2 55 51 45 39 

𝐸3 18 17 14 14 

𝐸4 68 55 54 54 

𝐸5 38 31 31 29 

𝐸6 39 32 30 30 

𝐸7 57 57 51 47 

mean 44 39.28 36.14 33.85 
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(a) 

 
(b) 

 
(c) 

 

(d) 

Figure 6. The effect of increasing the number of scenarios on 

improving robot behavior in target interception. (a) 20 training 

scenarios, (b) 40 training scenarios, (c) 60 training scenarios, 

and (d) 100 training scenarios. 

6.3 Testing phase 

After the learning phase, we can begin assessing the 

robot’s behavior in complex situations and scenarios. During 

testing scenarios, the robot makes decisions based on stored 

information in the QLArt2 NN. In addition, the robot can 

update its information during the testing phase. An example 

of a testing scenario is shown in Figure 7. In this scenario, 

there are 5 obstacles positioned in different locations and 

moving along various paths. Initially, the target is placed at 

the point [11, 71]𝑇 and follows a pseudo-sinusoidal path at 

two-thirds of the robot’s speed. The robot is initially 

positioned at the point [2, 2]𝑇  at the beginning of the 

scenario. As depicted in Figure 7(a), the robot successfully 

reaches the target by following a path that avoids collisions. 

By comparing the robot’s path in this scenario with the 

optimal path (Fig 7(b)), we observe that the robot’s path to 

reach the target is very close to the optimal path. 

Each of the methods mentioned in the literature review 

attempted to track moving targets without considering the 

presence of dynamic obstacles in the UAV territory. When 

obstacles are dynamic, i.e., they can change their position 

over time, the constraints of the path planning algorithm 

become more challenging. Therefore, to evaluate the quality 

of the obtained answers, we will compare the results of the 

proposed algorithm with a generalized version of the 

algorithm proposed in [18], which is widely used in motion 

planning. The algorithm, as mentioned earlier, is 

asynchronous and is therefore not suitable for uncertain 
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environments. The RRT algorithm performs path planning 

with prior knowledge of the shape, speed, and location of 

obstacles; therefore, it has good performance, and the 

obtained solutions are almost close to the optimal solution. 

Compared with state-of-the-art approaches such as the A-

star, Dijkstra, and Sarsa algorithms, this algorithm results in 

improved performance. It is, therefore, a good choice for 

evaluating the performance of our algorithm. Since the 

algorithm operates on the basis of random samples, the 

solution and path obtained for it are not unique in all 

executions. Therefore, we run it 50 times for each 

environment and consider the best-obtained solution as the 

solution for comparison. Figure 6 shows the execution of the 

two algorithms in an environment with 5 obstacles.  

 
(a) 

 
(b) 

Figure 7. (a) Robot’s path and initial location, goal, obstacles, 

and Robot’s movement through obstacles to reaching the goal 

in a Test Scenario. (b) optimal path for this test scenario 

In this example, the RRT algorithm produces a path 

with 84 steps, as shown in Figure 8(b), while our 

proposed algorithm (Figure 8(a)) yields a path with 82 

steps, indicating a small difference. The following table 

shows the results obtained for two algorithms in 7 

different environments. The analysis of the data obtained 

in this table shows that in simpler environments with 

fewer obstacles and complexity, our proposed algorithm 

produces a better answer than the RRT algorithm. 

However, as the number of obstacles and the complexity 

of the environment increase, the quality of our result and 

this difference between the two algorithms decreases. In 

such cases, the algorithm requires more training phases 

for the network. 

 

(a) 

 
(b) 

Figure 8. Comparison of the proposed algorithm with the 

algorithm RRT. (a) Proposed Algorithm with prediction the 

point of achieving the goal after passing 100 training 

scenarios. (b) Algorithm RRT 
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Table 2. Execution of RRT and QLArt2 in 7 different 

environments 

 RRT QLArt2 Obstacle count 

𝐸1 33 27 3 

𝐸2 55 53 5 

𝐸3 18 15 2 

𝐸4 68 65 7 

𝐸5 38 31 3 

𝐸6 39 32 3 

𝐸7 57 58 8 

mean 44 39.85  

7. Conclusion 

In this paper, a new approach is presented for tracking a 

target in an uncertain environment. The speed and 

direction of the target and dynamic obstacles are 

constantly changing and unknown. The approach uses 

reinforcement learning based on the ART2 neural 

network to track the target without prior knowledge about 

the environment. There are no assumptions made about 

the movements of the target or obstacles. A new 

definition for the state space is introduced, and a 

forecasting point is used as a sub-goal to accelerate the 

robot’s progress toward the target. One notable feature of 

this algorithm is its ability to make real-time decisions in 

target-tracking tasks after sufficient training. To evaluate 

the robot’s ability to reach the target, various simulation 

experiments were conducted in different environments 

with different movements of the target and obstacles, as 

well as varying numbers of static and dynamic obstacles. 

These simulations demonstrate that the paths chosen by 

the robot using the presented algorithm are close to 

optimized paths, and the algorithm is efficient in 

dynamic, uncertain environments. In future work, the 

algorithm can be enhanced by adding a prediction of 

obstacle movements. Additionally, evaluations should be 

conducted to determine the optimal point for training the 

robot, as excessive training may lead to inefficient results. 
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