
IJRRS
International Journal of Reliability, Risk

and Safety: Theory and Application

Online ISSN: 2676-3346

Vol. 6/ Issue 2/ 2023/ pp. 93-105

DOI: 10.22034/IJRRS.2023.6.2.11

Received: 03 November 2023, Revised: 24 December 2023, Accepted: 25 December 2023

Available online at: https://www.ijrrs.com

 Original Research Article

How to cite this article:
M. Abbasi Kia, Sh. Khoshnavaz and R. Hashemi Alem, “Target Interception in Uncertain Environment Using ART2-Based Reinforcement Learning,”

International Journal of Reliability, Risk and Safety: Theory and Application, vol. 6, no. 2, pp. 93-105, 2023.

COPYRIGHTS

©2024 by the authors. Published by Aerospace Research Institute. This article is an open access article distributed under the terms

and conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0)

Target Interception in Uncertain Environment

Using ART2-Based Reinforcement Learning

Mostafa Abbasi Kia1* , Shahram Khoshnavaz2 and Razieh Hashemi Alem3

1-Department of Computer Science, Faculty of Basic Sciences, University of Lorestan, Khorramabad, Iran

2- Department of Computer Engineering, Faculty of Technology and Engineering, University of Lorestan,

Khorramabad, Iran

3- Department of Computer Engineering, Faculty of Technology and Engineering, University of Arak, Arak,

Iran
* abbasikia.m@lu.ac.ir

Abstract

Tracking moving targets using mobile robots is a crucial aspect of robotics. This paper presents a novel approach for tracking a moving

target in an uncertain environment with various obstacles, even when the target’s trajectory and speed are continuously changing and

unknown. The proposed method utilizes reinforcement learning, a widely used technique for motion planning problems. However,

applying reinforcement learning in uncertain dynamic environments poses a challenge due to the continuous state space. To address

this issue, our algorithm employs an ART2 neural network for classifying the state space. Additionally, to enhance the speed of reaching

the target, a point is predicted based on the target’s speed, direction, and the robot’s speed. The robot then selects its next move to

approach this predicted point while avoiding contact with both static and dynamic obstacles. Simulation results demonstrate the

efficiency of the algorithm, as the robot successfully reaches the target without colliding with any obstacles.

Keywords: Target Interception; Uncertain environment; Reinforcement Learning; ART2 Neural Network.

Nomenclature and Units

NN Neural Network

ART Adaptive Resonance Theory

RL Reinforcement Learning

SS Safe State

FS Failure State

NSS Non-Safe State

NNSS Near-Non-Safe State

RRT Rapidly-Exploring Random Trees

1. Introduction

Today, most of the exact, repetitive, and difficult or

impossible tasks for humans are done by robots. One of

the key features of automated robots is their ability to

move and perform specific tasks. Motion planning is

usually used to change the world situation by calculating

a sequence of acceptable movements for the robot. For

example, in path planning, a path without obstacles is

calculated so that the robot can move from its initial

position to its final position. This is the simplest issue in

motion planning, but it requires high computational

complexity [1].

In some cases, the goal of motion planning is not to

change the world but rather to maintain certain conditions

related to the world or to achieve a specific understanding

of the environment. There are various issues in autonomous

navigation., including environment exploration, environment

investigation, navigation among movable obstacles

(NAMO), mapping, localization, motion sequencing,

energy consumption, and time limits. Tracking moving

targets is also an important issue in motion planning,

which arises in various applications such as robot soccer,

automatic conduct, and caring systems [3][5].
In most real-world applications, the direction and

speed of moving targets are not known and constantly

changing. Additionally, the environment in which the

robot operates may be unfamiliar and contain both static

and dynamic obstacles. Under these circumstances,

effectively tracking and reaching a target in the shortest

possible time and path is a challenging problem that has

yet to be properly solved. This paper presents a new

method for robot motion planning in an uncertain

https://www.ijrrs.com/article_185952.html
https://www.ijrrs.com/
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://www.sciencedirect.com/topics/computer-science/autonomous-navigation
https://www.sciencedirect.com/topics/computer-science/autonomous-navigation
https://www.orcid.org/0009-0004-5049-2960
https://orcid.org/0009-0001-7718-3277
https://orcid.org/0009-0003-7307-1731

94/ IJRRS / Vol. 6/ Issue 2/ 2023

M. Abbasi Kia, Sh. Khoshnavaz and R. Hashemi Alem

dynamic environment with unknown static and dynamic

obstacles. The goal is to reach a moving target whose

speed and direction are unknown and constantly

changing. The proposed method has been implemented

and validated through various scenarios [7].

The paper is organized as follows: Section 2

provides a literature review on target tracking. In Section

3, we explain the problem and its characteristics. The

main components of the proposed algorithm are described

in Section 4. Section 5 presents the developed algorithm

for target tracking in a dynamic and uncertain

environment, and the simulation results are presented in

Section 6.

2. Literature review

Target tracking issues have been studied in several

studies. Fuzzy logic is one of the most widely used

methods in target tracking. In [20], the authors presented

an adaptive control algorithm in which they combine a

fuzzy logic controller with a predictive method of

position according to gray theory to track a moving target

by a mobile robot. In [4], a target tracking control model

was designed based on a real-time fuzzy method to

distinguish related tracking behavior. Fuzzy control

methods have various benefits but disadvantages. For

example, it is necessary to establish appropriate fuzzy

control rules concerning the fuzzy control relations of the

system. When the environment is dynamic, and the target

is moving, pre-built fuzzy rules will be inefficient [2].

Artificial neural networks (ANNs) are another

approach to solving robot motion planning problems. In

[17], researchers used neural networks to enable a robot

to perceive the environment and perform feature

extraction, which enabled them to determine the fitness

of the environment for state action functions. Through

hierarchical reinforcement learning, mobile robot needs

are met by mapping the current state of these actions. The

proposed algorithm performs well in all aspects and

exhibits outstanding performance.

The potential field method was used to plan the

speed of a moving robot while tracking a moving target

[21]. Potential field methods for motion planning of

moving robots in a static environment have considerable

shortcomings that have not yet been resolved. These

shortcomings are even more problematic when targets

and obstacles are moving. For example, a robot could

easily get stuck in a local optimum or deadlock, causing

fluctuation.

Visual methods are another group of more

applicable methods for solving target-tracking problems.

By considering visual feedback, the authors of [6] have

shown how to capture a moving target using a

nonholonomic robot. One requirement of these

algorithms is that the moving target should constantly be

within sight of cameras or the sensing domain of other

sensors. Otherwise, these methods will be defeated.

Therefore, an approach is necessary to make a decision

when the target cannot be seen or felt by the robot.

In [2], the ant colony algorithm is presented for

tracking a moving target whose speed and direction are

unknown and constantly changing. In this paper, the

environment is known in advance, and all obstacles are

considered fixed. In addition, in [30], it is assumed that

the speed and direction of the target are known. However,

the speed of dynamic obstacles and the location of static

obstacles are unknown and calculated by the robot in an

online manner. In this paper, a new concept, named

Directive Cycle, is introduced and used to guide the

robot’s movements.

