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Abstract

Condition-based maintenance (CBM) involves making decisions on maintenance based on the actual deterioration conditions of
the components. It consists of a chain of states representing various stages of deterioration and a set of maintenance actions.
Therefore, condition-based maintenance is a sequential decision-making problem. Reinforcement Learning(RL) is a subfield of
Machine Learning proposed for automated decision-making. This article provides an overview of reinforcement learning and deep
reinforcement learning methods that have been used so far in condition-based maintenance optimization.
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1. Introduction

Industrial systems are in general subject to degradation
because of usage and exposure to environmental factors.
This degradation eventually leads to system failure,
resulting in safety issues, equipment damage, quality
issues, and unexpected machine unavailability [1]. A
few decades ago, maintenance was mostly considered
something that had to be done after such afailure, but it
was aso something that was difficult to manage.
Maintenance is widely recognized as an essential
business function and a critical element of asset
management [2]. To keep a system ready for operation
over a specified time frame, maintenance actions are
required. Traditionally, maintenance actions are
classified into corrective maintenance (CM) and
preventive maintenance (PM) [3].In CM, afailed system
is replaced by a new one, while PM includes specific
actions proposed to avoid system failure or reduce the
risk of system failure. Recently, another maintenance
strategy, the so-called CBM, has received increasing
attention thanks to the development of sensor
technology. In CBM, the real-time condition of a system
is monitored to determine what maintenance needs to be
performed [3].

CBM involves making decisions on maintenance
based on the actual deterioration conditions of the
components [1]. It consists of a chain of states
representing various stages of deterioration and a set of

maintenance actions [1]. Therefore, CBM is a sequential
decision-making problem. Such sequential decision-
making problems, often modelled as Markov decision
processes (MDPs), could be solved by reinforcement
learning (RL) agorithms that have been recently taken
attention [4]. Thus, as an optimization tool in the
dynamic, uncertain environment, RL could provide an
optimal decision strategy (policy) for the CBM problem
[5]. For this purpose, the maintenance problem is first
converted into an RL framework; then, RL algorithms
are applied to obtain an optimal policy[7]. This work
aims to review the application of RL as a subfield of
Machine Learning (ML) in the maintenance model field.
In the following, we first review RL and its algorithms
briefly.

RL is a subfield of ML focusing on Artificia
Intelligence (Al) which deals with learning from
repeated interactions with an environment [6]. A learner
(decision maker) is caled an agent who interacts with
the environment by performing specific actions and
receiving feedback from the environment [7]. The
feedback is usually termed as a reward. The agent's goal
(objective) is to maximize cumulative rewards by
learning to perform better [7].An MDP usually describes
the environment, consisting of a state space, an action
space, a reward function, and state transition
probabilities. Therefore, MDP for an RL problem has the
following components[11,17,9].
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e Sisasetof states, and at each time step t, the
stateiss; € S.

e A(S) is the set of possible actions, and the
action at timet and in state s, is a, €A(s;).

o P& = P(spp1= SISt = s,ap) is  the
transition probability of beginning in state s’ at
time t+ 1, if the system was in states at
time t, and the agent chooses action a;.

e risthereward at timet.

y € (0,1) is a discount factor, and the
discount factor essentially determines how
much the RL agents care about the rewards in
the distant future relative to those in the
immediate future.

Figure 1 shows agent-environment interactions in

an MDP (for more details, see, e.g., [8]).

state reward action
s | & A

_ Ry
_5.. | Environment \4—

Figure 1. A typical Reinforcement Learning cycle [7]

The maintenance of a system is usually planned
based on the system failure mechanism. Generdly, a
system can fail due to degradation, shock, or both. If the
system failure is only because of degradation, then a
degradation model (a stochastic process or a
deterministic path) is used to mode the failure
mechanism. In this case, CBM is adjusted based on the
information received from the system degradation. If the
system failure occurs due to the shocks, a shock model
is considered to model the failure mechanism depending
on the types of shocks. In this setup, CBM is designed
based on information about the shocks, including the
number of shocks, their magnitude, and how shock
affects the system failure. In a more complex case where
the system failure is modeled jointly based on the
degradation and arrival shocks, both degradation and

Z. Dehghani Ghobadi, F. Haghighi, A. Safari

shock information are used in the design of the CBM.
Wewill focus on only the first and third cases here.

