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Abstract   
In many important industries, such as aerial transportation, offshore wind turbine (OWT) structures, and nuclear power plants 

that reached or are near the end of their useful life, the structural conditions for continued usage are acceptable. Thus, safe continued 
operation with required modifications and assessment is more cost-effective than replacing them with a new system. To achieve this 
goal, many studies have been performed on predicting failure time and remaining useful life, especially in systems that require a very 
high level of reliability. The present review investigates the articles that predict the remaining useful life or failure time in aviation 
systems, from three perspectives: 1. Methods and algorithms, especially Machine Learning algorithms, which are growing in recent 
years in the field of Prognosis and Health Management. 2. Historical predictors such as working life history, environmental 
conditions, mechanical loads, failure records, asset age, maintenance information, or sensor variables and indicators that can be 
continuously controlled in each system, such as noise, temperature, vibration, and pressure.3. Challenges of researches on prediction 
of the failure time of flying systems. The literature assessment in this field shows that using diagnostic and prognostic outputs to 
identify possible defects and their origin, checking the system's health, and predicting the remaining useful life (RUL) is increasing 
due to market needs. 
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1. Introduction 
Prognosis is one of the frequently repeated words in the 
medical world, which provides a prediction of the future 
state of the patient according to the clinical conditions of 
the patient and available medical facilities because the 
prognosis of various diseases plays an important role in 
clinical decision making for the physician [1]. The same 
interpretation and attitude are present in the industrial 
world, and a patient can be an industrial system, a 
device, or a component. Then, the prediction of the 
health status of the system using monitoring data will 
affect the diagnoses and maintenance decisions for the 
system. Due to long usage and customers' needs, many 
assets in different industries, such as aviation and 
military structures, offshore wind turbine structures 
(OWT), and nuclear power plants, have reached or are 
near the end of their useful life. However, they still have 
acceptable structural conditions for further use. These 
assets are valuable and expensive; thus, it is interesting 
and desirable for the owners to continue operations with 
them for economic aspects and replacement burden. The 

prediction of remaining useful life is technically possible 
and economically beneficial because the cost of required 
maintenance activities is much lower than the cost of 
substitution with a new system [2]. This goal can be 
achieved by monitoring the system's health and 
maintaining reliability within the acceptable level. The 
condition-based maintenance calculates the probable 
failure time for the system or part and assures safe 
operation during this time. Prognosis and Health 
Management (PHM) predict the remaining useful life 
(RUL) using diagnostic outputs and prognostic  and 
follows optimal maintenance policies for the systems 
and equipment. PHM identifies the potential faults and 
their origin and checks the system conditions to balance 
the highest level of availability and the lowest cost [3]. 
The time before a system fails and loses acceptable 
performance is called the remaining useful life [4, 5].  

The purpose of the remaining useful life prediction 
is to anticipate the time of failure before it happens, 
according to the conditions that the system experienced 
in the past and the present condition [6]. The purpose of 
PHM is to prevent risks and financial losses that usually 
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are not compensable by predicting the air vehicles' 
remaining useful life or other health condition 
indicators. Aviation industries are now seeking 
prognostic and condition-based predictive maintenance 
rather than preventive maintenance and periodic 
inspections. Aviation health monitoring systems 
development requires advanced data acquisition systems 
and tedious, expensive, and time-consuming flight tests. 
However, the existence of such systems leads to a 
significant reduction in maintenance costs, man-hours, 
and financial losses. The models that can identify system 
defects using key characteristics and warn the system 
failures before occurrence are very useful and necessary 
for safe flight [7]. To establish predictive maintenance 
systems instead of preventive maintenance, it is 
necessary to define models that can predict the 
remaining useful life and the time of failure. Machine 
learning tools have grown in recent years and have 
shown acceptable performance in this field. The 
published articles on machine learning (ML) in the field 
of PHM from 2013 to 2019, based on the model type, 
are shown in Figure 1, which shows the growing trend 
of these tools in this field [8]. Convolution Neural 
Networks (CNN), Auto Encoder (AE), Long-Short Term 
Memory (LSTM), Deep Belief Networks (DBN), Deep 
Boltzmann Machine (DBM), Hybrid models, and 
Generative Adversarial Networks (GAN) are complete 
phrases related to the types of machine learning methods 
mentioned in the Figure1. 

The purpose of this study is to review the articles 
that predict the failure time and remaining useful life in 
the field of aviation accidents from three perspectives: 1. 
Predictors and variables 2. Methods and algorithms, 
especially ML algorithms, have been growing in recent 
years in PHM  3. challenges. 
 

