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Abstract   
Condition-based maintenance (CBM) involves making decisions on maintenance based on the actual deterioration conditions of 

the components. It consists of a chain of states representing various stages of deterioration and a set of maintenance actions. 
Therefore, condition-based maintenance is a sequential decision-making problem. Reinforcement Learning(RL) is a subfield of 
Machine Learning proposed for automated decision-making. This article provides an overview of reinforcement learning and deep 
reinforcement learning methods that have been used so far in condition-based maintenance optimization. 
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1. Introduction 
Industrial systems are in general subject to degradation 
because of usage and exposure to environmental factors. 
This degradation eventually leads to system failure, 
resulting in safety issues, equipment damage, quality 
issues, and unexpected machine unavailability [1]. A 
few decades ago, maintenance was mostly considered 
something that had to be done after such a failure, but it 
was also something that was difficult to manage. 
Maintenance is widely recognized as an essential 
business function and a critical element of asset 
management [2]. To keep a system ready for operation 
over a specified time frame, maintenance actions are 
required. Traditionally, maintenance actions are 
classified into corrective maintenance (CM) and 
preventive maintenance (PM) [3].In CM, a failed system 
is replaced by a new one, while PM includes specific 
actions proposed to avoid system failure or reduce the 
risk of system failure. Recently, another maintenance 
strategy, the so-called CBM, has received increasing 
attention thanks to the development of sensor 
technology. In CBM, the real-time condition of a system 
is monitored to determine what maintenance needs to be 
performed [3]. 

CBM involves making decisions on maintenance 
based on the actual deterioration conditions of the 
components [1]. It consists of a chain of states 
representing various stages of deterioration and a set of 

maintenance actions [1]. Therefore, CBM is a sequential 
decision-making problem. Such sequential decision-
making problems, often modelled as Markov decision 
processes (MDPs), could be solved by reinforcement 
learning (RL) algorithms that have been recently taken 
attention [4]. Thus, as an optimization tool in the 
dynamic, uncertain environment, RL could provide an 
optimal decision strategy (policy) for the CBM problem 
[5]. For this purpose, the maintenance problem is first 
converted into an RL framework; then, RL algorithms 
are applied to obtain an optimal policy[7]. This work 
aims to review the application of RL as a subfield of 
Machine Learning (ML) in the maintenance model field. 
In the following, we first review RL and its algorithms 
briefly. 

RL is a subfield of ML focusing on Artificial 
Intelligence (AI) which deals with learning from 
repeated interactions with an environment [6]. A learner 
(decision maker) is called an agent who interacts with 
the environment by performing specific actions and 
receiving feedback from the environment [7]. The 
feedback is usually termed as a reward. The agent's goal 
(objective) is to maximize cumulative rewards by 
learning to perform better [7].An MDP usually describes 
the environment, consisting of a state space, an action 
space, a reward function, and state transition 
probabilities.Therefore, MDP for an RL problem has the 
following components[11,17,9]. 
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 ܵ is a set of states, and at each time step ݐ, the 
state is ݏ௧ ∈  ܵ. 

 ܣ(ܵ) is the set of possible actions, and the 
action at time t and in state ݏ௧ is ܽ௧∈ܣ(ݏ௧). 

 ୱܲୱᇱ ௔  = ௧ାଵݏ)ܲ  = ௧ݏ| ′ݏ  = ,ݏ  ܽ௧) is the 
transition probability of beginning in state ݏ′ at 
time ݐ +  1, if the system was in state ݏ at 
time ݐ, and the agent chooses action ܽ௧. 

 ݎ௧is the reward at time ߛ .ݐ ∈  (0, 1) is a discount factor, and the 
discount factor essentially determines how 
much the RL agents care about the rewards in 
the distant future relative to those in the 
immediate future. 

Figure 1 shows agent-environment interactions in 
an MDP (for more details, see, e.g., [8]).  