One of the challenges in using Q-learning for path

planning is the large state-action space, which can slow

down the algorithm and make it impractical. Another

challenge is to plan the most efficient path while learning

about the environment. To address this challenge, [22]

proposed a path-planning approach for a group of robots

that combines Q-learning with PSO. This approach

enabled the agents to optimally decide the path by

thoroughly studying the uncertain environment. The

proposed work in [22] did not consider dynamic obstacles

in the environment. In addition to all the challenges in

unmanned aerial vehicle (UAV) path planning, the

priorities of the UAV can be different, such as safety,

energy consumption, and distance to the target to

maintain a reliable communication link. To address this

situation, instead of applying dynamic programming or

geometric-based methods, an offline Q-learning-based

approach has been proposed for path planning. In this

approach, the policy concentrates on path length, safety,

and energy consumption to determine the reward.

 A new deterministic Q-learning approach for a

mobile robot has been proposed [24]. This approach uses

prior knowledge of the distance to the next state and the

goal from the current state. This efficient use of

information made the entire path-planning process less

time-consuming than other approaches. An improved Q-

learning approach has been proposed in [25] for UAV

path planning in an unknown antagonistic scenario. In

[26], a Q-function initialization method, along with a new

action selection strategy, is introduced to enhance

performance. A-star and Q-learning-based hybrid path

planning has been proposed in [26], which analyzes UAV

path planning in terms of local dynamic hierarchical

planning and global static planning. An adaptive and

random exploration (ARE) approach has been proposed

in [27] to address the tasks of UAV path planning. Similar

to [27], a Q-leaning-based path planning approach in an

uncertain dynamic environment is proposed in [28], [29].

There are still unresolved problems in this field. For

instance, in certain algorithms, the robot follows the

actual path of the moving target, which means that it

cannot reach the target as quickly as possible. Some

/95

IJRRS/Vol. 6/ Issue 2/ 2023

Target Interception in Uncertain Environment …

algorithms are not suitable for situations where the

direction of the target is unknown and rapidly changing

or when the environment contains complex obstacles. In

addition, some algorithms cannot make immediate

decisions regarding robot movements [2]. Therefore,

further research is required to resolve these issues.

3. Problem statement

The research field of motion planning involves various

issues. These issues are expressed in different situations

and classified based on criteria such as obstacle types,

robot shape, movement limitations, environment

dimensions, number of robots, environment changes over

time, information source, and reliability of information

[1]. Therefore, it is important to describe the topic and the

specific conditions being considered accurately.

Robot motion planning problems can be divided into

two categories based on the robot’s knowledge of its

surrounding environment: online and offline. In offline

mode, the robot has complete environmental information

and plans its moves accordingly. Essentially, the robot is

aware of the environment in this situation. On the other

hand, in online motion planning, the robot has very

limited or no information about the environment and

obstacles. In this type of problem, various sensors are

used to gather information about the environment, and the

robot’s path is designed based on this increasing

information as it moves. Updating information and

redesigning the path is continuously performed until the

robot reaches its target [8].

In this paper, a new algorithm is presented for

solving the target tracking problem in a two-dimensional

uncertain environment. The algorithm is designed to

handle a target whose speed and direction are constantly

changing and unknown. Additionally, the algorithm

assumes that the locations of both static and dynamic

obstacles, as well as the speed and direction of dynamic

obstacles, are unknown and need to be computed by the

robot in real time. The robot knows the initial location of

the target but lacks information about its speed and

direction.

To ensure successful tracking of the target, the

algorithm assumes that the robot’s speed is always greater

than that of the target and obstacles. The robot is capable

of moving in eight different directions. The main focus of

the presented algorithm is the ability to make immediate

decisions about the robot’s next move, considering the

high dynamics of the environment and the target.

4. Proposed algorithm’s components

The algorithm proposed in this paper consists of three

main components: reinforcement learning, ART2 neural

network, and predicting target tracking points. ART2 is

used to detect the robot’s status concerning the

environment, based on its distance from obstacles and its

relative position regarding the target, to determine the

correct movement of the robot. During the learning

process, the robot gradually learns to take the best

possible moves in each state, using reinforcement

learning. By combining ART2 and reinforcement

learning, a new neural network called QLART2 has been

introduced.

To accelerate the achievement of the target, the

predicted point to achieve the target is used instead of the

current position of the target to determine the robot’s

status in the environment. In this section, we introduce

the algorithm’s components.

4.1 Reinforcement learning

Because of the unpredictable nature of dynamic and

uncertain environments, most of the proposed solutions

for navigating robots in such environments do not work

in every situation. As a result, artificial intelligence

approaches have acquired attention from researchers in

recent years, aiming to improve robots’ ability to navigate

based on the knowledge acquired through experiments in

the work environment.

The reinforcement learning algorithm is an artificial

intelligence method in which a learning agent can acquire

correct behavior by interacting with the environment

[31]. In this method, the agent and the environment

interact with each other in a sequence of discrete time

steps, denoted as t=0, 1, …. At each time step t, the agent

receives the state of the environment, represented as 𝒔𝒕 ∈
𝑺, where S is the set of all possible states.

Then, it chooses an action, 𝑎𝑡 ∈ 𝐴(𝑠𝑡), based on the

current state, where 𝐴(𝑠𝑡) is the set of all actions that the

robot can choose in the state 𝑠𝑡. In the next step, the agent

receives a numerical reward, 𝑟𝑡, and finds itself in a new

state, 𝑠𝑡+1. The goal of the learning agent is to maximize

the sum of received rewards in the long term [9].

In [10], the Q-learning method of the reinforcement

algorithm is used to avoid collision of the robot with

obstacles. In the reward function used in this study, the

value of the target tracking state is 1, the value of the

collision with obstacles state is -1, and the value of the

other states is 0. In this study, the distances between the

robot and the target and obstacles were used as input.

Reinforcement learning has been combined with

other techniques like fuzzy logic and neural networks in

certain algorithms. An example in [11] presents a hybrid

approach that utilizes fuzzy logic and reinforcement

learning. It is composed of two fundamental components:

obstacle avoidance and target attainment. The behaviors

were created separately but merged to select the

appropriate behavior during implementation. Both of

these behaviors are fuzzy engines that map the

96/ IJRRS / Vol. 6/ Issue 2/ 2023

M. Abbasi Kia, Sh. Khoshnavaz and R. Hashemi Alem

environment state to a fuzzy output, which represents the

desired operation. In this method, fuzzy rules are

constructed using reinforcement learning.

A combination of the probabilistic roadmap

approach and the Q-learning algorithm was used for a

dynamic environment [12]. If an obstacle blocks the

designed path, the Q-learning algorithm determines the

best possible action. Based on this work, it appears that

reinforcement learning is a good approach to solving

motion planning problems in unknown or uncertain

environments.

4.1.1 Q-learning

Q-learning is one of the most common methods of

reinforcement learning. In this method, Q is an action-

value function that approximates the optimal action-value

function Q∗ [32]. The Q values are updated as follows:

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾max
𝑎′
(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (1)

Where 𝑄(𝑠, 𝑎) is an action-value function of taking

action in state s. 𝑄(𝑠, ′ 𝑎′) is an action-value function in

the resulting state(𝑠′) after acting, 𝛼 is the step-size

parameter between 0 and 1, 𝑟 is an immediate reward and

𝛾 is the descending rate [9]. According to (1), 𝑄(𝑠, 𝑎) is

calculated according to the immediate reward, 𝑟, and

delayed reward. In this formula, delayed reward,

𝛾max
𝑎′
(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎), is related to subtracting the

maximum achievable value in the next state and the value

of the current state.

