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Abstract 
Numerous methods have been introduced to predict the reliability of software. In general, these methods can be divided into two 

main categories, namely parametric (e.g. software reliability growth models) and non-parametric (e.g. neural networks). Both 
approaches have been successfully implemented in software testing applications over the past four decades. Since most software 
reliability prediction data are available in the form of time series, deep recurrent network models (e.g. RNN, LSTM, NARX, and 
LSTM Encoder-Decoder networks) are considered as powerful tools to be employed in reliability-related problems. However, the 
problem of overfitting is a major concern when using deep neural networks for software reliability applications. To address this issue, 
we propose the use of dropout; therefore, this study utilizes a deep learning model based on LSTM Encoder-Decoder Dropout to 
predict the number of faults in software and assess software reliability. Experimental results show that the proposed model has better 
prediction performance compared with other RNN-based models. 
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1. Introduction 
Today, the software has found important roles in 
systems with sensitive applications such as medicine, 
the military industry, and nuclear reactors. Therefore, 
the risks and effects of software failures can lead to 
irreversible damage [1-4]. The existence of such issues 
has driven software system developers to check the 
quality of software before launching the product to the 
market as well as during the project completion stages 
[5-6]. 

In general, there are two groups of reliability 
growth models: parametric and non-parametric. A 
majority of parametric models are based on the non-
homogenous Poisson process (NHPP), which has been 
extensively used in software reliability engineering. 
While NHPP models are widely used, they are always 
associated with certain limitations. Such limitations 
usually involve a series of basic assumptions regarding 
the random nature of software fault, which may not be 
completely observed in real-life conditions. Several 
alternative solutions have been introduced to overcome 
this problem, which falls into the group of non-
parametric models. In non-parametric models like neural 
networks (NN), statistical failure data are a basis for 
prediction [7]. 

For instance, neural networks are capable of 
extracting a model from the existing datasets of fault 
processes. There are several instances of successful use 
of neural networks to solve software reliability 
problems. In all these approaches, the main concern is to 
augment the accuracy of the model for fault prediction 
so that the software delivery process is attained with 
more confidence. 

SRGM models are described according to several 
parameters, and the selection of appropriate estimation 
of these parameters plays an important role in the 
eventual accuracy of the model. The use of the 
traditional neural network (NN) [8] based models for 
software reliability prediction [9] is not efficient enough. 
Overfitting is a major disadvantage of neural networks. 
In addition, it is difficult to adjust their weight 
parameters which requires several learning tricks. For 
this reason, the predictive performance of these models 
is always affected by the mentioned problems. In recent 
years, deep neural networks and their diverse 
architectures have been extensively studied and used to 
overcome the weaknesses of simple neural networks. In 
addition to taking advantage of the capabilities of 
traditional neural networks, deep neural networks have 
shown much higher performance in the field of 
prediction in practice [10]. In particular, a group of 
neural network methods has been widely used in time 
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series prediction issues. Convolutional neural networks 
(CNN) [11], recurrent neural networks (RNN) [12], long 
short-term memory networks (LSTM) [13-16], nonlinear 
autoregressive with external input (NARX) [17] are 
among these networks. 

Recurrent neural networks are a special class of 
deep neural networks that are characterized by internal 
recurrent communication, have the ability to model 
nonlinear dynamic systems, and have been used in 
various predictive actions. More precisely, they perform 
better than conventional time-series predictor models. A 
recurrent neural network processes sequential 
information and performs the same operation on any 
part of the input sequence. Its input, at each time stage, 
depends on previous inputs and previous calculations; 
hence, networks integrate past and present information 
and predict future values. This feature gives the network 
the ability to expand the memory on previous data that is 
different from the neural network, which assumes that 
all its inputs are independent of each other. 
Theoretically, recurrent neural networks can remember 
long sequences conventionally and optionally. 

One should also pay attention to the available data 
set when choosing the appropriate method. In this paper, 
according to the data used, LSTM, LSTM Encoder-
Decoder based model, NARX, and RNN networks are 
used for software reliability prediction. 

Deep neural networks consist of several hidden 
nonlinear layers, which have caused these networks to 
become highly expressive models that can learn the 
complex relationships between their inputs and outputs. 
If the available training data is limited, these complex 
relationships can lead to sampling noise, so complicated 
relationships may exist in the training set but not in the 
real data set even when the distribution of both datasets 
is the same. This causes overfitting, and many methods 
have been introduced to reduce the overfitting problem 
such as the dropout method, which is discussed in this 
paper. 