 

Figure 1. A typical Reinforcement Learning cycle [7] 

The maintenance of a system is usually planned 
based on the system failure mechanism. Generally, a 
system can fail due to degradation, shock, or both. If the 
system failure is only because of degradation, then a 
degradation model (a stochastic process or a 
deterministic path) is used to model the failure 
mechanism. In this case, CBM is adjusted based on the 
information received from the system degradation. If the 
system failure occurs due to the shocks, a shock model 
is considered to model the failure mechanism depending 
on the types of shocks. In this setup, CBM is designed 
based on information about the shocks, including the 
number of shocks, their magnitude, and how shock 
affects the system failure. In a more complex case where 
the system failure is modeled jointly based on the 
degradation and arrival shocks, both degradation and 

shock information are used in the design of the CBM. 
We will focus on only the first and third cases here. 

The paper is organized as follows. Section 
"Literature review" introduces previous related research 
on maintenance policies for complex systems with 
reinforcement learning. The procedure for the CBM 
approach and taxonomy of Reinforcement learning 
algorithms are introduced in the section "Research 
fundamentals." The third section explains two problems 
of optimal policy in CBM by RL in which the problem 
is considered a Markov decision-making problem, and 
the fourth section describes how a semi-Markov 
decision process formulates a CBM problem to apply an 
RL approach. The fifth section explains the CBM 
problem that is modeled as a continuous-state MDP 
without discretizing the system degradation state, the 
sixth section illustrates how to find the optimal CBM 
policy with Deep reinforcement learning (DRL), and the 
section "Conclusion" presents the conclusion and future 
work. 

2. Literature review 
Only a few studies have investigated RL to find an 
optimal condition-based maintenance schedule to 
minimize the cost. Adsule et al. [1], modeled the CBM 
decision-making problem as a continuous semi-Markov 
decision process (CSMDP), and applied an RL 
algorithm. Yousefi et al. [9], modeled the CBM 
decision-making problem as an MDP and also used an 
RL algorithm. Peng et al. [10], modeled the problem of 
CBM as a continuous Markov decision-making process 
without discretizing the degradation states under a 
Gaussian process (GP) and then applied an RL 
algorithm. Mahmoodzadeh et al. [11], proposed the 
CBM optimal policy using an RL algorithm for gas 
pipelines. Yousefi et al. [6] presented a DRL method to 
provide a new dynamic maintenance model for a 
degrading repairable system subject to degradation and 
random shocks. Zhang et al. [12] proposed a novel and 
flexible CBM model based on a custom DRL for multi-
component systems with dependent competing risks. 
Table 1providesa summary of the studies mentioned. 

Table 1. Summary of existing literature on CBM using the RL algorithm.   

Number  Author and 
Years  

Type Problem Algorithm  Page 
number  

Reference  

1  Adsule et al.  continuous semi-Markov decision 
process (CSMDP)  

SMART  5  [1]  

2  Yousefi et al.  Markov decision process (MDP)  Q-learning  3  [10]  

3  Peng et al.  MDP without discretizing the states  Gaussian Process for reinforcement 
learning (GPRL)  

6  [11]  

4  Mahmood  MDP  Q-learning  4  [12]  

5  Yousefi et al.  MDP  Deep Q-learning (DQL)  8  [6]  

6  Zhang et al.  MDP  Deep Q-learning (DQL)  7  [13]  



/ 83 IJRRS/ Vol. 4/ Issue 2/ 2021

 

An overview of reinforcement learning and deep reinforcement 
learning for condition-based maintenance 

 

3. Research fundamentals 

3.1 Procedure for CBM approach 
The CBM can be done by (1) gathering product status 
data and monitoring; (2) making a real-time diagnosis of 
a product status; (3) estimating the deterioration level of 

the product, and its repairing cost, which depends on the 
deterioration level, or its replacement cost, and so on; 
(4) predicting the time of products abnormality; and (5) 
executing appropriate actions such as repair, replace, left 
to use as it is, and disposal. Figure 2 shows the generic 
procedure for implementing CBM. 