If, in each state, a sufficient number of actions are

executed in that case, the Q values will converge to the

optimal value Q* with probability 1. Q-learning can also

be extended to update states that have occurred in more

than one step [19]. Once sufficiently trained, learning

agents can take appropriate actions in any state.

4.2 ART2 Neural Network

Neural networks are one of the most efficient methods of

pattern recognition and have been used in various fields

because of their high efficiency in learning training data.

Neural networks, which attempt to create a mapping

between input and output patterns, are suitable tools for

classification and clustering because of their ability in

parallel processing and nonlinear characteristics [16].

One of the key issues in neural networks, including RBF

and MLP, is the fixed number of categories or patterns in

most of them.

Adaptive resonance theory (ART) neural networks

can classify arbitrary sequences of input patterns in a

stable and self-organized manner. If a new input pattern

is used, ART detects it as a new pattern and adds it to the

existing patterns without any difficulty in identifying

previous patterns. ART is an unsupervised neural

network. This type of NN can automatically increase its

memory when sample patterns increase. They are able to

acquire new knowledge without losing the previous

patterns. These NNs can automatically increase their

memory when patterns of samples increase. They

perform steady classification through unsupervised

competitive learning and self-organization mechanisms

and can realize online learning with various data types

and an unknown number of classes.

The learning agent can classify various states of the

environment during the learning phase using ART2 NN

in the Q-learning algorithm. In addition, the learning

agent can learn appropriate behavior in every state. In this

study, we used the architecture shown in Figure 1 for

ART2.

Suppose input vector 𝑋 is an analog N-dimension

vector, then 𝑋 = {𝑥0, 𝑥1, … , 𝑥𝑛−1}.There are 𝑁

processing unit in layer 𝐹1, each of which has six

neurons, 𝑧𝑖 , 𝑞𝑖 , 𝑢𝑖, 𝑣𝑖 , 𝑝𝑖 , 𝑠𝑖. Each of these neurons has two

filters which are used to improve the features and to

eliminate noises of the input signal. The input signal,

which is processed in the 𝐹1 layer, will be transferred to

the 𝐹2 layer via bottom-up weights that are called long-

term memory. In the F2 layer, the winning neuron,𝑗∗, is

selected through competition with other neurons. Then,

the top-down weight coefficient of the neuron 𝑗∗, i.e.,

𝑤𝑗∗𝑖, gives signals to 𝑝𝑖 node of 𝐹1 layer.

Figure 1. ART2 NN Architecture [14]

At this point, the node 𝑝𝑖 is equal to a linear

combination of the normalized noise-less input, 𝑢𝑖, and

the center of the winner node’s pattern, 𝑤𝑗∗𝑖. The

similarity between the input vector and the center of the

winner node’s pattern is evaluated by calculating the

norm of node 𝑟. If the similarity is less than a predefined

threshold 𝜌, then the orienting subsystem is activated and

sends a reset signal to layer 𝐹2. As a result, the attention

subsystem ignores the winner node. It repeats the

/97

IJRRS/Vol. 6/ Issue 2/ 2023

Target Interception in Uncertain Environment …

competition between other nodes, each representing a

pattern of the inputs, to find a pattern that has an adequate

match with the input. If the input vector is not sufficiently

similar to any of the 𝐹2 layer’s nodes, it is added to the

𝐹2 layer as a new pattern and chosen as the winner node.

Here, the winner’s weights are updated.

4.3 ART2 NN based reinforcement learning

In motion planning problems, the robot operates in a

continuous state space, whereas reinforcement learning

algorithms are typically used to solve Markov behavior

problems with discrete and limited information. Applying

RL algorithms to a continuous state space may lead to

dimensionality issues. To address this problem, we

incorporate the ART2 neural network alongside Q-

learning to incrementally cluster the continuous state

space of an uncertain environment through interaction

with the environment online.

Figure 2. QLART2 NN architecture [14]

Figure 2 illustrates the structure of the Q-learning

algorithm based on ART2 NN, also known as QLART2.

This structure consists of six layers. Layer A serves as the

input layer and represents the state space to be detected

by the learning agent. Layers B, C, and D are responsible

for noise reduction and feature enhancement processing

of the input. Layer E serves as a pattern recognition layer.

Layer F is the output layer, where each neuron represents

one of the decisions that the learning agent can make.

Each neuron in layer E, which corresponds to a

pattern in the state space, is connected to all neurons in

layer F. The weights of these connections are denoted as

𝑧𝑗𝑘, represent the estimated value for the action-value

function 𝑄(𝑦𝑗 , 𝑎𝑘), where each weight corresponds to a

specific pair of state space-behavior space patterns [15].

The general steps of the QLART2 algorithm are as

follows:

 Applying the vector of the environment state to the

input layer enhances features and decreases the

noises of the input vector through layers B, C, and

D.

 Applying modified input vector to layer E for

doing competitive learning and selecting

appropriate space state patterns.

 Competition in layer E to find winner behavior

based on bottom-up weights, which can be

adjusted based on Q-learning.

 The evaluation of the results of selected behavior

in the environment by the learning agent and the

identification of the state in which the learning

agent, after performing the selected behavior, has

been entered. Then, the new state space is detected

by the A to F layers.

 The Modification of weights among winner

neurons of F and E layers, based on immediate

reward, which resulted from selected behavior,

and delayed reward, which was generated by

following optimal policy.

Figure 3 shows the general steps of the algorithm.

Figure 3. General steps of the QLART2 algorithm

Now, we describe the various steps of the algorithm

in more detail.

1. Initializing parameters: The neurons in each of

the six layers A, B, C, D, E, and F are initialized

to zero. The coefficients of layers B, C, and E,

denoted as a, b, and e, respectively, are

initialized with arbitrary values. The input

vector is N-dimensional. The filter factor and

the number of neurons in layer E are set to 𝜃 =
1

√𝑁
 and 𝑀 =1, respectively. The number of

neurons in layer F is equal to the number of

98/ IJRRS / Vol. 6/ Issue 2/ 2023

M. Abbasi Kia, Sh. Khoshnavaz and R. Hashemi Alem

possible behaviors. If i and j represent neurons

in layers D and E, respectively, the weight

vectors between layers D and E are initialized

as follows:

 𝑤𝑖𝑗 = 0, 𝑤𝑖𝑗 =
1

(1−𝑑)√𝑁
 (2)

2. The learning process is carried out by following

steps 3-15 for each learning scenario. Increasing

the number of learning scenarios brings the robot

closer to its optimal behavior. However, the

number of scenarios should not exceed a certain

limit to avoid overfitting and reducing the robot's

optimal efficiency. Each scenario concludes when

a stop condition is met. The stop condition can be

based on a specific time limit, a certain number of

inputs applied to the network, or the completion

of a specific task, such as placing the robot in the

final state 𝑋𝑒𝑛𝑑.