Dropout is a regularization method where input and 
recurrent connections to LSTM units are 
probabilistically excluded from activation and weight 
updates while training a network [16,18]. This has the 
effect of reducing overfitting and improving model 
performance [18]. 

To evaluate the proposed method, we applied it to 3 
datasets, including the Launch Abort System (LAS), 
namely a space vehicle LAS with functional 
dependencies among the elements. This system consists 
of two main subsystems: The emergency Detection 
System (EDS) as a module of the air/space vehicle 
system and the Launch Escape System (LES). EDS is 
used for detecting abnormal and emergency conditions 
in a flying vehicle and is designed to treat mechanical 
and electrical failures in each of the propulsion, 
electrical, and control systems. 

In this paper, we consider the fault detection time 
as an input time series and the cumulative number of 
detected faults as an output sequence. Furthermore, we 

use LSTM Encoder-Decoder-based model to capture the 
features from fault datasets and to predict the next-step 
and end-point fault number. The experimental results 
indicate that the proposed model can be used to 
accurately predict the number of faults in software and 
evaluate software reliability. In addition, software 
reliability will be higher when the detected faults are 
increased. In other words, when more faults are 
detected, the probability of software failures becomes 
lower. Therefore, accurately predicting the number of 
software faults is of importance for ensuring the 
reliability of software. 

The rest of this paper is organized as follows. After 
the introduction, the research background is presented in 
Section 2. Section 3 introduces research fundamentals. 
Next, the main contributions of the paper are explained 
in Section 4. A detailed case study using Launch Abort 
System (LAS) and other datasets is provided in Section 
6 together with the quantitative analysis based on the 
proposed method. Finally, we conclude the paper in 
Section 7. 

2. Research Background 
So far, several types of research have been done 
regarding prediction using neural networks and recurrent 
neural networks as well as the use of dropout in neural 
networks. In this section, we briefly survey some of 
these studies. 

A surround vehicle motion prediction algorithm has 
been presented in [19] for multi-lane turn intersections 
using a Long Short-Term Memory (LSTM)-based 
Recurrent Neural Network (RNN). 

A novel model called LC-RNN has been presented 
in [20] to achieve more accurate traffic speed prediction 
than existing solutions. It takes advantage of both RNN 
and CNN models by a rational integration of them to 
learn more meaningful time-series patterns that can 
adapt to the traffic dynamics of surrounding areas. 

Srivastava [21] reviewed dropout with feed-
forward neural nets, as well as a dropout with 
Boltzmann machines and marginalizing dropout. 
Sutskever et al. [22] used deep neural networks to 
improve the overall sequential learning problem and 
proposed an end-to-end learning method (sequence 
mapping) for machine translation. Pascanu et al. [23] 
have studied several deep recurrent neural networks and 
proposed a new framework for these networks. Wang et 
al. [24] used the Deep Belief Neural Network model to 
record the semantic characteristics of the program's 
abstract syntax tree (ASTs) and used this model to 
predict or detect software faults. Bhuyan et al. [25] 
proposed a detailed feed-forward back propagation 
network model for predicting reliability using failure 
data, and the obtained results showed a good fit 
compared with other models. Jinyong Wang et al. [26] 

suggested a deep learning model based on the recurrent 
neural network (RNN) Encoder-Decoder for software 
reliability prediction, the architecture of which uses one 
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input layer, two hidden layers, and one output layer. As 
shown in the paper, the obtained results are optimal 
compared with four neural networks (NN) models using 
14 fault datasets in terms of end-point predictions and 
next-step predictions.  

Recent advances in CNNs for time series prediction 
include [27] where the authors propose an undecimated 
convolutional network for time series modeling based on 
the undecimated wavelet transform and [28] in which 
the authors suggest the use of an autoregressive-type 
weighting system for forecasting financial time series 
where the weights are allowed to be data-dependent by 
learning them through a CNN. In general, literature on 
financial time series forecasting with convolutional 
architectures is still scarce as these types of networks are 
much more commonly applied in classification 
problems. 

3. Research Fundamentals 
In this section of the paper, we briefly review a number 
of required backgrounds before starting the main parts 
of the paper. 

3.1 Dropout 
Dropout prevents overfitting and provides a way to 
effectively combine a large number of different neural 
network architectures with an almost exponential order. 
This method refers to the dilution of units in the neural 
network. Diluting a unit is meant to temporarily remove 
that unit from the network along with all input and 
output connections. The units to be diluted are randomly 
determined. In the simplest case, each unit with a 
constant probability (p) is kept independent of the other 
units, in which p can be selected using a validation set 
and easily adjusted to 0.5 because this value appears to 
be optimum for a wide range of networks and operations. 
However, for input units, the optimum probability of units’ 
maintenance is close to 1 instead of 0.5. 