 

Figure 2. Procedure for CBM approach [14]

3.2 Taxonomy of Reinforcement learning 
algorithms 
The RL algorithms could be classified from different 
perspectives. Here, we classify the RL algorithms based 

on whether the environment model is assumed tobe 
known. A taxonomy of RL algorithms based on such 
classification is given in Figure 3. 
 

 
Figure 3. Taxonomy of Reinforcement learning algorithms [8] 

Note that a "model" means an ensemble of acquired 
environmental knowledge. Whether the environment 
model is used or not, RL algorithms can be classified 
into model-free and model-based classes [7]. In model-
based RL, all elements of the environment MPD are 
known, and the RL algorithms will use them in learning 
the optimal policy [7]. The model-based methods can be 
split into two categories: given model and learning the 
model [7]. In the given model methods, the reward 
function and the transition process can be accessed 
directly by the agent (e.g., Gaussian Process for 
reinforcement learning [GPRL]) [10]. 

In contrast, in learning the model methods, the 
agent can learn the model from interactions with the 
environment first and then apply the learned model to 
find the optimal policy [7].Model-based approaches can 

become impractical in many realistic applications 
(Huang [18]).Alternatively, the optimal policy can be 
obtained directly without knowing the environment 
model. This class is called model-free RL. The model-
free methods fall into two main categories: value-based 
and policy-based. The value-based methods usually 
imply that first learning the action-value function (Q(s, 
a): cumulative discounted reward by starting from state ݏ and taking action ܽ), and then obtaining the optimal 
action corresponds to the highest cumulative discounted 
reward based on the learned Q (s, a) [8]. Another 
approach is optimizing the policy directly (without 
learning Q(s, a)), which is called the policy-based 
method. The value-based methods are divided into the 
on-policy and off-policy methods. The on-policy 
methods learn or improve the policy that the agent is 
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acting upon in its interactions with the environment, 
such as SARSA [7], whereas the off-policy methods can 
learn or improve a policy that is different from the one 
that the agent is using to take action in the environment 
such as Q-learning [10,12], Deep Q-learning [6, 13] and 
SMART [1]. With off-policy methods, the experience of 
other agents interacting with the environment can also 
be used to find the optimal policy. The policy-based 
methods are classified into two categories: gradient-
based and non-gradient-based. The gradient-based 
methods can be used to improve parameterized policies, 
and the non-gradient-based method is applied to 
optimize less complicated policies. More details about 
the classification of RL algorithms can be found in [6]. 

4. Finding the optimal policy with the 
RL approach to solve the CBM 

problem as an MDP 

Yousefi et al. [9], considered an RL approach to develop 
a new dynamic CBM policy for multi-component 
systems with individually repairable components. The 
following assumptions concerning to failure model have 
been made in their work. 

1. Each component is subject to two competing 
failures: the process of degradation and random 
shock. 

2. A gamma process is used to model the 
degradation path of each component. 

3. Shock arrivals occur as a homogeneous Poisson 
process. 

4. Each incoming shock may cause the system to 
fail immediately due to its magnitude, and it 
also affects the degradation path of the 
components. 

Let ௜ܺ(t) be the ݅௧௛ component degradation level.To 
apply the RL approach, they converted the optimal 
maintenance problem to an MDP problem based on the 
following assumptions: 

1. State space is ܵ =  {0,1,2,3,4} where 

ܵ =  
۔ۖەۖ
(ݐ)௜ܺ                 0ۓ = 01      0 < ௜ܺ(ݐ) ≤ ௜ଷܪ   ௜ଷ2ܪ < ௜ܺ(ݐ) ≤ ௜ଷܪ   ௜ଶ3ܪ < ௜ܺ(ݐ) ≤ ௜ଵܪ              ௜ଵ4ܪ < ௜ܺ(ݐ)

  

and ܪ௜௞, ݇ =  1,2,3 are some prefixed known 
degradation thresholds. 

2. Actions space is ܣ =  {ܽଵ, ܽଶ, ܽଷ} where ܽଵ,ܽଶ, 
andܽଷ are “do nothing”,“repair a component”, 
and “replace a component”, respectively. 