 
Figure 1. ML articles growth in the field of PHM in recent 

years [8] 

2. Predictors and Variables 
ML models predict the output variable by selecting 
system characteristics or input variables. ML models 
will have higher prediction capability if: firstly, the 
number of data is much enough, and secondly, the input 
variables are correctly selected and reflect the health 
status of the system. Model inputs play a key role in 

reducing the prediction error and reaching a reliable 
failure time prediction. Some articles consider three 
categories to define the inputs of the prediction model 
technical health, design records, and environmental 
conditions [9,10]. The technical status of a system is 
measured with information such as working life history, 
environmental conditions, mechanical loads, failure 
records, asset age, maintenance information, and 
indicators that can be continuously controlled in each 
system, such as noise, temperature, vibration, and 
pressure. Shafiee presents a structured framework for 
RUL estimation to decide on life extension. It is 
suggested that first of all, the health of vital parts should 
be checked. Since the number of these parts is high, 
especially in complex systems, and checking all of them 

is difficult, these important and key parts can be 
identified with the techniques such as failure mode 

effect analysis (FMEA), fault tree analysis (FTA), and 

event tree analysis (ETA). This method is rational 
because the evaluation and control of the components 
that are in unfavorable conditions and have a destructive 
effect on the life and reliability of the system minimize 
the risk for the whole complex and increase the 
remaining useful life. Then, all data, including 
supervisory, operational, environmental, and breakdown 
data, would be collected and checked [11]. In real 
systems, more than one failure mode can be counted for 
the critical components and parts of a system, therefore, 
in such studies, the dominant failure mechanism is 
identified, and it is determinant in the prediction of 
failure time [9]. Using normalizing, statistical indicators, 
signal processing approaches, and reducing data 
dimensions, and raw data can be prepared to enter 
learning algorithms. In this way, ML algorithms work 
better, and the final model has higher validity and 
accuracy; this is called feature engineering [12]. The 
purpose of feature selection is to specify a subset of 
variables from the entire raw data, determine the optimal 
effective input data, and minimize the adverse effects of 
noise and irrelevant information errors as much as 
possible [13]. Figure 2 shows the place of feature 
engineering in ML models. 

If these variables are too many or not enough, the 
answers of the model will be associated with false 
alarms. In a valid model, the rate of false alarms should 
be low and the correct detection rate is high as possible 
[3]. The defined feature engineering for each system is 
specific for it and is not generalized for others. In 
addition, it depends on the knowledge and experience of 
the system experts. Therefore, its correct 
implementation is difficult; in the meantime, Deep 
learning (DL) networks help to find features by 
structural matching between the model and data. DL 
models do not need feature engineering [14]. DL will be 
discussed in more detail in the next section.
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for the data-driven approaches is the most 
important part of the problem. Data 
unavailability can be a key challenge in these 
approaches [30]. The data can be from sensors 
or event data [31]. Sensor data refers to the 
parameter values obtained from the system 
measurement, such as voltage, current, 
temperature, vibration, and pressure. The 
mechanical, magnetic, electrical, and event 
data includes the appropriate procedures for 
repair and maintenance that the operators and 
employees have performed and recorded 
according to the different conditions of the 
systems and equipment [28].DL is a subset of 
ML and ML is a very useful subset of 
artificial intelligence. Deep neural networks 
(DNN) have more neurons and hidden layers 
than normal neural networks, and 
subsequently, the number of weights in these 
networks is much higher, so it has higher 
learning ability. CNN, Recurrent Neural 
Networks (RNN), AE, andGAN are among 
DNNs. The application of ML tools has 
recently made extensive progress in the field 
of reliability, failure time prediction, and 
PHM. The wide application of ML in 
reliability engineering can be studied in [32]. 

Figure3 shows the categories of ML and the 
subcategories, which include a) Supervised 
learning, b) Unsupervised learning, c) Semi-
supervised learning, and d) Reinforcement 
learning .Table 1 introduces and shows some 
of the most important types of ML models for 
the four mentioned categories along with their 
advantages and disadvantages [32], in the 
meantime, as a few examples of the use of 
machine learning models in the field of 
reliability, the following item scan be 
mentioned: 

basic linear regression (LR) [33], polynomial 
response surface (PRS) [34], random forest regression 
(RFR) [35], decision tree regression (DTR) [36-39], 
Bayesian network [40, 41], can be mentioned. In 
addition, deep learning networks have emerged as a 
very effective tool for pattern recognition, which has 
the potential to improve the performance in current 
intelligent prognostication. Newer tools such as DNN 
models [42-44], LSTM [45,46], RNN [47], CNN 
[48,49], AE networks [50], Support Vector Regression 
(SVR) [51,52], have been used in the field of reliability 
in the recent years and result in good and significant 
results.   