3. The robot is placed in the initial state space, 𝑋0,

and the timer becomes zero.

4. At time t, the robot enters the state 𝑋𝑡, where 𝑋𝑡 =
𝑥0𝑡 , 𝑥1𝑡 , … , 𝑥𝑁𝑡 represents the input to layer A. If

𝑋𝑡 corresponds to the termination state 𝑋𝑒𝑛𝑑, it

indicates that the robot has completed the current

learning scenario and returns to Step 3. Otherwise,

the process continues to Step 5.

5. Each neuron in the B layer is updated as follows:

 𝑧𝑖 = 𝑥𝑖 + 𝑎𝑢𝑖 , 𝑞𝑖 =
𝑧𝑖

(𝑒+||𝑍||)
 (3)

6. Neurons of layer C are updated as follows:

 𝑣𝑖 = 𝑓(𝑞𝑖) + 𝑏𝑓(𝑠𝑖), 𝑢𝑖 =
𝑣𝑖

(𝑒+||𝑉||)

 𝑓(𝑥) = {
0, 0 ≤ 𝑥 ≤ 𝜃
𝑥, 𝑥 ≥ 𝜃

}
(4)

7. The neurons in layer C are updated as follows:

 𝑝𝑖 = 𝑢𝑖 , 𝑢𝑖 =
𝑝𝑖

(𝑒+||𝑃||)
 (5)

8. Values of 𝑀 neurons in layer E are determined as

follows:

 𝑦𝑗 = ∑ 𝑝𝑖
𝑁
𝑖=1 𝑤𝑖𝑗 (6)

9. The winner neuron in layer E is determined

through a competitive mechanism, where 𝑦𝑗∗ =

𝑚𝑎𝑥 𝑦𝑗|𝑗 = 1, 2, … , 𝑀. Afterwards, the

feedback signal, 𝑤𝑗𝑖 , is sent to 𝑝𝑖 neurons of the D

layer:

 𝑔(𝑦𝑗) = {
𝑑, 𝑗 = 𝑗∗

0, 𝑗 ≠ 𝑗∗

 𝑝𝑗 = 𝑢𝑖 +∑ 𝑔(𝑦𝑗)
𝑀
𝑗=1 𝑤𝑗𝑖

(7)

10. At this point, the modifying threshold is tested.

Values of 𝑟𝑖 neurons of layer D are computed as

follows, based on 𝑢𝑖 node and modified 𝑝𝑖 node:

𝑟𝑖 =
𝑢𝑖+𝑐𝑝𝑖

(𝑒+||𝑈||+𝑐||𝑃||)
 (8)

where,

||𝑅|| = √∑ 𝑟𝑖
2𝑁

𝑖=1

If ||𝑅|| ≤ 𝜌, then the current winner neuron is

reset, and this process is repeated for the

remaining nodes of layer E. The algorithm

continues from step 11. Otherwise, the algorithm

continues with step 12.

11. If all the neurons of layer E are reset, it means that

the input vector is not similar enough to any of the

previously identified state space patterns.

Therefore, a new neuron, 𝑦𝑀+1, is created in layer

E as the winner node.
12. The input-output weight vectors of the E layer’s

winner node are updated as below:

𝑤𝑗∗𝑖 = 𝑑𝑢𝑖 + [1 − 𝑑(1 − 𝑑)]𝑤𝑗∗𝑖 , ∀𝑖

𝑤𝑖𝑗∗ = 𝑑𝑢𝑖 + [1 − 𝑑(1 − 𝑑)]𝑤𝑖𝑗∗ , ∀𝑖
(9)

13. 𝑎𝑘∗ is selected as output action among the layer F

nodes based on a defined mechanism or a

probability function.

14. After performing action 𝑎𝑘∗ in the environment,

the robot moves to the next state, 𝑋(𝑡 + 1). Then,

an immediate return, which is the reward or

punishment of a selected action in state 𝑋(𝑡), is
computed according to the Q-learning evaluation

function.

15. Steps 5-12 are repeated to identify the winning state

space pattern at the moment 𝑡 + 1, 𝑦𝑗∗(𝑡 + 1).

Then, the maximum value for 𝑄(𝑦𝑗∗(𝑡 + 1), 𝑎),

which corresponds to the maximum value of

𝑧𝑗∗𝑘(𝑡 + 1) is estimated. Based on this, all

weights of F are updated as follows:
𝑧𝑗𝑘(𝑡) = 𝑧𝑗𝑘(𝑡 − 1) + 𝛼[𝑟(𝑡) + ⋯

 𝛾 𝑚𝑎𝑥
𝑎𝑘

(𝑧𝑗∗𝑘(𝑡 + 1)) − 𝑧𝑗𝑘(𝑡)], ∀𝑗, 𝑘
(10)

In this step, in fact, the robot enters into the

learning process of the next input vector, e.g.,

𝑋(𝑡 + 1), and its corresponding state space

pattern has been detected. So, the learning process

is continued from step 13 [2].

4.4 Predicting the target achieving point

In this study, to increase the speed of reaching the target,

a predicted point was used as a sub-target for moving

regulation. In this method, when the robot sees the target,

according to the speed and direction of the target and its

speed, it predicts the point for reaching it. This predicted

point is the secondary purpose of robot transfer. In this

method, the dynamic and desired path of the target is

estimated using many short linear paths.

/99

IJRRS/Vol. 6/ Issue 2/ 2023

Target Interception in Uncertain Environment …

4.4.1 An algorithm to predict the achieving point of

the goal

Suppose 𝑡0 is the time required to identify the target by

the robot. During target tracking, when the target moves

to a new location, the robot detects it. Suppose the times

of these moves are 𝑡0, 𝑡1, …, and the location of the target

in time 𝑡𝑖 is 𝐺𝑖 = 𝐺𝑖(𝑥𝐺𝑖(𝑡𝑖), 𝑦𝐺𝑖(𝑡𝑖)). In each 𝑡𝑖, the robot

can compute the target speed using the following

formula:

𝑉𝐺𝑖 =
𝑑(𝐺𝑖−1,𝐺𝑖)

𝑑(𝑡𝑖,𝑡𝑖−1)
 (11)

Where 𝑑(𝑥, 𝑦) is the distance between 𝑥 and 𝑦. Both

consecutive cells traversed by the target create a linear

path. These linear paths estimate the curve route of the

target and are calculated as follows:

𝑦 =
(𝑦𝐺𝑖−𝑦𝐺𝑖−1)

(𝑥𝐺𝑖−𝑥𝐺𝑖−1)
× (𝑥 − 𝑥𝐺𝑖−1)+ 𝑦𝐺𝑖−1

…

= 𝑘𝑖𝑥 + 𝑏𝑖

(12)

Because the estimated procedures are performed

dynamically, the robot can track the target efficiency even

if the direction and speed of the moving target change

continuously. Suppose there is no obstacle in the path of

the robot. Since the robot moves faster than the target,

there is a linear path through which the robot and the

target reach a common point simultaneously. Suppose the

predicted tracking point is 𝐶(𝑥𝑐(𝑡𝑐), 𝑦𝑐(𝑡𝑐)) (Figure 4).