The paper is organized as follows. Section
"Literature review" introduces previous related research
on maintenance policies for complex systems with
reinforcement learning. The procedure for the CBM
approach and taxonomy of Reinforcement learning
algorithms are introduced in the section "Research
fundamentals." The third section explains two problems
of optimal policy in CBM by RL in which the problem
is considered a Markov decision-making problem, and
the fourth section describes how a semi-Markov
decision process formulates a CBM problem to apply an
RL approach. The fifth section explains the CBM
problem that is modeled as a continuous-state MDP
without discretizing the system degradation state, the
sixth section illustrates how to find the optimal CBM
policy with Deep reinforcement learning (DRL), and the
section "Conclusion” presents the conclusion and future
work.

2. Literaturereview

Only a few studies have investigated RL to find an
optimal condition-based maintenance schedule to
minimize the cost. Adsule et a. [1], modeled the CBM
decision-making problem as a continuous semi-Markov
decision process (CSMDP), and applied an RL
algorithm. Yousefi et a. [9], modeled the CBM
decision-making problem as an MDP and aso used an
RL agorithm. Peng et a. [10], modeled the problem of
CBM as a continuous Markov decision-making process
without discretizing the degradation states under a
Gaussian process (GP) and then applied an RL
algorithm. Mahmoodzadeh et a. [11], proposed the
CBM optima policy using an RL agorithm for gas
pipelines. Yousefi et al. [6] presented a DRL method to
provide a new dynamic maintenance model for a
degrading repairable system subject to degradation and
random shocks. Zhang et d. [12] proposed a novel and
flexible CBM model based on a custom DRL for multi-
component systems with dependent competing risks.
Table 1providesa summary of the studies mentioned.

Table 1. Summary of existing literature on CBM using the RL algorithm.

Number Author and Type Problem Algorithm Page Reference
Years number
1 Adsuleet al. continuous semi-Markov decision SMART 5 [1]
process (CSMDP)
2 Yousefi et al. Markov decision process (MDP) Q-learning 3 [10]
3 Peng et al. MDP without discretizing the states Gaussian Process for reinforcement 6 [11]
learning (GPRL)
4 Mahmood MDP Q-learning 4 [12]
5 Yousefi et al. MDP Deep Q-learning (DQL) 8 [6]
6 Zhang et a. MDP Deep Q-learning (DQL) 7 [13]
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3. Research fundamentals

3.1 Procedurefor CBM approach

The CBM can be done by (1) gathering product status
data and monitoring; (2) making a real-time diagnosis of
a product status; (3) estimating the deterioration level of
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the product, and its repairing cost, which depends on the
deterioration level, or its replacement cost, and so on;
(4) predicting the time of products abnormality; and (5)
executing appropriate actions such as repair, replace, left
to use asit is, and disposal. Figure 2 shows the generic
procedure for implementing CBM.

Knowledge Maintenance

transformation - repair, replace

—

=
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Figure 2. Procedure for CBM approach [14]

3.2 Taxonomy of Reinforcement learning

algorithms
The RL agorithms could be classified from different
perspectives. Here, we classify the RL agorithms based

on whether the environment model is assumed tobe
known. A taxonomy of RL algorithms based on such
classification is given in Figure 3.

RL algorithm
I
I ]
Model-free Model-based
I l_l_l
I ]
. . Learn the
Value-based Policy-based Model Given model
[ I ] |
Off-policy On-policy Gradient-free GPRL (DP)
T
I ] ] L L
Q-leamning SMART peep r%‘ SARSA Gradient-based Peng et al. [10]
Y ousefi et al. L Y ousefi et al.
Adsul L[4
9] dsuleet al. [1] 6]
IMahmoodzadeh Zhang et al.
etal. [11] [12]

Figure 3. Taxonomy of Reinforcement learning algorithms [8]

Note that a"model" means an ensemble of acquired
environmental knowledge. Whether the environment
model is used or not, RL agorithms can be classified
into model-free and model-based classes [7]. In model-
based RL, al elements of the environment MPD are
known, and the RL agorithms will use them in learning
the optimal policy [7]. The model-based methods can be
split into two categories: given model and learning the
model [7]. In the given model methods, the reward
function and the transition process can be accessed
directly by the agent (e.g., Gaussian Process for
reinforcement learning [GPRL]) [10].