Using the Q-learning method, they obtained the 
optimal maintenance actions for all the system 
degradation states. As an advantage, this method 
provides a dynamic maintenance policy for each specific 
degradation state of the system, which is more beneficial 
than the fixed maintenance plan. In another study, 
Mahmoodzadeh et al. [11], proposed a CBM policy via 

the RL method for gas pipelines. Gas pipeline systems 
are one of the largest energy infrastructures in the world 
and are known to be very efficient and reliable. 
However, this does not mean they are prone to no risk. 
Corrosion is a significant problem in gas pipelines that 
imposes large risks, such as ruptures and leakage to the 
environment and the pipeline system. Therefore, various 
maintenance actions are performed routinely to ensure 
the integrity of the pipelines. The costs of corrosion-
related maintenance actions are a significant portion of 
the pipeline's operation and maintenance costs. 
Minimizing this high cost is a highly compelling subject 
that many studies have addressed. Mahmoodzadeh et al. 
[11], investigated the benefits of applied RL techniques 
to the corrosion-related maintenance management of dry 
gas pipelines. In the mentioned work, as the first step, 
the pipeline's corrosion maintenance problem has been 
converted to a sequential decision-making problem by 
defining the problem in an MDP format. Because the 
scope of the research is the corrosion of the pipeline, the 
state definition should include all the essential 
information to predict the next corrosion status given the 
action. Therefore, they initially designed the state 
definition to include the depth and length of the 
corrosion. However, instead of directly taking the value 
of the depth and length, the max-normalized version of 
them has been considered and removed the agent's 
dependency on the pipeline's parameters. Equations (1) 
and (2) define the corrosion depth and length where the 
maximum corrosion depth is the wall thickness, and the 
maximum corrosion length has been estimated by 
running the model for 40 years without maintenance. ܲܦܥ = ௖௢௥௥௢௦௜௢௡ ௗ௘௣௧௛௠௔௫௜௠௨௠ ௖௢௥௥௢௦௜௢௡ ௗ௘௣௧௛  (1) ܲܮܥ = ௖௢௥௥௢௦௜௢௡ ௟௘௡௚௧௛௠௔௫௜௠௨௠ ௖௢௥௥௢௦௜௢௡ ௟௘௡௚௧௛  (2) 

Representing the corrosion state with only the 
depth and length is inaccurate because the next stage of 
the corrosion is not predictable without knowing the rate 
of corrosion degradation. Therefore, the corrosion rate 
has been added to the state variables. They assumed the 
agent's access to the state variables is feasible only 
through monthly inspections of the corrosion depth and 
length. Therefore, the corrosion rate has been derived by 
comparing the current month’s corrosion with the 
previous month’s corrosion .Since corrosion is a slow 
and gradual process, the agent does not need high 
precision in state representation. The corrosion rate is 
represented (CRP) as a binary variable with a value of 0 
when there is no corrosion aggravation and 1 when the 
corrosion exacerbates. The following equation 
formulates the corrosion rate presence as the third state 
variable. ܴܲܥ =൜0 ݂݅ ܦܥ ௧ܲିଵ = ௧ܲܦܥ ܮܥ   ݀݊ܽ ௧ܲିଵ = ܮܥ  ௧ܲ1 ݂݅ ܦܥ ௧ܲିଵ ≠ ܦܥ ௧ܲ ܮܥ   ݀݊ܽ ௧ܲିଵ ≠ ܮܥ  ௧ܲ   

(3) 

 Thus, they have discretized the state variables into 
24 bins as shown in Table 2. 

Table 2. Discretized representation of the state space [11] 
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CRP 
CDP 
CLP 

0-20% 20-40% 40-60% 60-100% 

0 0-33% 0 1 2 3 
0 33-66% 4 5 6 7 
0 66-100+% 8 9 10 11 
1 0-33% 12 13 14 15 
1 33-66% 16 17 18 19 
1 66-100+% 20 21 22 23 

A discrete action space of size 5 is considered for 
the agent as follows, {Do nothing, Batch corrosion 
inhibitor, Internal coating, Cleaning pigging, 
Replacement}.The details of the considered maintenance 
actions are shown in Table 3. 