Since 𝑡𝑐 is the same for the robot and the target, we can

write:

√(𝑥𝑐−𝑥𝐺𝑖)
2
+(𝑦𝑐−𝑦𝐺𝑖)

2

𝑉𝐺
= ⋯

√(𝑥𝑐−𝑥𝑅)
2+(𝑦𝑐−𝑦𝑅)

2

𝑉𝑅

(15)

In (15), 𝑥𝑐 and 𝑦𝑐 are unknown and can be calculated

by combining (14) and (13). 𝑥𝑐 is calculated as follows:

𝐴𝑥𝑐
2 + 𝐵𝑥c + C = 0 (16)

where,

𝐴 =
1+𝑘2

𝑉𝐺
2 −

1+𝑘2

𝑉𝑅
2

𝐵 =
2𝑘(𝑏−𝑦𝐺𝑖)+2𝑥𝐺𝑖

𝑉𝐺
2 −

2𝑘(𝑏−𝑦𝑅)+2𝑥𝑅

𝑉𝑅
2

𝐶 = 𝑥𝐺𝑖
2 − 𝑥𝑅

2 + (𝑏 − 𝑦𝐺𝑖)
2 − (𝑏 − 𝑦𝑅)

2

Since 𝐵 − 4 × 𝐴 × 𝐶 = 0, so (𝑥𝑐 , 𝑦𝑐) is unique.

After predicting the achieving point and considering

it as a secondary goal of the robot, the robot attempts to

move toward it with respect to defined mechanisms until

it detects the next change in the direction or speed of the

target [12]. Because the target path is not a straight line,

this method can be effective in achieving the target.

5. Description of the proposed

algorithm

In general, we want to find the best possible function for

each relative position of the robot in the environment. For

this purpose, we assume that the robot is equipped with

eight sensors that can calculate their distance to the

nearest obstacle and have infinite visibility [23]. Sensors

have been placed in eight directions at regular intervals.

At each step, the robot sends its distance from the 8

nearest obstacles in 8 directions, the angles between the

line connecting it to the target, or forecasted point, and

the vector (0,1) as input to the ART2 NN. After

identifying the state of the robot, the best action should be

determined with respect to reinforcement learning.

In the learning phase, the weights of the QLART2

NN change to be close to their optimum values. Once the

robot has been trained enough with different scenarios, it

will have appropriate behavior for avoiding contact with

obstacles and achieving the goal in any environment.

In this algorithm, it is assumed that the robot knows

the initial location of the target before its movement.

When the target comes into sight of the robot, the robot

predicts a point to reach the target, according to the speed

and direction of the target, and tries to reach that point

without contacting obstacles.

Robot learning is done by placing it in different

static and dynamic environments; in each of them, the

target and obstacle navigation and the number of static

and dynamic obstacles are different. When the robot is far

enough from obstacles can go straight to the forecasted

point, and there is no need to save this state in the neural

network. Otherwise, a nearly optimal action is determined

for the robot so that the robot is as far away from obstacles

without deviating from its direct path to the target as

possible. Modifying the QLART2 NN’s weights is done

based on the effect of the selected action on the

environment state.

Given that it is necessary to consider a reward for

moving from a safe state to a non-safe state and vice

versa, we have defined an intermediate state, called near

non-safe state, which is stored in NN. To define the

reward function, we assign a reward to each transition

from one state to another. If S is the last transition state

the robot has entered currently, SS will be Safe State, NSS

will be Non-Safe State, NNSS will be Near-Non-Safe

State, and FS will be Failure State; we can write the

reward function as follows:

𝑟 =

{

 2, 𝑆 ⊂ 𝑁𝑁𝑆𝑆 → 𝑆𝑆
 0, 𝑆 ⊂ 𝑁𝑁𝑆𝑆 → 𝑁𝑁𝑆𝑆
−1, 𝑆 ⊂ 𝑁𝑁𝑆𝑆 → 𝑁𝑆𝑆
 0, 𝑆 ⊂ 𝑁𝑆𝑆 → 𝑁𝑆𝑆
 1, 𝑆 ⊂ 𝑁𝑆𝑆 → 𝑁𝑁𝑆𝑆
−2, 𝑆 ⊂ 𝑁𝑆𝑆 → 𝐹𝑆

(17)

100/ IJRRS / Vol. 6/ Issue 2/ 2023

M. Abbasi Kia, Sh. Khoshnavaz and R. Hashemi Alem

In this way, the robot approaches the optimal

treatment in each step. Each learning scenario terminates

when the target is reached, or the given steps have been

passed. It should be noted that the robot will never collide

with an obstacle because competition in the neural

network occurs between acts that do not lead to collision

with obstacles. However, when weights are updated to

increase convergence speed in the learning phase, actions

that lead to collisions receive a penalty.

6. Implementation and results

After training the robot with sufficient scenarios, the

weights obtained between layers E and F of the

QLART2 neural network, which indicate the optimal

action in each state, can be used to direct the robot

toward the goal. The algorithm proposed in this study

has been effectively implemented and examined in

different static and dynamic environments.

The parameters of the neural network were

considered as follows: 𝑎 = 10, 𝑏 = 10, 𝑐 = 0.1, 𝑑 =
0.9, 𝜃 = 0, 𝜌 = 1, 𝛼 = 0.2, 𝛾 = 0.8, 𝜆 = 0.05. The

initial weights from layer E to layer F and the weights

of layer F to layer D are initialized to zero. Because the

number of inputs is 9, the initial weights from layer D to

layer F have been initialized by
1

(1−0.9)√9
 .

The simulation of the algorithm is divided into two

phases: learning and testing. In the learning phase, the

robot is placed in various scenarios where obstacles and

targets exhibit different behaviors. In the testing phase,

the robot is placed in new environments that include

both static and dynamic obstacles. It is able to avoid

obstacles and reach the target effectively.

The robot's speed remains constant at 1 m/s in

different scenarios, and its location at any given moment

can be calculated using the following formula:

[𝑝𝑥𝑖 , 𝑝𝑦𝑖]
𝑇 = [𝑝𝑥(𝑖−1), 𝑝𝑦(𝑖−1)]

𝑇 + 𝑣[𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃]∆𝑇 (18)

In which [𝑝𝑥𝑖 , 𝑝𝑦𝑖]
𝑇 represents the location of the

robot at time 𝑖, 𝑣 is the speed of the robot, and 𝜃 is the

direction of it, which can be one of the values 0, 45, 90,

135, 180, 225, and 270. ∆𝑇 is the elapsed time for the

robot to move to a new location.

In this section, first, we will show the effect of

predicting the achieving point to the target on the speed

of reaching the target. Then, we will study one of the

learning scenarios. Finally, we will compare a sample of

found path in a scenario with the optimal path in that

scenario. The color area in the figures is the visibility

region of the robot.

6.1 The effect of predicting the target

interception point

Predicting the target interception point can result in increasing

the speed of reaching the target by the robot. Error!