 

 
 

Figure 3. Tree diagram of ML categories [32] 

Table 1. Introduction of the most important types of ML models [32]

ML model Advantage Disadvantage 

Support vector regression 
(SVR) 

1. High prediction precision and efficiency in 
comparison with the traditional models 
2. Potent to data noise 

1. It is not appropriate for data with 
high dimensions and sparse  
2. Need previous knowledge to 
determine kernel 

Relevance vector machine 
(RVM) 

1. High prognostic precision in comparison 
with the traditional models 

1. It is not appropriate for data with 
high dimensions and sparse 

Deep neural network 
(DNN) 

1. Supreme long- and mid-term prediction 
precision and high training power 

1. It is expensive computationally 
2. Interpretation of the ‘black box is 
difficult 

Convolutional neural 
network (CNN) 

1. It has high prediction precision for 
multidimensional and nonlinear data 

1. It needs a lot of data for training 
2.. It is expensive computationally 

Recurrent neural network 
(RNN) 

1. It does not need previous knowledge and 
investigation of data 

1. Problem of vanishing gradient  
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ML model Advantage Disadvantage 

2. High prediction precision in comparison 
with the traditional models 

Deep bidirectional long 
short-term memory 
(LSTM) 

1. It does not need previous knowledge  
2. High precision and efficiency  
3. It can analyze time-varying systems well 

1. Over fitting problem 
2. It is expensive computationally 

Gaussian process 
regression (GPR) 

1. Great learning and Model parameter 
update power 
2. High prediction precision and efficiency in 
comparison with the traditional models 
3. It is appropriate for complex, 
multidimensional, and nonlinear system 

1. Need previous knowledge to 
determine kernel 

Decision tree (DT) 1. High precision with great learning 1. Not potent to data with noise 
Random Forest (RF) 1. High prediction precision and appropriate 

for discrete classification  
1. Interpretation of the ‘black box is 
difficult 
2. More complexity compared to DT 

K-nearest neighborhood 
(KNN) 

1. High prediction precision and efficiency 1. It is not appropriate for data with 
high dimension 
2. Not potent to data noise 

Support vector 
classification (SVC) 

1. Faster than in comparison with the 
traditional models 
2. Better prediction precision 
3. Potent to data with noise 

1. It is not appropriate for data with 
high dimension  
2. Need previous knowledge to 
determine kernel 

Gaussian process 
classification (GPC) 

 1. Great computational power for complex 
system 

1. Requires prior knowledge for 
kernel selection 
 

Support vector machine 
(SVM) 

1. Powerful models for feature extraction  
2. High detection power for system anomalies 

1. It is not appropriate for data with 
high dimensions and sparse 
2. Need previous knowledge to 
determine kernel 

Radial basis network 
(RBN) 

1. High precision and robustness. 1. Interpretation of the black box is 
difficult 

Bayesian networks 1. High precision and efficiency for 
complicated systems and discrete 
classification 

1. Need previous knowledge 

Self-organizing map 
(SOM) 

1. High accuracy for detection of the fault 1. Interpretation of the ‘black box is 
difficult 

Graph-based model 
(GBM) 

1. Supreme self-learning power and 
visualization of data 
2. High precision and efficiency 

1. Need previous knowledge 

One class support vector 
machine (OCSVM) 

1. Accurate prediction 1. It is not appropriate for data with 
high dimension 

Semi-supervised Support 
vector machine(S3VM) 

1. Appropriate precision for high-dimensional 
system 

1. Not potent to noisy data 

   

Li et al., using simulated data, designed several 
deep convolutional neural networks for the NASA 
turbofan engine degradation problem to estimate the 
remaining useful life of each engine. The results of this 
study indicate a promising approach for prognosis based 
on data [53]. Khalif et al., conducted on the turbofan 
engine degradation data set available at NASA, tried to 
estimate the RUL of the equipment directly from the 
sensor values. In the mentioned method, estimation of 
degradation modes or failure threshold is not required, a 
support vector regression model was used to determine 
the relationship between health indicators and sensor 
values [54]. Jun et al. proposed a PHM technique to 

increase the useful life of tactical missiles and by 
examining the application of classical techniques, 
engineering approaches to data acquisition architecture, 
life destruction factor analysis, and life prediction 