Applying dropout to a neural network means 
sampling a "thin" network from it. The thin network 
contains all the units that remain after implementing the 
random deletion method. A neural network with n units 
can be considered as a set of 2n thin neural networks. 
These networks have shared weights; therefore, the total 
number of parameters is still equal to O(2n) or may be 
lower than this value. If we show the state of training in 
any case, a new thin network is sampled and trained. 
Consequently, neural network training with the random 
deletion method can be considered as training a set of 2n 
thin networks with extensive weight sharing where each 
thin network is rarely trained or not trained at all. At the 
same time, it is not possible to obtain the average 
predictions of thin models, the number of which is in 
exponential order. However, there is a simple 
approximate averaging method that works well in such a 
situation. The idea is to use a neural network without 

dropout during the test. The weights of this network are 
versions of the trained weights. If a unit with p 
probability is trained during training, the output weights 
of that unit are multiplied by p at the time of testing. 
This process ensures that for each hidden unit, the 
expected output is the same as the actual output at test 
time (given the distribution used to dilute the units 
during training). By performing this scalability method, 
the 2n network with shared weights can be combined 
with a neural network that is used during the test. We 
found that training a network with a random deletion 
method and using this technique of approximate 
averaging at the time of testing leads to a lower 
generalization error[29-30,18]. 

3.2 Dropout model 
Consider a neural network with L hidden layers. 
Suppose ݈ ∈ ሼ1, … ,  ሽ to show the hidden layers of theܮ
network. Consider z(l) to represent the input vector to 
layer l and y(l) to show the output vector of l layer (y(0)=x 
is input). W(l) and b(l) are the weights and biases in l 
layer. The feed-forward operation of a standard neural 
network can be described as follows [for l∈ {0,…, L-1} 
and each i hidden layer]: ݖ௜ሺ௟ାଵሻ = ௟ݕ௜ሺ௟ାଵሻݓ + ܾ௜ሺ௟ାଵሻ,                                 ݕ௜ሺ௟ାଵሻ = ݂൫ݖ௜ሺ௟ାଵሻ൯, 

(1) 

In the above equations, f can be any activation 
function and using the random deletion method, the 
feed-forward operation is as follows: ݎ௝ሺ௟ሻ Bernoulli(p), ݕ෤௟ = ሺ௟ሻݎ ∗ ௜ሺ௟ାଵሻݖ ,ሺ௟ሻݕ = ෤௟ݕ௜ሺ௟ାଵሻݓ + ܾ௜ሺ௟ାଵሻ,      ݕ௜ሺ௟ାଵሻ = ݂൫ݖ௜ሺ௟ାଵሻ൯  

(2) 

Here, * refers to element-wise multiplication. For each l 
layer, r(l) is a vector of independent Bernoulli random 
variables, each with a probability of p equal to one. This 
vector is sampled and multiplied element-wise by the outputs 
of that layer (y(l)) to produce the outputs of thinݕ෤௟ outputs. 
These outputs are then used as input to the next layer, and 
this process applies to each layer. The process can be 
considered as sampling a partial network from a larger 
network. In the learning process, the derivative of loss is 
back propagated into the partial network. At the time of 

testing, the weights are scaled asW୲ୣୱ୲ሺ୪ሻ =  .ሺ௟ሻܹ݌
3.3 Learning random deletion networks 
Random deletion neural networks can be trained using a 
stochastic gradient random method similar to standard 
neural networks. The only difference is that for each 
training group in mini-batch mode, we are actually training 
a thin network by diluting the units. Back propagation and 
feed-forward processes for training mode are performed 
only on this thin network. For training in each small group, 
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the gradients of each parameter are averaged. In any 
training mode where the parameter is not used, the value of 

the gradient of that parameter will be zero. 

4. Feed-forward neural networks 
based on time series 

These networks were actually created to process comet 
signals. In a typical neural network, all inputs and 
outputs are independent of each other, but in many 
cases, this idea can be very bad. For example, suppose 
you are trying to predict the next word in a sentence. If 
the network cannot learn the relationships between the 
words, it is certainly unable to predict the next word 
correctly. 