Table 3. The maintenance scheduler set of maintenance actions [11] 

Actions Descriptions Comments 

Do nothing  No mitigation is done 
 The corrosion proceeds 
 Corrosion inhibitor is added from the 

inlet of the pipeline 

Batch corrosion inhibitor 
 A chemical that adsorbs onto the 

metal surface and reacts with it to 
form a protective film 

 Corrosion rate drop is based on the 
inhibitor efficiency 

 Effective only within its lifetime 

Internal coating 
 An artificial coating that isolates the 

pipe from the corrosive environment 
and prevents water from reaching the 
pipe surface

 No corrosion propagation during its 
lifetime 

Cleaning pigging  A gadget that effectively cleans up 
liquids, corrosive solids and debris

 No corrosion propagation during its 
lifetime 

Replacement  Replace the corroded segment with a 
new one

 Renew corrosive environment 
 No more corrosion defects 

The total reward after each month has been defined as 
the algebraic summation of the cost of failure, life 
extension reward, and cost of maintenance, 
Mahmoodzadeh et al. [11].The approach used in this 
research is entirely data-driven and model-free. The 
agent treats the model as a black box that mimics a real 
pipeline and emits the required data for the learning 
process. The Q-learning algorithm for the problem of 
pipeline optimal corrosion maintenance management has 
been applied. The results show that applying the 
proposed condition-based maintenance management 
technique can reduce up to 58% of the maintenance 
costs compared to a periodic maintenance policy while 
securing pipeline reliability. 

5. Finding the optimal policy by RL 
approach to solve the CBM 

problem as a continuous semi-
Markov decision process 

Adsule et al. [1] modeled the CBM decision problem 
as a continuous semi-Markov decision process 
(CSMDP). SMDPs generalize MDPs by allowing the 
state transitions to occur continuously and irregularly. 
They employed an RL algorithm to learn optimal 
maintenance decisions and inspection schedules based 
on the current health status of a component by 
maximizing the average reward of a CSMDP for their 
CBM problem. The following assumptions are made 
for the model: 

1. The health of a component is assessed at 
different time intervals. 

2. A stochastic model is used to capture the 
deterioration progress as a function of time. 

3. A hypothetical component is considered with 
a hard-facing layer, and it is assumed that the 
layer thickness decreases over time due to 
wear. 

4. The acceptable minimum layer thickness 
threshold is known, deterministic, and fixed. 

5. The component is failed if the layer thickness 
is less than the threshold value. 

The maintenance action choices considered to be 
available to the decision-maker are 

1. No maintenance action (NA). 
2. Minor maintenance (MM): minor maintenance 

means that a failed system is restored just 
back to a functioning state. After minor 
maintenance, the system continues as if 
nothing had happened. The likelihood of 
system failure is the same immediately before 
and after a failure. A minimal repair thus 
restores the system to an “as bad as old” 
condition. 

3. Replacement through PM. 
4. Replacement through CM. 
The choice of “no action” means no maintenance 

action is required and the component is allowed to 
work in its current state.  

In this case, the maintenance action "minor 
maintenance" (MM) refers to the re-lubrication of the 
component surface, which will reduce its wear rate. A 
PM action results in the planned replacement of the 
components, which means we stop the machine with 
proper scheduling. The CM happens when the 
component fails. A reward based on the component's 
health is inversely proportional to the health index 
(HI). If the HI value of the component is high, the 
agent will receive a less negative reward and vice 
versa. This will motivate the agent to keep the 
component in a healthy state. In this research, an 
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sections. To handle a large or continuous state space 
that cannot be addressed by the tabular method, one 
can turn to the function approximation to model the 
state transitions of the system and the value functions 
(both state-value functions and state-action value 
functions). A general approximator is preferred when 
there is not enough information on the possible 
function to approximate value functions. Although 
neural networks can model various relationships, they 
usually require a large amount of data. The GPR can fit 
small datasets without loss of generality. As an 
application, they have demonstrated their proposed 
method to model the battery maintenance decision-
making problem by an MDP, where the GPR describes 
the system dynamics and value functions. Using NASA 
battery randomized usage data, the Gaussian Process 
for reinforcement learning (GPRL) algorithm has been 
applied over the state value iteration. Compared with 
discrete MDPs, the GPRL algorithm appeared to return 
a similar optimal policy while being computationally 
more efficient. They showed that GPRL could save up 
to 11.9% (varies by different values of ܪ) of the 
average cost compared to the MDP results.It is worth 
mentioning that the GPs have been widely adopted for 
stochastic modeling processes in reliability and 
maintenance studies. Also, as a general nonparametric 
model, GPR gains a reputation for its universality and 
good utilization of data, which is also easy to 
implement [15]. 