process [55]. Another study predicted helicopter 
accidents in the United States with the help of ML tools; 
among different ML techniques, DNN showed the best 
performance [18]. Ma et al. designed a PHM system to 
predict the remaining useful life of the aircraft engine 
with the approach of life prediction and fault diagnosis, 
as well as checking the health status of the system. For 
this purpose, performance reduction characteristics were 
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measured with the help of several sensors on the engine, 
and AE and logistic regression models were used [56]. 
Liu et al. predicted the remaining useful life of the 
aircraft engine using a data-based model, with the help 
of CNN, and detecting the risk of equipment failure and 
consequently reducing losses demonstrated the 
effectiveness of this proposed structure [57]. Farsi 
developed a convolutional neural network based on the 
raw data recorded by the vibration sensor and 
transformed to the frequency domain. This algorithm 
can detect a defective bearing from a healthy and perfect 
bearing and then determine the location and size of the 
damage[58].De Potter et al. designed a predictive repair 
and maintenance model for the remaining useful life of 
the aircraft fleet. The structure of the model is such that 
these forecasts are updated periodically, and based on 
the evaluation of these forecasts over time, alarms are 
created, and by activation of alarms, the maintenance 
program is planned. The mentioned model, with the help 
of a convolution network was designed for a fleet of 20 
planes with 2 types of turbofan engines [59]. Lee and 
Mitty Kay (2022) proposed a plan for repairs and 
maintenance with high reliability and reasonable cost. 
For this purpose, they evaluated various traditional and 
predictive maintenance strategies. This study 
investigated Gaussian process learning models and 
adaptive sampling for all maintenance plans. Finally, 
they concluded that predictive maintenance and repairs 
based on remaining useful life prognosis were superior 
to other plans [60]. Subagia et al. investigated the 
relationship between helicopter accidents and their 
configuration and examined 825 accidents from 2005 to 
2015.They only considered characteristics such as the 
number of main rotor blades, the number of engines, 
rotor diameter, and take-off weight, in the mentioned 
study, the logistic regression model with the response 
variable of the probability of accidents was used [61]. 
Sampaio et al. proposed a method that simulates the 
collected data from a vibration system for an engine. 
These collected values enter the test and training dataset 
into a neural network and predict the failure time. A 
model was built to simulate normal engine vibrations 
and measurements instead of real accelerometers, and 
ML tools were used to make predictions [62]. Zhao et al. 
focused on the remaining useful life prediction of an 

aircraft engine in a progressive degradation mode. In 
their paper, they pointed out that there is a certain 
relationship between the degradation process and the 
remaining useful life, and they tried to learn this 
destruction pattern by a neural network that reflects this 
relationship [63]. Celikmih et al., for the prediction of 
aircraft system failures, offered Multilayer Perceptron 
(MLP) model as an artificial neural network (ANN), 
support vector regression (SVR), and linear regression 
(LR) as ML. The aircraft equipment maintenance and 
failure data were collected in two years, and nine input 
variables were determined; a hybrid data preparation 
model is proposed to improve the success of failure 
number prediction in two steps. In the first step, a 
feature selection method is used for feature evaluation to 
find the most effective and ineffective parameters. In the 
second step, a K-means algorithm is modified to remove 
noisy or inconsistent data [64]. Liu et al. predicted the 
remaining useful life of aircraft engines with the help of 
7 input variables and using LSTM networks [65]. 
Another study that was conducted on the NTSB aviation 
accident data by Zhang, investigated aviation accidents 
and the probability of death on the NTSB accident 
database using (LSTM) [66]. In addition, Zhang et al. 
constructed a formulated Bayesian network to show 
causal relationships in the sequence of NTSB incidents 
[67]. 

4. Current Challenge 

To examine the challenges in the mentioned field more 
closely and to reveal the research opportunities and gaps 
in this research field, 7 leading articles are compared 
with details in Table 2. One of the existing challenges in 
the studies investigating the failure time (especially in 
aerial accidents) is the lack of availability of run-to-
failure sensor data in real conditions. Most of the studies 
in the field of calculating the failure time of aerial 
accidents have used the simulation data, e.g., the NASA 
data bank, CMAPSS, which has simulated the sensor 
data related to the failure of the aircraft engine until the 
moment of the failure, or other data that are mostly 
simulations. 

Table 2. Articles in the field of calculation of failure time in aviation systems with simulation data 

Author Output Variable 
Number and type of 

data 
Case study Prediction model 

Xu et al. 
2020 [17] 

the occurrence or non-
occurrence of an 

accident 

13055 real data from 
NTSB helicopter 

accident 
- 

K-nearest- neighbor (KNN) 
Decision tree (DT) 

AdaBoost DT (ADT) 
Random forest (RF) 

Naïve Bayes (NB) and(DNN) 

De pater et 
al. 