Let's look at this type of network from another 
perspective; these networks have a type of memory that 
records information it has ever seen. In theory, it seems 
that these networks can record and use the information 
in a long sequence, but in practice, this is not the case 
and they are very limited, in that they only record 
information from a few steps ago. There are many types 
of time series, including time series neural networks. In 
this paper, RNN, LSTM, and NARX networks and a 
proposed network based on LSTM Encoder-Decoder 
will be examined. 

4.1 NARX time series neural network 
Conventional neural networks such as Feed-Forward 
neural networks focus only on the input layers and 
transmit the network inputs directly to the neurons in 
each layer, producing an output [31-33]. NARX neural 
networks are based on linear models and are a dynamic 
return network that, in addition to removing the features 
of the Feed Forward network model, use the network 
outputs as feedback to the input of the previous layers of 
the neural network. Also, in these networks, in addition 
to normal inputs, there are other inputs called delay 
inputs that are injected into the network. The time 
required to maintain the values of the previous inputs of 
the network x(t) and the output sequence is y(t);in these 
networks, to start work, first, the training data is loaded, 
and then with the delay lines specified for the inputs and 
the output sequence, if there are two delays for input and 
output, the neural network training will start from the 
third point, the inputs are applied in parallel to the 
network, and in fact, the output y(t) is one feedback and 
one input. Now, for the neural network considered m, 
the general equation of the NARX neural network is 
given below: yሺtሻ = τ fሺyሺt െ 1ሻ, … , y൫t െ d୷൯, uሺt െ 1ሻ, uሺt െ 2ሻ, … , uሺt െd୳ሻሻ ,             (D=1,2,…)                        

(3) 

yሺt + Dሻ = τ fሺyሺtሻ, … , yሺt െ d୳ሻ, uሺtሻ, uሺt െ 1ሻ, … , uሺt െd୳ሻሻ ,                         (D=1,2,…)               (4) 

In this equation that is a nonlinear function, x(t) and 
y(t) are the input and output of the model at time t, and 
d(y) and d(u) are the delays for the input and output of 
the system, respectively; if the value of D is one, the 
prediction is one step ahead, and if the value of D is 
more than one, the prediction is several steps ahead. 

In fact, the general idea of time series is that from a 
series of values specified in a time such as (t) to predict 
other points in future times (t + x), the Figure below 
shows the general representation of the neural network 
system (Figure 1). 

  

Figure 1. NARX neural network 

4.2 Recurrent neural network (RNN) 
In recurrent neural networks, for each sequential 
element, the same task is performed and the output of 
the current state depends on the previous states [34]. 
Because these networks retain the results of previous 
calculations and use them for future computations, they 
are also called memory networks. The simple 
architecture for RNN is shown in Figure 2. Here are 
some steps we can take to begin the process of 
preparation for mediation: - Give input to the network (Input t). - Calculate the current state based on the 

previous state and the current input; in other 
words, calculate States as follows: State୲ = fሺState୲ିଵ, Input୲ሻ  (5) - For the next time step, State t becomes State t-1. - At the request of the problem, perform the 
required number of time steps and then 
combine the information of all the previous 
cases. - Calculate Outputt using the final current state: Output୲ = W୭୳୲୮୳୲ ∗ State୲  (6) - Here, W output is the weight in the output 
neurons. - Calculate the error by finding the difference 
between the actual and predicted output. - Update weights by error back propagation on 
the network. 

  

Figure 2. Recurrent Neural Network 



/ 5  IJRRS/ Vol. 4/ Issue 2/ 2021

 

LSTM Encoder-Decoder Dropout Model in Software Reliability 
Prediction 

 

4.3 LSTM 
Research has focused on applying dropout methods to 
recurrent connections. Applying standard dropout to 
these connections results in poor performance since the 
noise caused by dropout at each time step prevents the 
network from retaining long-term memory. However, 
methods that are specialized for recurrent layers have 
proved successful and are commonly used in practice. 
Generally speaking, they apply dropout to recurrent 
connections in a way that can still preserve long-term 
memory [35-36]. Research into dropout in recurrent 
neural networks (RNNs) has focused on long short-term 
memory (LSTM) networks, although some proposed 
methods can be applied to RNNs in general. The 
following is a typical definition of an LSTM cell, 
although variations exist in this regard. For an input xt at 
time t, input, forget, and output, gate signals are defined 
as: 
 ݅௧ = ሺߪ ௜ܹݔ௧ + ௜ܷ݄௧ିଵሻ              (7) ௧݂ = ൫ߪ ௙ܹݔ௧ + ௙ܷ݄௧ିଵ൯,  (8) 
And ݋௧ = ሺߪ ௢ܹݔ௧ + ܷ௢݄௧ିଵሻ  (9) 
Respectively, the cell state is defined as: ܿ௧ = ௧݂ܿ௧ିଵ + ݅௧݃௧,   (10) 
Where ݃௧ = tanh൫ ௚ܹݔ௧ + ௚ܷ݄௧ିଵ൯  (11) 
The hidden state, which is the layer's output, is defined 
as: ݄௧ = ௧݋  tanhሺܿ௧ሻ   (12) 

W and U matrices represent learned weights, σ(·) 
shows a sigmoid activation function, and σ(·) and tan 
h(·) are applied element-wise.  