In contrast, in learning the model methods, the
agent can learn the model from interactions with the
environment first and then apply the learned model to
find the optimal policy [7].Model-based approaches can

become impractica in many redlistic applications
(Huang [18]).Alternatively, the optimal policy can be
obtained directly without knowing the environment
model. This class is called model-free RL. The model-
free methods fall into two main categories. value-based
and policy-based. The vaue-based methods usually
imply that first learning the action-value function (Q(s,
a): cumulative discounted reward by starting from state
s and taking action a), and then obtaining the optimal
action corresponds to the highest cumulative discounted
reward based on the learned Q (s, @) [8]. Another
approach is optimizing the policy directly (without
learning Q(s, @), which is caled the policy-based
method. The value-based methods are divided into the
on-policy and off-policy methods. The on-policy
methods learn or improve the policy that the agent is
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acting upon in its interactions with the environment,
such as SARSA [7], whereas the off-policy methods can
learn or improve a policy that is different from the one
that the agent is using to take action in the environment
such as Q-learning [10,12], Deep Q-learning [6, 13] and
SMART [1]. With off-policy methods, the experience of
other agents interacting with the environment can also
be used to find the optimal policy. The policy-based
methods are classified into two categories. gradient-
based and non-gradient-based. The gradient-based
methods can be used to improve parameterized policies,
and the non-gradient-based method is applied to
optimize less complicated policies. More details about
the classification of RL algorithms can be found in [6].

4. Finding the optimal policy with the
RL approach to solve the CBM
problem asan MDP

Yousefi et a. [9], considered an RL approach to develop
a new dynamic CBM policy for multi-component
systems with individually repairable components. The
following assumptions concerning to failure model have
been made in their work.

1. Each component is subject to two competing
failures: the process of degradation and random
shock.

2. A gamma process is used to model the
degradation path of each component.

3. Shock arrivals occur as a homogeneous Poisson
process.

4. Each incoming shock may cause the system to
fail immediately due to its magnitude, and it
adso affects the degradation path of the
components.

Let X;(t) be the i*" component degradation level.To
apply the RL approach, they converted the optimal
maintenance problem to an MDP problem based on the
following assumptions:

1. StatespaceisS = {0,1,2,3,4} where

0 X (t)=0

(1 0<X;(t) <H?

S= 142 H?}<X/(t) <H?
3 H < X;(t) <H!

4 H! < X;(t)
and Hl-", k = 1,2,3 are some prefixed known
degradation thresholds.

2. ActionsspaceisA = {a,,a,, as} where a,,a,,
anda; are “do nothing”,“repair a component”,
and “replace a component”, respectively.

Using the Q-learning method, they obtained the
optimal maintenance actions for al the system
degradation states. As an advantage, this method
provides a dynamic maintenance policy for each specific
degradation state of the system, which is more beneficial
than the fixed maintenance plan. In another study,
Mahmoodzadeh et a. [11], proposed a CBM policy via
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the RL method for gas pipelines. Gas pipeline systems
are one of the largest energy infrastructures in the world
and are known to be very efficient and reliable.
However, this does not mean they are prone to no risk.
Corrosion is a significant problem in gas pipelines that
imposes large risks, such as ruptures and leakage to the
environment and the pipeline system. Therefore, various
maintenance actions are performed routinely to ensure
the integrity of the pipelines. The costs of corrosion-
related maintenance actions are a significant portion of
the pipelines operation and maintenance costs.
Minimizing this high cost is a highly compelling subject
that many studies have addressed. Mahmoodzadeh et al.
[11], investigated the benefits of applied RL techniques
to the corrosion-related maintenance management of dry
gas pipelines. In the mentioned work, as the first step,
the pipeline's corrosion maintenance problem has been
converted to a sequential decision-making problem by
defining the problem in an MDP format. Because the
scope of the research is the corrosion of the pipéline, the
state definition should include al the essential
information to predict the next corrosion status given the
action. Therefore, they initialy designed the sate
definition to include the depth and length of the
corrosion. However, instead of directly taking the value
of the depth and length, the max-normalized version of
them has been considered and removed the agent's
dependency on the pipeline's parameters. Equations (1)
and (2) define the corrosion depth and length where the
maximum corrosion depth is the wall thickness, and the
maximum corrosion length has been estimated by