2022 [57] 

Estimate of remaining 
useful life 

C-MAPSS simulation 
data - 4 databanks of 
100 or 250 - NASA 

data 

Airplane 
turbofan 
engine 

CNN 
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Author Output Variable 
Number and type of 

data 
Case study Prediction model 

Liu et al. 
2021 [64] 

Estimate of remaining 
useful life 

C-MAPSS simulation 
data - 4 databanks of 
100 or 250 - NASA 

data 

Aircraft 
engine failure 

data 

(LSTM)/ 
Clustering 

(RNN) / Linear Programming (LP) 

Zhanget al. 
2021 [65] 

Is the plane damaged 
or not? 

Is there a possibility of 
death or not? 

1675 Data - NTSB 
Actual Data Bank 

Airplane 
accident 

(LSTM) 

Zhang et al. 
2021 [66] 

Showing causal 
relationships in the 
sequence of events 

NTSB Actual Data 
Bank 

 Bayesian networks 

Zhao et al. 
2017 [62] 

Estimate of remaining 
useful life 

Simulation data 
Engine 
airplane 

Neural network 

Jiao et al. 
2020 [5] 

Estimate of remaining 
useful life 

C-MAPSS simulation 
data - 4 databanks of 
100 or 250 - NASA 

data 

Aircraft 
engine failure 

data 

Gap-DBN 
SVDD 

Particle filter 

Sampaio et 
al 

2019 [61] 

Prediction of failure 
time 

9180 simulated data 
Cooling fan 
vibrations 

Artificial Neural Network (ANN), 
Regression Tree (RT), Random 

Forest (RF), Support Vector 
Machine (SVM) 

     
Table 2 shows that the proposed methods heavily 

depend on the training data. But, failure data in the 
aviation system is not available enough to reach the 
required level of confidence now. The unavailability of 
run-to-failure sensor data is a major limitation in 
calculating the failure time and accidents, which can be 
considered in future research. The clustering methods 
and PCA (principle component analysis) can be 
augmented to them to minimize the required data and 
optimize the test conditions. 

The second challenge is that the failure time 
prediction is usually made as a static calculation based 
on historical data. Then, the degrading condition of the 
system is not considered. The proposed method output 
can be updated using data fusion with monitoring 
signals. In this way, the maintenance credit for the air 
vehicles can be shown to the standard authority 
organizations and limitations of the training dataset can 
be compensated with monitoring data to some extent. 

The third challenge is related to the balance of 
model-based and data-driven prediction algorithms. 
Both of them lack some things to fulfill the required 
precision and validity domain. Thus, a fair combination 
of two methods augmented with the ML techniques can 
be used to cope with the dynamic behavior of the air 
vehicles' health. The innovative idea is to use non-
physical models to determine the residuals for failure 
time prediction and fault distinguishing. This method 
can eliminate the model-based problem and help use 
the available data on direct training instead of physical 
model parameter estimation. In addition, the non-
physical models can be valid for larger flight 
conditions and aircraft configurations. 

5. Discussion and Conclusion 
ML algorithms are widely used in many engineering 
fields and show satisfactory performance in real 
applications. In the present work, the prediction of 
failure time in the field of aviation accidents was 
investigated. The tools, models, predictors, variables, 
and challenges in this field were discussed. 
Investigations showed that ML models in the field of 
the aviation industry provide increasing performance 
and are considered powerful tools for predicting failure 
time and RUL. The variables and factors of accidents 
predictor were mentioned mainly for airplanes and 
helicopters in different studies. In the case of helicopter 
accidents, the maximum take-off weight, the diameter 
of the main rotor blades or the diameter of the rotor, 
the number of main rotor blades, the type of engine, 
and the number of engines were among the variables 
used in some studies. The C-MAPSS dataset with 21 
variables was used in several studies to analyze 
airplane engine accidents. 

Due to the complications of the model-based or 
physics-based approaches, researchers have widely 
used data-driven approaches. On the other hand, 
having a database with accurate and sufficient data is 
considered the first step and challenge of using data-
driven approaches.  

Sometimes the run-to-failure sensor data is 
unavailable, making it hard to analyze and predict 
failure based on data. According to the use of 
simulation data in aviation industry articles and the 
high cost and risk of flight testing, this issue seems to 
be one of the most important challenges for future 
studies in this field. 
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