Reference source not found. shows this case. In this figure,

the target starts its movement from [23, 22]𝑇 and moves

vertically with the speed of 𝑣𝑡𝑎𝑟 = [0,−0.65]𝑇. The obstacle

at first is located in the point [6, 4]𝑇 and moves with the speed

of 𝑣𝑜𝑏𝑠 = [0.35, 0.35]
𝑇 . The first position of the robot is

[2, 2]𝑇. As can be seen in Error! Reference source not

found.(a), if the robot moves directly to the target, it will reach

the target in 86 steps. While pursuing the predicted point for

reaching the target, 73 steps are necessary, as shown in Figure

4(b).
Other scenarios were conducted to check the

increase in the speed of reaching the target when pursuing

the predicted intercepting point by the robot. However,

we do not consider them because they are similar to the

example above.

(a)

(b)

Figure 4. The impact of the following predicted point on

reaching the target by the robot. (a) The robot moves directly

towards the target and reaches it in 86 steps; (b) The robot

moves towards the predicted point to archive the target and can

reach it in 73 steps.

/101

IJRRS/Vol. 6/ Issue 2/ 2023

Target Interception in Uncertain Environment …

6.2 Training phase

As previously mentioned, if the robot is sufficiently

trained during the learning phase, it can navigate through

obstacles in the testing environment and reach the target.

In this section, we will describe a sample training

scenario. Then, we will examine the impact of increasing

the number of learning scenarios on the quality of the

obtained answer.

It is important to note that in each scenario, the

stored weights from previous scenarios have been used

as the initial weights for the QLArt2 NN.

In a sample training scenario that we selected to

describe, the target started moving from point [9, 2]𝑇 with

a velocity 𝑣𝑡𝑎𝑟 = [0.65, 0.65]
𝑇. The obstacle moved in a

horizontal motion starting at point [4, 17]𝑇 and with a

velocity 𝑣𝑜𝑏𝑠 = [0.65, 0]
𝑇. In this scenario, the robot

started its motion at point [9, 31]𝑇 , as shown in Error!

Reference source not found.. At the beginning of the

scenario, the target is within the robot’s visibility range.

So, the robot predicts the intercepting point and moves

directly towards it, assuming there are no obstacles in its

path. At point [12, 20]𝑇, the robot gets close to the

obstacle, and there is a possibility of collision in the next

two moves. Hence, the QLART2 NN is used to determine

the next action for the robot, ensuring that it avoids

colliding with the obstacles and stays as close as possible

to its original path toward the predicted point to reach the

target.

Figure 5. The effect of the robot’s movement towards the

predicted point to reach the goal.

The effect of increasing the number of scenarios

in the learning phase is observable in Figure 6. In

Figure 6(a), the network has passed 10 scenarios for

training, and it can be seen that the obtained path is

not very suitable and, in this case, the robot takes 76

steps to reach the goal. In figures (b) and (c), the

number of training scenarios is 40 and 60,

respectively, and the robot takes 61 and 55 steps to

reach the goal. In Figure (d), the network has 100

training scenarios, and the obtained path is very close

to the optimal path. In this case, the robot takes 46

steps to reach the goal. Increasing the number of

learning scenarios reduces the influence of the

starting point on choosing the next move, allowing

the robot to move toward the goal in a direction with

a higher probability of seeing the goal. Table 1

summarizes the results of running the algorithm in 7

different environments using the above example

networks, showing the overall average number of

steps required for the robot to reach the goal in each

environment. In these environments, the robot’s

speed is slightly higher compared to the example

above, resulting in fewer steps needed to reach the

goal. Examining the data in this table also confirms

the accuracy of the stated information.

Table 1. Results of algorithm execution in 7 different

environments

20 Training

scenarios

40 Training

scenarios

60 Training

scenarios

100 Training

scenarios

𝐸1 33 32 28 24

𝐸2 55 51 45 39

𝐸3 18 17 14 14

𝐸4 68 55 54 54

𝐸5 38 31 31 29

𝐸6 39 32 30 30

𝐸7 57 57 51 47

mean 44 39.28 36.14 33.85

102/ IJRRS / Vol. 6/ Issue 2/ 2023

M. Abbasi Kia, Sh. Khoshnavaz and R. Hashemi Alem

(a)

(b)

(c)

(d)

Figure 6. The effect of increasing the number of scenarios on

improving robot behavior in target interception. (a) 20 training

scenarios, (b) 40 training scenarios, (c) 60 training scenarios,

and (d) 100 training scenarios.

6.3 Testing phase

After the learning phase, we can begin assessing the

robot’s behavior in complex situations and scenarios. During

testing scenarios, the robot makes decisions based on stored

information in the QLArt2 NN. In addition, the robot can

update its information during the testing phase. An example

of a testing scenario is shown in Figure 7. In this scenario,

there are 5 obstacles positioned in different locations and

moving along various paths. Initially, the target is placed at

the point [11, 71]𝑇 and follows a pseudo-sinusoidal path at

two-thirds of the robot’s speed. The robot is initially

positioned at the point [2, 2]𝑇 at the beginning of the

scenario. As depicted in Figure 7(a), the robot successfully

reaches the target by following a path that avoids collisions.

By comparing the robot’s path in this scenario with the

optimal path (Fig 7(b)), we observe that the robot’s path to

reach the target is very close to the optimal path.

Each of the methods mentioned in the literature review

attempted to track moving targets without considering the

presence of dynamic obstacles in the UAV territory. When

obstacles are dynamic, i.e., they can change their position

over time, the constraints of the path planning algorithm

become more challenging. Therefore, to evaluate the quality

of the obtained answers, we will compare the results of the

proposed algorithm with a generalized version of the

algorithm proposed in [18], which is widely used in motion

planning. The algorithm, as mentioned earlier, is

asynchronous and is therefore not suitable for uncertain

/103

IJRRS/Vol. 6/ Issue 2/ 2023

Target Interception in Uncertain Environment …

environments. The RRT algorithm performs path planning

with prior knowledge of the shape, speed, and location of

obstacles; therefore, it has good performance, and the

obtained solutions are almost close to the optimal solution.

Compared with state-of-the-art approaches such as the A-

star, Dijkstra, and Sarsa algorithms, this algorithm results in

improved performance. It is, therefore, a good choice for

evaluating the performance of our algorithm. Since the

algorithm operates on the basis of random samples, the

solution and path obtained for it are not unique in all

executions. Therefore, we run it 50 times for each

environment and consider the best-obtained solution as the

solution for comparison. Figure 6 shows the execution of the

two algorithms in an environment with 5 obstacles.

(a)

(b)

Figure 7. (a) Robot’s path and initial location, goal, obstacles,

and Robot’s movement through obstacles to reaching the goal

in a Test Scenario. (b) optimal path for this test scenario

In this example, the RRT algorithm produces a path

with 84 steps, as shown in Figure 8(b), while our

proposed algorithm (Figure 8(a)) yields a path with 82

steps, indicating a small difference. The following table

shows the results obtained for two algorithms in 7

different environments. The analysis of the data obtained

in this table shows that in simpler environments with

fewer obstacles and complexity, our proposed algorithm

produces a better answer than the RRT algorithm.

However, as the number of obstacles and the complexity

of the environment increase, the quality of our result and

this difference between the two algorithms decreases. In

such cases, the algorithm requires more training phases

for the network.