5. Proposed approach 

In this section, the proposed approach in subsection 5 is 
presented. First, LSTM Encoder-Decoder is explained in 
subsection 5.1, and Dropout in LSTM Cells is presented 
in subsection 5.2, and in 5.3, the proposed method is 
described in detail. 

5.1 LSTM Encoder-Decoder Architecture 
The LSTM Encoder-Decoder architecture was first 
introduced for machine translation. 
 

 

Figure 3. LSTM Encoder-Decoder 

It has the ability to read and generate a sequence of 
arbitrary length as illustrated in Figure.3. The 
architecture employs two LSTM networks called the 
encoder and decoder. The encoder processes the input 
sequence u1,..., uT of the length T and produces the 
summary of the past input sequence through the cell 
state vector ct. After T times of recurrent updates from 
(1) through (5), the encoder summarizes the whole input 
sequence into the final cell state vector cT.. Then, the 
encoder passes cT to the decoder so that the decoder uses 
it as the initial cell state (i.e., ܿᇱ

0= cT) for the sequence 
generation. The decoding step is initiated with a dummy 
input s(init). The decoder recurrently generates the 
output sequence ݏଵ,..., ்ݏᇲof the length ܶᇱ. In every 
update, the decoder feeds the output st−1 obtained in the 
previous update to the input for the current update. Note 
that the output of the decoder is derived by applying the 
affine transformation followed by the function that suits 
the specific tasks (e.g. Softmax function for 
classification task). Basically, the LSTM Encoder-
Decoder aims to model the conditional probability of the 
output sequence given the input sequence, i.e. p(s1,..., sT0 
|u1,..., uT). The encoder provides the summary of the 
input sequence u1,..., uT through the LSTM cell state cT. 
Given the encoder cell state cT, the conditional 
probability is approximated to ݌ሺݏଵ, , … . , ଵݑ|′்ݏ … , ሻ்ݑ ൎ ∏ ܲሺݏଵ|்ܥ, ,ଵݏ . . , ௧ିଵሻ்′௧ୀଵݏ   (13) 

The decoder successively produces the probability 
distribution of ܲሺݏଵ|ܿ́௧ିଵ,  ௧ିଵሻ given the decoder cellݏ
state ܿ́௧ିଵ and the (t-1)the sample of the output sequence  ݏ௧ିଵ: ݌ሺݏଵ, , … . , ଵݑ|′்ݏ … , ሻ்ݑ ൎ ∏ ܲሺݏଵ|ܿ́௧ିଵ, ௧ିଵሻ்′௧ୀଵݏ   

(14) 
 

Unfortunately, the decoder does not know the true 
value of the previous output sample. Hence, in every 
decoding step, the decoder decides on st based on the 
probability distribution p(st|ܿ́௧ିଵ, st−1) obtained from the 
decoder output and uses the tentative decision for the 
next update of the decoder state. 

5.2 Dropout in LSTM Cells 
In this section, we applied dropout in LSTM and LSTM 
Encoder-Decoder, both of which use the LSTM cell. 
The key change is to generate a dropout mask for each 
input sequence and then keep it. 

 

Figure 4. Comparison of per-step (left) versus per-sequence (right) 
sampling of dropout masks on an unrolled RNN. Horizontal 
connections are recurrent while vertical connections are feed-
forward. Different colors represent various dropout masks applied to 
the corresponding connection. 