7. Finding the optimal CBM policy 
with Deep reinforcement learning 

(DRL) 

Most existing research on CBM assumes that 
preventive maintenance should be conducted when the 
degradations of system components reach specific 
threshold levels upon inspection. However, searching 
for optimal maintenance threshold levels is often 
efficient for low-dimensional CBM. Still, it becomes 
challenging if the number of components gets larger, 
especially when those components are subject to 
complex dependencies. Another limitation of most 
existing CBM models is that they often ignore 
competing for failure risks when incorporating various 
types of dependencies, which are common in many 
real-world systems [16, 17].In this context, competing 
risk refers to a system failure due to the failure of any 
of its components. For instance, a modern computer 
could fail due to the failure of its CPU, storage unit, or 
operating system, whichever occurs first. The 
competing risks also impose an economic dependency 
among components since the system's downtime after 

one component fails is shared by all the components. 
Such economic dependency should be considered, 
which further makes the CBM challenging. Therefore, 
establishing a general CBM model that jointly 
incorporates component-wise dependencies and 
competing risks is necessary. Otherwise, the CBM 
planning could be inefficient and suboptimal, incurring 
higher operational and maintenance costs. 

Most applications of the traditional RL have been 
limited to domains where the features can be 
handcrafted or represented in low-dimensional state 
spaces. Therefore, directly applying the traditional RL 
to maintenance planning of K-component systems with 
complex component-wise interactions would be 
computationally inefficient and challenging. To 
overcome this challenge, Zhang et al. [12] proposed a 
novel and flexible CBM model based on a custom DRL 
for multi-component systems with dependent 
competing risks.  

DRL is an approach in machine learning that 
blends reinforcement learning techniques with 
strategies for deep learning. This type of learning 
requires computers to use sophisticated learning 
models and look at large amounts of input in order to 
determine an optimized path or action. Their proposed 
CBM model for a K-component system is different 
from the existing models in two ways: 

1. It jointly incorporates stochastic dependency, 
economic dependency, and competing for 
failure risks among components. 

2. It completely excludes the concept of 
maintenance thresholds, which are key decision 
variables in conventional CBM policies. 

Specifically, the proposed model directly maps the 
multi-component degradation measurements at each 
inspection epoch to the maintenance decision space 
with a cost minimization objective, and the leverage of 
DRL enables high computational efficiency and thus 
makes the proposed model suitable for both low and 
high dimensional CBM problems.  

They have shown that the system deterioration 
and maintenance process can be formulated as an 
MDP, and a Deep Q-learning (DQL) algorithm has 
been selected for the maintenance decisions making. 
The DQL is a value-based algorithm combining Q-
learning and deep learning to approximate the Q-value 
function. In other words, the DQL is an alternative for 
Q-learning to solve RL problems with huge state and 
action spaces or when the state or action spaces are 
continuous. Specifically, the DQL algorithm aims to 
recognize patterns instead of mapping every state to its 
best action. The difference between Q-learning and 
DQL is illustrated in Figure5. 
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different RL algorithms are developed for different 
purposes. Focusing on CBM application and comparing 
the performance of different RL algorithms for different 
problem settings is another crucial gap in the current 
literature. 
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