running the model for 40 years without maintenance.
CDP = corrosion depth

€

CLP = — . @
maximum corrosion length

Representing the corrosion state with only the
depth and length is inaccurate because the next stage of
the corrosion is not predictable without knowing the rate
of corrosion degradation. Therefore, the corrosion rate
has been added to the state variables. They assumed the
agent's access to the state variables is feasible only
through monthly inspections of the corrosion depth and
length. Therefore, the corrosion rate has been derived by
comparing the current month’s corrosion with the
previous month’s corrosion .Since corrosion is a slow
and gradual process, the agent does not need high
precision in state representation. The corrosion rate is
represented (CRP) as a binary variable with a value of 0
when there is no corrosion aggravation and 1 when the
corrosion exacerbates. The following equation
formulates the corrosion rate presence as the third state
variable.

maximum corrosion depth
corrosion length

CRP =
{0 if CDP,_, = CDP, and CLP,_, = CLP, ©)
1 if CDP,_, # CDP, and CLP,_, # CLP,
Thus, they have discretized the state variables into
24 binsas shown in Table 2.

Table 2. Discretized representation of the state space [11]
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CRP % 0-20% | 20-40% | 40-60% | 60-100% A discrete action space of size 5 is considered _for
5 0339 5 T 5 3 the agent as follows, {Do nothing, Batch corrosion
0 33_66(;0 1 5 6 7 inhibitor, Internal  coating, Cleaning pigging,
0 | 66-1001% 3 9 10 1 Replacement} . The details of the considered maintenance
1 0-33% 12 13 14 15 actions are shown in Table 3.

1 33-66% 16 17 18 19
1 | 66-100+% | 20 21 22 23
Table 3. The maintenance scheduler set of maintenance actions [11]
Actions Descriptions Comments
e The corrosion proceeds
Do nothing e  Nomitigation is done e  Corrosion inhibitor is added from the
inlet of the pipeline
e A chemical that adsorbs onto the . Corrosion rate drop is based on the
Batch corrosion inhibitor meta surface and reacts with it to inhibitor efficiency
form a protective film e Effective only withinitslifetime
e Anartificia coating that isolates the
Internal coating pipe from the corrosive envnonment . No corrosion propagation during its
and prevents water from reaching the lifetime
pipe surface
" . e A gadget that effectively cleans up e No corrosion propagation during its
Cleaning pigging liquids, corrosive solids and debris lifetime
Replacement e Replace the corroded segment with a ¢  Renew corrosive envi ronment
new one . No more corrosion defects

The total reward after each month has been defined as
the algebraic summation of the cost of failure, life
extenson reward, and cost of maintenance,
Mahmoodzadeh et al. [11].The approach used in this
research is entirely data-driven and model-free. The
agent treats the model as a black box that mimics a rea
pipeline and emits the required data for the learning
process. The Q-learning agorithm for the problem of
pipeline optimal corrosion mai ntenance management has
been applied. The results show that applying the
proposed condition-based maintenance management
technique can reduce up to 58% of the maintenance
costs compared to a periodic maintenance policy while
securing pipeline reliability.

5. Finding the optimal policy by RL
approach to solvethe CBM
problem as a continuous semi-
Markov decision process

Adsule et a. [1] modeled the CBM decision problem
as a continuous semi-Markov decision process
(CSMDP). SMDPs generalize MDPs by alowing the
state transitions to occur continuously and irregularly.
They employed an RL algorithm to learn optimal
maintenance decisions and inspection schedules based
on the current hedth status of a component by
maximizing the average reward of a CSMDP for their
CBM problem. The following assumptions are made
for the model:
1. The health of a component is assessed at
different time intervals.
2. A stochastic model is used to capture the
deterioration progress as a function of time.