6 / IJRRS / Vol. 4/ Issue 2/ 2021 

 

Sh. Oveisi, A. Moeini, S. Mirzaei 

The same is true at every time step. This varies 
from the naive way of applying dropout to RNNs, which 
would generate new dropout masks for each input 
sample regardless of which time sequence it was from. 
Generating masks on a per-sequence basis means that 
the elements in the network's hidden state that are not 
dropped will persist throughout the entire sequence 
without ever being affected by dropout, which allows 
the network to maintain long-term memory. The 
difference between per-step and per-sequence masks on 
an unrolled RNN is illustrated in Figure 4. In particular, 
the authors propose applying dropout to the hidden cell 
state. Hence, the only change from the original LSTM 
definition is the equation for ct, which becomes as 
follows: ܿ௧ = ݉ሺ ௧݂ܿ௧ିଵ + ݅௧݃௧ሻ, ݉௜~݈݈݅ݑ݋݊ݎ݁ܤሺ1 െ  ሻ,                (15)݌

Various other proposed methods also use per-
sequence dropout mask sampling on recurrent 
connections to help preserve long-term memory. 
Variational RNN dropout, which was presented in 2016, 
is one such method, but it operates in a way that is 
theoretically justified in terms of a Bayesian 
interpretation of RNN dropout. The authors show that if 
dropout is seen as a variational Monte Carlo 
approximation to a Bayesian posterior, then the natural 
way to apply it to recurrent layers is to generate a 
dropout mask that zeroes out both feed forward and 
recurrent connections for each training sequence but to 
keep the same mask for each time step in the sequence. 
This is similar to RNN drop in that masks are generated 
on a persequence basis, but the derivation leads to 
dropout being applied at a different point in the LSTM 
cell. Formally, the equations for it, ft, ot, and gt take the 
following forms: ݅௧ = ൫ߪ ௜ܹሺݔ௧݉௫ሻ + ௜ܷሺ݄௧ିଵ݉௛ሻ൯  (16) ௧݂ = ߪ ቀ ௙ܹሺݔ௧݉௫ሻ + ௙ܷሺ݄௧ିଵ݉௛ሻቁ            (17) ݋௧ = ൫ߪ ௢ܹሺݔ௧݉௫ሻ + ܷ௢ሺ݄௧ିଵ݉௛ሻ൯            (18) ݃௧ = ݄݊ܽݐ ቀ ௚ܹሺݔ௧݉௫ሻ + ௚ܷሺ݄௧ିଵ݉௛ሻቁ  (19) ݉௫,௜, ݉௛,௜~݈݈݅ݑ݋݊ݎ݁ܤሺ1 െ  ሻ                            (20)݌

With the equations for ct and h remaining the same 
as in the original LSTM. This dropout method has 
become one of the most widespread techniques for 
regularizing RNNs. In training, these LSTM cells use 
the following equations for it, namely ft, ot, and gt, 
otherwise following the basic LSTM formulation given 
below. ݅௧ = ሺߪ ௜ܹݔ௧ሺ ௜ܷܯሻ݄௧ିଵሻ   (21) ௧݂ = ൫ߪ ௙ܹݔ௧ + ൫ ௙ܷܯ൯݄௧ିଵ൯  (22) ௧݂ = ሺߪ ௢ܹݔ௧ + ሺ ௢ܷܯሻ݄௧ିଵሻ       (23) ݃௧ = ൫݄݊ܽݐ ௚ܹݔ௧ + ൫ ௚ܷܯ൯݄௧ିଵ൯       (24) ܯ௜௝~݈݈݅ݑ݋݊ݎ݁ܤሺ1 െ  ሻ  (25)݌

This approach allowed the authors to achieve 
results on language modeling benchmarks that were 
state-of-the-art at the time. Recurrent dropout is an 
alternative approach that can preserve memory in an 
LSTM while still generating different dropout masks for 

each input sample as in standard dropout. This is done 
by only applying dropout to the part of the RNN that 
updates the hidden state and not the state itself. So, if an 
element is dropped, then it simply does not contribute to 
network memory, rather than erasing the hidden state. 
For an LSTM, the equations are the same as in the 
original LSTM except that the equation for ct becomes 
as follows: ܿݐ = 1−ݐܿݐ݂ + ,ݐ݉ݐ݃ݐ݅ 1)݈݈݅ݑ݋݊ݎ݁ܤ~݅,ݐ݉ − (26)     .(݌

5.3 Model Design 
The proposed architectural model is shown in Figure 5. 
This network consists of two main components: i) an 
Encoder-Decoder framework that captures the inherent 
pattern in the time series, which is learned during the 
pre-training step, and (ii) a prediction network that takes 
input from both the learned embeddings from Encoder-
Decoder. We discuss the two components in more detail 
below. 