(a)

(b)

Figure 8. Comparison of the proposed algorithm with the

algorithm RRT. (a) Proposed Algorithm with prediction the

point of achieving the goal after passing 100 training

scenarios. (b) Algorithm RRT

104/ IJRRS / Vol. 6/ Issue 2/ 2023

M. Abbasi Kia, Sh. Khoshnavaz and R. Hashemi Alem

Table 2. Execution of RRT and QLArt2 in 7 different

environments

 RRT QLArt2 Obstacle count

𝐸1 33 27 3

𝐸2 55 53 5

𝐸3 18 15 2

𝐸4 68 65 7

𝐸5 38 31 3

𝐸6 39 32 3

𝐸7 57 58 8

mean 44 39.85

7. Conclusion

In this paper, a new approach is presented for tracking a

target in an uncertain environment. The speed and

direction of the target and dynamic obstacles are

constantly changing and unknown. The approach uses

reinforcement learning based on the ART2 neural

network to track the target without prior knowledge about

the environment. There are no assumptions made about

the movements of the target or obstacles. A new

definition for the state space is introduced, and a

forecasting point is used as a sub-goal to accelerate the

robot’s progress toward the target. One notable feature of

this algorithm is its ability to make real-time decisions in

target-tracking tasks after sufficient training. To evaluate

the robot’s ability to reach the target, various simulation

experiments were conducted in different environments

with different movements of the target and obstacles, as

well as varying numbers of static and dynamic obstacles.

These simulations demonstrate that the paths chosen by

the robot using the presented algorithm are close to

optimized paths, and the algorithm is efficient in

dynamic, uncertain environments. In future work, the

algorithm can be enhanced by adding a prediction of

obstacle movements. Additionally, evaluations should be

conducted to determine the optimal point for training the

robot, as excessive training may lead to inefficient results.

8. References

[1] C. Zhou, B. Huang and P. Fränti, “A Review of Motion

Planning Algorithms for Intelligent Robots.” Journal of

Intelligent Manufacturing, vol. 33, no. 2, pp. 387–424, Nov.
2021, doi: https://doi.org/10.1007/s10845-021-01867-z.

[2] Q. Zhu, J. Hu and L. Henschen, “A New Moving Target

Interception Algorithm for Mobile Robots Based on Sub-Goal

Forecasting and an Improved Scout Ant

Algorithm.” Applied Soft Computing, vol. 13, no. 1, pp.

539–549, Jan. 2013, doi:
https://doi.org/10.1016/j.asoc.2012.08.013.

[3] P. Chen, J. Pei, W. Lu and M Li, “A Deep Reinforcement

Learning Based Method for Real-Time Path Planning and

Dynamic Obstacle Avoidance.” Neurocomputing, 497: pp.

64-75, May 2022, doi:
https://doi.org/10.1016/j.neucom.2022.05.006

[4] T-H.S. Li, S-J. Chang and W. Tong, "Fuzzy target tracking

control of autonomous mobile robots by using infrared

sensors," in IEEE Transactions on Fuzzy Systems, vol. 12,

no. 4, pp. 491-501, Aug. 2004, doi:
http://doi.org/10.1109/TFUZZ.2004.832526.

[5] L. Yang, J. Qi, J. Xiao and X. Yong, “A literature review of

UAV 3D path planning,” in Proceeding of the 11th World

Congress on Intelligent Control and Automation, pp. 2376–

2381, June 2014, doi:

https://doi.org/10.1109/wcica.2014.7053093.

[6] L. Freda and G. Oriolo, “Vision-Based Interception of a

Moving Target with a Nonholonomic Mobile Robot.”

Robotics and Autonomous Systems, vol. 55, no. 6, pp. 419–
432, June 2007, doi: https://doi.org/10.1016/j.robot.2007.02.001.

[7] S. Lin, A. Liu, J. Wang and X. Kong, “A Review of Path-

Planning Approaches for Multiple Mobile

Robots.” Machines, vol. 10, no. 9, p. 773, Sept. 2022, doi:

https://doi.org/10.3390/machines10090773.
[8] E. Masehian and A. Naseri, “Mobile robot online motion

planning using generalized voronoi graphs,” Journal of

Industrial Engineering, vol. 4, no. 5, pp. 1–15, Jan. 2010.

[Online], Available:
https://www.sid.ir/en/vewssid/j_pdf/1029920100501.pdf

[9] J. Fan, Y. Song and MR Fei “ART2 Neural Network

Interacting with Environment.” Neurocomputing, Elsevier

BV, vol. 72, no. 1, pp. 170–176, Dec. 2008, doi:
https://doi.org/10.1016/j.neucom.2008.02.026.

[10] WD. Smart and LP. Kaelbling, "Effective reinforcement

learning for mobile robots," Proceedings 2002 IEEE

International Conference on Robotics and Automation (Cat.

No.02CH37292), Washington, DC, USA, vol.4, pp. 3404-

3410, 2002, doi:
https://doi.org/10.1109/ROBOT.2002.1014237.

[11] H.R. Boem and H.S. Cho, "A sensor-based navigation for

a mobile robot using fuzzy logic and reinforcement

learning," IEEE Transaction on System, Man, and

Cybernetics, vol. 25, pp. 464-477, 1995, doi:
https://doi.org/10.1109/21.364859

[12] J.J. Park, J.H. Kim and J.B. Song, “Path Planning for a

robot manipulator based on probabilistic roadmap and

reinforcement learning.” International Journal of Control,

Automation, and Systems, vol. 5, pp. 674–680, 2007.

[13] G.A. Carpenter, “ART 2-A: An Adaptive Resonance

Algorithm for Rapid Category Learning and

Recognition.” Neural Networks, vol. 4, no. 4, pp. 493–504,
Jan. 1991, doi: https://doi.org/10.1016/0893-6080(91)90045-7.

[14] M. Yao, J. Li, Q. Gu, L. Tang and X. Qu, "Study on Q-

learning algorithm based on ART2," 2010 8th World

Congress on Intelligent Control and Automation, Jinan,

China, pp. 3161-3166, 2010, doi:
https://doi.org/10.1109/WCICA.2010.5553787.

https://doi.org/10.1007/s10845-021-01867-z
https://doi.org/10.1016/j.asoc.2012.08.013
https://doi.org/10.1016/j.neucom.2022.05.006
http://doi.org/10.1109/TFUZZ.2004.832526
https://doi.org/10.1109/wcica.2014.7053093
https://doi.org/10.1016/j.robot.2007.02.001
https://doi.org/10.3390/machines10090773
https://www.sid.ir/en/vewssid/j_pdf/1029920100501.pdf
https://doi.org/10.1016/j.neucom.2008.02.026
https://doi.org/10.1109/ROBOT.2002.1014237
https://doi.org/10.1109/21.364859
https://doi.org/10.1016/0893-6080(91)90045-7
https://doi.org/10.1109/WCICA.2010.5553787

/105

IJRRS/Vol. 6/ Issue 2/ 2023

Target Interception in Uncertain Environment …

[15] J. Fan, Y. Song and MR Fei, “ART2 Neural Network

Interacting with Environment.” Neurocomputing, Elsevier

BV, vol. 72, no. 1, pp: 170–176, 2008, doi:
https://doi.org/10.1016/j.neucom.2008.02.026.