3. A hypothetical component is considered with
a hard-facing layer, and it is assumed that the
layer thickness decreases over time due to
wear.

4, The acceptable minimum layer thickness
threshold is known, deterministic, and fixed.

5. The component is failed if the layer thickness
is less than the threshold value.

The maintenance action choices considered to be

available to the decision-maker are

1. No maintenance action (NA).

2. Minor maintenance (MM): minor maintenance
means that a failed system is restored just
back to a functioning state. After minor
maintenance, the system continues as if
nothing had happened. The likelihood of
system failure is the same immediately before
and after a faillure. A minimal repair thus
restores the system to an “as bad as old”
condition.

3. Replacement through PM.

4. Replacement through CM.

The choice of “no action” means no maintenance
action is required and the component is allowed to
work in its current state.

In this case, the maintenance action "minor
maintenance" (MM) refers to the re-lubrication of the
component surface, which will reduce its wear rate. A
PM action results in the planned replacement of the
components, which means we stop the machine with
proper scheduling. The CM happens when the
component fails. A reward based on the component's
health is inversely proportiona to the health index
(HI). If the HI value of the component is high, the
agent will receive a less negative reward and vice
versa. This will motivate the agent to keep the
component in a healthy state. In this research, an



86 /1IRRS/Vol. 4/ Issue 2/ 2021

application of the SMART agorithm is demonstrated
for CBM using a case of wear deterioration of a
component. The SMART algorithm is a model-free,
average-reward algorithm for continuous-time SMDPs.
It is a generic algorithm that can be applied to any
component that deteriorates with time and usage in
which an RL agent prescribes an optimal or near-
optimal maintenance action along with the time for the
next inspection to minimize the cost. The uniqueness
of the approach proposed in the article by Adsule et al.
[1] lies in the fact that it attempts to optimize the
maintenance action choice and the inspection schedule
(with non-constant inspection intervals)
simultaneously.

6. Finding the optimal policy by RL
approach to solve the CBM
problem as a continuous-state
MDP

Peng et a. [10], modeled the problem of CBM as a
continuous Markov decision-making process without
discretizing the degradation states of the system
through the RL method and Gaussian process (GP).
Gaussian process regression (GPR) has been used as a
function approximation to model the state transfer and
state value functions in RL setup. The additional
assumptions for the system have been listed as follows:

1. A non-repairable system is continuously
monitored or periodically inspected before
each decision epoch.

2. The condition of the system is a continuous
random variable, denoted as X(t), which
satisfies the Markovian property.

3. The system fails when X(t) reaches a pre-
determined end-of-life threshold, H.

4. Maintenance decisions are made at equally
spaced decision epochs based on the observed
condition of the system as follows:

o If the system condition exceeds the end-
of-life threshold, X(t) > H, then CM is
performed, incurring a combined cost of
the replacement cost, Cr, and a penalty
cost due to downtime, Cp.

e If the system condition exceeds a
threshold for replacement, H,, where
H,<X(t) < H, then PM is implemented
even though the system is still
functioning, and only the replacement
cost, Cg, isincurred.

e If the system condition is less thanH,,, no
action (N) is needed.

5. After a PM or CM action the state of the
system becomes as-good-as-new  state
X(©0)=0.
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Action

System monitored

Figured. The Framework of MDP for CBM [1]

The overdl framework of the MDP for the
condition-based maintenance proposed in this work is
shown in Figure4.The system under maintenance is
monitored to obtain its state at each decision epoch. The
state of the system can be directly represented by its
sensor data, which commonly leads to large state space.
To avoid the computational burden, the system states
can be extracted from the sensor data or determined by
field experts' observations. Based on the system state at
each decision epoch, an action is taken on the system
maintained.