 

Figure 5. Neural network architecture, with a pre-training 
phase using an LSTM Encoder-Decoder 

5.3.1 Encoder-decoder 
Before fitting the prediction model, we conduct a pre-
training step to fit an encoder that can extract useful and 
representative embeddings from a time series. The goals 
are to ensure that (i) the learned embedding provides 
useful features for prediction and (ii) unusual input can 
be captured in the embedded space, which will get 
further propagated to the prediction network in the next 
step. Here, we use an Encoder-Decoder framework with 
two-layer LSTM cells. 

Specifically, given a univariate time series {xt}t, 
the encoder reads in the first T timestamps {x1, ..., xT } 
and constructs a fixed-dimensional embedding state. 
After that, from this embedding state, the decoder 
constructs the following F timestamps {xT +1, ..., xT +F 
} with guidance from {xT −F +1, ..., xT } (Figure 5, 
bottom panel). The intuition is that in order to construct 
the next few timestamps, the embedding state must 
extract representative and meaningful features from the 
input time series. This design is inspired by the success 
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of video representation learning using a similar 
architecture [Srivastava et al., 2015]. 

5.3.2 Prediction network 
After the Encoder-Decoder is pre-trained, it is treated as 
an intelligent feature-extraction black box. Specifically, 
the last LSTM cell states of the encoder are extracted as 
learned embedding. Then, a prediction network is 
trained to forecast the next one or more timestamps 
using the learned embedding as features. In the scenario 
where external features are available, these can be 
concatenated to the embedding vector and passed 
together to the final prediction network. Here, we use a 

multi-layer perceptron as the prediction network. 

6. Evaluation 

This section contains a number of subsections. We first 
implemented our method on a data set taken from the 
Launch Abort System (LAS) subsystem. We then 
implemented our results in two other datasets 
introduced in the papers [Tohma et al., 1991; Tohma et 
al., 19 89]. 

Subsequently, for better comparison, in addition to 
LSTM Encoder-Decoder (Proposed Method), we also 
implemented this dataset on NARX and RNN recurrent 
networks. 

These datasets are all time-series identification 
systems. It should be noted that the input is the software 
test time and the output is the cumulative number of 
faults at that time (Figure 6). 

 
  
  

  
 

Figure 6. Failure process in software 

6.1 Implementation on-air/space application  
We applied the results of our approach to part of a 
real CPS known as Launch Abort System (LAS), the 
architecture of which is shown in Figure 7. As 
indicated, the tree construction of a space vehicle 
Launch Abort System (LAS) has functional 
dependencies among the elements. This system 
consists of two main subsystems, which include the 
Emergency Detection System (EDS) as a module of 
the air/space vehicle system and the Launch Escape 
System (LES). EDS is used for detecting the 
abnormal and emergency conditions in flying vehicles 
that are designed to treat mechanical and electrical 
failures in each of the propulsion, electrical, and 
control portions. While the EDS system detects an 
unusual and faulty condition in one of the main parts 
of the LES system (i.e., electrical power failure, 
structural failure, guidance, and control faulty, etc.), 
it is sensed and transmitted through a signal to trigger 

the FDEP gate of LES system. Generally, the launch 
escape system consists of a launch escape motor, 
pitch control motor, tower jettison motor, landing 
parachute, and the Master Event Sequencing 
Controller Subsystems (MESC). According to the 
launch and flight regimes and based on the flight 
altitude, the operation time of each motor-based 
subsystem is different. A master event sequence 
controller on LES is an intelligent standalone 
microprocessor-based system, which monitors 
external inputs and controls the time and sequence of 
the event’s changes. MESCs are therefore utilized as 
a prioritizing tool to dictate the occurrence of events. 
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Loss of thrust 

Signal from Excessive 

vehicle angular rates 

Signal from 
Electrical failure

Instruments (Emergency conditions are 
displayed to the crew on the main display 

console to indicate necessity for abort)

Contactor

Detector for 
loss of thrust

A

B

C

K-out-of-n

Detector for Excessive 
vehicle angular rates

A

B

C

K-out-of-n

Detector for 
Electrical Failure

A

B

C

K-out-of-n

t5t1 t2 t3 t4

Sending Emergency 
Signal from EDS

Pitch Control 
Motor

Launch 
Escape Motor

Tower Jettison 
Motor

Landing  Parachute  
Subsystem

Master Event 
Sequence Controller

Timing Dynamic Events

       TFDEP[T]  Trigger
Top Event for Normal 

Operation of LES to Save Crew

 

Figure 7. Tree construction with the dependency on LAS 

6.2 Other Datasets 
This section compares the proposed model with NN and 
other parametric models. We utilize the model 
comparison results to compare our results with those 
from previous studies. We employ two fault data sets to 
compare the prediction performance of all the models in 
the present study. These datasets have more data rather 
than dataset 1. 