[16] E.N. Kazemi, N. Shabakhty, K. Abbasi and M.S. Sanayee,

“Structural Reliability: An Assessment Using a New and

Efficient Two-Phase Method Based on Artificial Neural

Network and a Harmony Search Algorithm,” Civil

Engineering Infrastructures Journal, vol. 49, pp. 1–20,
2016, doi: https://doi.org10.7508/ceij.2016.01.001.

[17] J. Yu, Y. Su and Y. Liao. “The Path Planning of Mobile

Robot by Neural Networks and Hierarchical Reinforcement

Learning.” Frontiers in Neurorobotics, vol. 14, Oct. 2020,
doi: https://doi.org/10.3389/fnbot.2020.00063.

[18] S. LaValle, “Rapidly-Exploring Random Trees: A New

Tool for Path Planning.” Technical Report, TR 98-11, 1998.

[19] H. H. González-Banos, D. Hsu, and J.-C. Latombe,

“Motion planning: Recent developments. Autonomous

Mobile Robots: Sensing, Control, Decision-Making and
Applications,” 2006.

[20] RC Luo, TM Chen, KL Su, “Target tracking using a

hierarchical grey-fuzzy motion decision-making method,”

in IEEE Transactions on Systems, Man, and Cybernetics -

Part A: Systems and Humans, vol. 31, no. 3, pp. 179-186,

May 2001, doi: https://doi.org/10.1109/3468.925657.

[21] L. Huang, “Velocity Planning for a Mobile Robot to Track

a Moving Target — a Potential Field Approach.” Robotics

and Autonomous Systems, vol. 57, no. 1, pp. 55–63, Jan.
2009, doi: https://doi.org/10.1016/j.robot.2008.02.005.

[22] S.I.A. Meerza, M. Islam and M.M. Uzzal, “Q-Learning

Based Particle Swarm Optimization Algorithm for Optimal

Path Planning of Swarm of Mobile Robots,” in 2019 1st

International Conference on Advances in Science,

Engineering and Robotics Technology (ICASERT), pp. 15,
2019, doi: https://doi.org/10.1109/ICASERT.2019.8934450.

[23] KB de Carvalho, IRL de Oliveira, DKD Villa, AG

Caldeira, M Sarcinelli-Filho and AS Brandão, “Q-learning

based Path Planning Method for UAVs using Priority

Shifting,” in 2022 International Conference on Unmanned

Aircraft Systems (ICUAS), pp. 421–426, 2022, doi: https://

doi.org/10.1109/ICUAS54217.2022.9836175.

[24] A. Konar, IG. Chakraborty, SJ. Singh, LC. Jain and AK.

Nagar, "A Deterministic Improved Q-Learning for Path

Planning of a Mobile Robot," in IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp.

1141-1153, Sept. 2013, doi:

http://dx.doi.org/10.1109/TSMCA.2012.2227719

[25] C. Yan and X. Xiang, “A Path Planning Algorithm for

UAV Based on Improved Q-Learning,” in 2018 2nd

International Conference on Robotics and Automation

Sciences (ICRAS), 2018, pp. 1–5, doi:

http://dx.doi.org/10.1109/ICRAS.2018.8443226.

[26] D. Li, W. Yin, W. E. Wong, M. Jian and M. Chau, "Quality-

Oriented Hybrid Path Planning Based on A* and Q-

Learning for Unmanned Aerial Vehicle," in IEEE Access,

vol. 10, pp. 7664-7674, 2022, doi:

http://dx.doi.org/10.1109/ACCESS.2021.3139534.

[27] Z. Yijing, Z. Zheng, Z. Xiaoyi, L. Yang, “Q learning

algorithm based UAV path learning and obstacle avoidence

approach,” in 2017 36th Chinese Control Conference

(CCC), pp. 3397–3402, 2017, doi:
http://dx.doi.org/10.23919/ChiCC.2017.8027884.

[28] J. Cui, R. Wei, Z. Liu and K Zhou, “UAV Motion

Strategies in Uncertain Dynamic Environments: A Path

Planning Method Based on Q-Learning Strategy.” Applied

Sciences, vol. 8, no. 11, Nov. 2018, p. 2169, doi:
https://doi.org/10.3390/app8112169.

[29] Y. Gao, Y. Li, Z. Guo, “A Q-learning based UAV Path

Planning Method with Awareness of Risk Avoidance,” in

2021 China Automation Congress (CAC), pp. 669–

673, 2021, doi:
http://dx.doi.org/10.1109/CAC53003.2021.9728342.

[30] E. Masehian and Yalda Katebi. “Sensor-Based Motion

Planning of Wheeled Mobile Robots in Unknown Dynamic

Environments.” Journal of Intelligent & Robotic Systems,

vol. 74, no. 3-4, pp. 893–914, May 2013, Doi:
https://doi.org/10.1007/s10846-013-9837-3.

[31] Z. Dehghani Ghobadi, F. Haghighi, A. Safari, “An

Overview of Reinforcement Learning and Deep

Reinforcement Learning for Condition-Based

Maintenance.” International Journal of Reliability, Risk and

Safety: Theory and Application, vol. 4, no. 2, Dec. 2021, pp.
81–89, doi: https://doi.org/10.30699/ijrrs.4.2.9.

[32] S. Eidi, A. Safari and F. Haghighi, “Optimal Preventive

Maintenance Policy for Non-Identical Components:

Traditional Renewal Theory vs Modern Reinforcement

Learning.”, International Journal of Reliability, Risk and

Safety: Theory and Application, vol. 6, no. 1, pp. 77–85,

July 2023, doi: https://doi.org/10.22034/IJRRS.6.1.9.

https://doi.org/10.1016/j.neucom.2008.02.026
https://doi.org10.7508/ceij.2016.01.001
https://doi.org/10.3389/fnbot.2020.00063
https://doi.org/10.1109/3468.925657
https://doi.org/10.1016/j.robot.2008.02.005
https://doi.org/10.1109/ICASERT.2019.8934450
https://www.sciencedirect.com/science/article/pii/S1568494623007913#bb23
https://www.sciencedirect.com/science/article/pii/S1568494623007913#bb24
http://dx.doi.org/10.1109/TSMCA.2012.2227719
https://www.sciencedirect.com/science/article/pii/S1568494623007913#bb25
http://dx.doi.org/10.1109/ICRAS.2018.8443226
https://www.sciencedirect.com/science/article/pii/S1568494623007913#bb26
http://dx.doi.org/10.1109/ACCESS.2021.3139534
https://www.sciencedirect.com/science/article/pii/S1568494623007913#bb27
http://dx.doi.org/10.23919/ChiCC.2017.8027884
https://www.sciencedirect.com/science/article/pii/S1568494623007913#bb29
https://doi.org/10.3390/app8112169
https://www.sciencedirect.com/science/article/pii/S1568494623007913#bb29
http://dx.doi.org/10.1109/CAC53003.2021.9728342
https://doi.org/10.1007/s10846-013-9837-3
https://doi.org/10.30699/ijrrs.4.2.9.
https://www.ijrrs.com/article_176739.html
https://www.ijrrs.com/article_176739.html
https://www.ijrrs.com/article_176739.html
https://www.ijrrs.com/article_176739.html
https://doi.org/10.22034/IJRRS.6.1.9