The MDP model can be fully described by the
quintuple {t, S, 4, p(sy |s,a), r(s, @)}, where T stands
for the countable set of decision epochs. The MDP
model can be fully described by the quintuple
{7,S,Ap(sy |s, @), r(s, a)}, whererstands for the
countable set of decision epochs. In their MDP model
for CBM, S is the set of al possible values of the
continuous system condition.Although the system is
constantly monitored, only its conditions at the decision
epochs have been taken for decision-making with the
Markovian property assumption. At each decision
epoch, if the systemisin states € S, anactiona € A
is made that incurs an expectedreward of r(s,a). In
CBM model,A = {N,PM, CM} denoting three different
actions. The reward function r is evaluated based on the
total costs related to maintenance: r = 0, -Cg, Or -
(Cr+Cp) for a =N, PM, or CM, respectively. The state
transition probability distribution has been represented
by p(so |s,a). When a = PM or a = CM, p(0|s,a) = 1
for al s. When a = N, the state transition probability,
p(so Is, @), has been estimated from existing degradation
paths. When S is a countable set, p(s, |s, a) provides a
value for each s, s, € S, a € A. Otherwise, p(s, |s, a)
has been assumed to be a probability density function.

To learn from existing samples, deterministic
policiesthave been considered that are functionsm:
S — A, which assign a single action to each range of
state:

N s €[0,Hp)

n(s) = {PM s € [Hp, H)

CM s €[H, )

Tabular solving methods have been used to solve

the maintenance problems mentioned in the previous
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sections. To handle a large or continuous state space
that cannot be addressed by the tabular method, one
can turn to the function approximation to model the
state transitions of the system and the value functions
(both state-value functions and state-action value
functions). A general approximator is preferred when
there is not enough information on the possible
function to approximate value functions. Although
neural networks can model various relationships, they
usually require alarge amount of data. The GPR can fit
small datasets without loss of generdity. As an
application, they have demonstrated their proposed
method to model the battery maintenance decision-
making problem by an MDP, where the GPR describes
the system dynamics and value functions. Using NASA
battery randomized usage data, the Gaussian Process
for reinforcement learning (GPRL) algorithm has been
applied over the state value iteration. Compared with
discrete MDPs, the GPRL algorithm appeared to return
a similar optimal policy while being computationally
more efficient. They showed that GPRL could save up
to 11.9% (varies by different values of H) of the
average cost compared to the MDP results.It is worth
mentioning that the GPs have been widely adopted for
stochastic modeling processes in reliability and
maintenance studies. Also, as a general nonparametric
model, GPR gains a reputation for its universality and
good utilization of data, which is aso easy to
implement [15].

7. Finding the optimal CBM policy
with Deep reinforcement learning
(DRL)

Most existing research on CBM assumes that
preventive maintenance should be conducted when the
degradations of system components reach specific
threshold levels upon inspection. However, searching
for optimal maintenance threshold levels is often
efficient for low-dimensional CBM. Still, it becomes
challenging if the number of components gets larger,
especially when those components are subject to
complex dependencies. Another limitation of most
existing CBM models is that they often ignore
competing for failure risks when incorporating various
types of dependencies, which are common in many
real-world systems [16, 17].In this context, competing
risk refers to a system failure due to the failure of any
of its components. For instance, a modern computer
could fail due to the failure of its CPU, storage unit, or
operating system, whichever occurs first. The
competing risks also impose an economic dependency
among components since the system's downtime after
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one component fails is shared by all the components.
Such economic dependency should be considered,
which further makes the CBM challenging. Therefore,
establishing a genera CBM model that jointly
incorporates component-wise dependencies and
competing risks is necessary. Otherwise, the CBM
planning could be inefficient and suboptimal, incurring
higher operational and maintenance costs.

Most applications of the traditional RL have been
limited to domains where the features can be
handcrafted or represented in low-dimensional state
spaces. Therefore, directly applying the traditional RL
to maintenance planning of K-component systems with
complex component-wise interactions would be
computationally inefficient and challenging. To
overcome this challenge, Zhang et a. [12] proposed a
novel and flexible CBM model based on a custom DRL
for multi-component systems with dependent
competing risks.

DRL is an approach in machine learning that
blends reinforcement learning techniques with
strategies for deep learning. This type of learning
requires computers to use sophisticated learning
models and look at large amounts of input in order to
determine an optimized path or action. Their proposed
CBM model for a K-component system is different
from the existing models in two ways:

1. It jointly incorporates stochastic dependency,
economic dependency, and competing for
failure risks among components.

2. It completely excludes the concept of
mai ntenance thresholds, which are key decision
variablesin conventional CBM palicies.

Specifically, the proposed model directly maps the
multi-component degradation measurements at each
inspection epoch to the maintenance decision space
with a cost minimization objective, and the leverage of
DRL enables high computational efficiency and thus
makes the proposed model suitable for both low and
high dimensional CBM problems.

They have shown that the system deterioration
and maintenance process can be formulated as an
MDP, and a Deep Q-learning (DQL) algorithm has
been selected for the maintenance decisions making.
The DQL is a value-based algorithm combining Q-
learning and deep learning to approximate the Q-value
function. In other words, the DQL is an alternative for
Q-learning to solve RL problems with huge state and
action spaces or when the state or action spaces are
continuous. Specifically, the DQL algorithm aims to
recognize patterns instead of mapping every state to its
best action. The difference between Q-learning and
DQL isillustrated in Figureb.
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Figure5. Q-learning vs. Deep Q-learning [6]

In another study, Yousefi et a. [6] proposed a DRL
method to provide a new dynamic maintenance model
for a degrading repairable system subject to degradation
and random shock. The following assumptions concern
to the
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A gamma process is used to model the degradation

path of each component.

1. The tota degradation of each component is
computed by the summation of the internal
degradation process and the damages from
arrived shocks.

2. The system is inspected periodicaly at specific
intervals, and at each inspection, maintenance
actions can be implemented on al the
components based on their degradation level.

3. The exact level of system degradation instead
of discretizing the state space is considered,
which creates an infinite number of states for
the maintenance problem.

4. Five different actions of “nothing”, “imperfect
repair’, “repair’, “imperfect replace”, and
“replace” can be performed on al the
components. Table 4shows the description of
each action.

5. The components of the system are degrading
separately  with  completely  different
degradation behavior, and all of them are
subject to random environmental shocks.

Table 4. The maintenance scheduler set of maintenance actions [6]

Action Description Description of action effects
0 Do nothing The system degrades more based on gamma process
1 Imperfect repair The system is required but the repair was not perfect
2 Repair The system is repaired
3 Imperfect replacement The system becomes very closeto new , but the level is not zero
4 replacement The system is good as new and degradation level goesto zero

The problem has been formulated as an MDP with
an infinite number of states, and the DQL a gorithm was
used to solve the problem and find the best maintenance
action dynamically.

8. Conclusion

In this paper, we reviewed CBM-developed models
recently with different setups by using RL and DRL
methods. Since using RL methods in modeling
maintenance problems is fairly new, the existing work in
this area is limited. Even such limited literature has
shown that the novel RL and DRL methods can provide
more accurate and efficient optima policy for CBM
problems than traditional methods. Specifically, among
different RL algorithms, it seems that more recently
developed RL model-free algorithms such as DQL [12]
and their extensions (see, for example, chapter 8 of [18]
and [7])outperform the traditional approaches. Such

algorithms required assumptions on the true model
structure and can more flexibly mimic environmental
trends. Alternatively, the RL model-based algorithms
can offer promising results for more complex CBM
settings where the model-free algorithms may not be as
efficient. Although such model-based agorithms make
strong assumptions about the environment mechanism
(that may or may not be correct), they can be employed
for a broader range of CBM problems (e.g., GPRL for
continuous-time CBM problems [10]).

Systematic reviews, like ours, are crucia to
illustrate the potentials of RL based on the recent
developments of CBM problems, to provide a thorough
source of the existing work, and ultimately to reflect the
gaps and opportunities in the literature as future work
for the researchers in this field. In the ML and Al era,
RL algorithms are freguently being developed or
improved. More studies are required to employ the more
recent RL algorithms for CBM problems. Additionally,
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different RL algorithms are developed for different
purposes. Focusing on CBM application and comparing
the performance of different RL agorithms for different
problem settings is another crucial gap in the current
literature.
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