Dataset1: The first fault data set (DS1) was collected 
from a real-time control application with approximately 
870,000 code lines [37 ]. 
Datasat2: A total of 481 faults were detected from a 
monitoring and real-time control system with 
approximately 200,000 code lines for 111 days. The 
second fault date set (DS2) was collected from [38].  

6.3 Assessment methods 
The performance of software reliability models is highly 
dependent on the estimation of model parameters. In this 
paper, to assess our models, we evaluate MSE errors using 
two different optimizers, namely Adam and SGD on three 

 ௡ݐ  ௡ିଵݐଶݐଵݐ                0

 ௡ݐ∆ ଶݐ∆ ଵݐ∆
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datasets. The MSEs are reported after 150 and 1000 
iterations. As can be seen in Tables 1-2 and Figures 8-15, 
the LSTM Encoder-Decoder model (proposed method) 
outperforms rather another RNN-based model (especially 
in datasets with more data(dataset 2,3)). Furthermore, 
introducing dropouts can even further improve the results 

that were obtained earlier. Therefore, the LSTM Encoder-
Decoder dropout achieves the lowest error rates, especially 
with the Adam optimizer dropout method (proposed 

method with dropout(Figures 11-13)). 

 

Table 1. Validation Metrics for confirmed cases of LAS using MSE with 150 Epochs 

LAS Dataset1 Dataset2 

Optimizer Adam SGD Adam SGD Adam SGD 

LSTM Encoder-Decoder 0.0015 0.05 
9.2260e-

05 
0.00099 9.4631e-06 0.0030 

LSTM Encoder-Decoder+ Drop Out 0.0010 0.053 0.00011 0.00076 7.3260e-06 0.00072 

LSTM 0.0128 0.0254 14.0857 1.5279e+03 7.5597 22.1092 

LSTM+Dropout 0.0125 0.1173 13.9176 2.5611 9.7327 13.9842 

NARX 1.85e-25 4.16e-22 0.0496 9.32e+03 63.5 0.0124 

NARX +Dropout 1.83e-29 5.26e-30 13.8 86.1 0.0136 65.7 

RNN 3.37e-29 1.02e-19 1.08e+3 0.000279 5.74e-5 1.49e-27 

RNN+Dropout 1.88e-27 7.51e-29 6.72e+03 0.0155 3.19e+03 679 

 
 

 

Figure 8. Validation Metrics for LAS dataset using MSE with 150 Epochs 

 

 

Figure 9. Validation Metrics for dataset1 using MSE with 150 Epochs 
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Figure 10. Validation Metrics for dataset2 using MSE with 150 Epochs 

 

Table 2. Validation Metrics for confirmed cases LAS using MSE with 1000 Epochs 

Dataset LAS Dataset1 Dataset2 

Optimizer Adam SGD Adam SGD Adam SGD 

LSTM Encoder-Decoder 0.00075 0.04 1.34155e-05 1.3415e-05 6.6070e-05 4.6826e-05 

LSTM Encoder-Decoder+ Drop Out 0.00069 0.04 0.00021 0.0002 1.6009e-05 0.00011 

LSTM 
9.1421e-

04 
0.0272 889.9926 1.0842e+04 86.5335 1.4553e+04 

LSTM+Dropout 0.0077 0.1069 7.3391 7.1412 
9.6365 

 
27.4822 

NARX 3.17e-27 2.61e-27 
0.00057 

 
226 50 177 

NARX +Dropout 8.59 9.68e-25 154 101 0.00767 154 

RNN 3.21e-25 2.05e-26 2.07e-25 5.18e+03 3.2e-25 2.53 

RNN+Dropout 669 2.31e-30 1.25e-24 0.751 0.0599 3.68 

 

 

Figure 11. Validation Metrics for LAS using MSE with 1000 Epochs 
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Figure 12. Validation Metrics for dataset1 using MSE with 1000 Epochs 

 

 

Figure 13. Validation Metrics for dataset2 using MSE with 1000 Epochs 

 

Figure 14. Validation Metrics for confirmed cases of LAS based on Adam classification 
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Figure 15. Validation Metrics for confirmed cases of LAS based on SGD classification 

7. Conclusion 
The use of non-parametric methods (e.g. deep recurrent 
neural networks) in software reliability prediction 
applications has shown great promise. In this paper, we 
employed RNN-based networks to predict the reliability 
of software and presented a method based on Encoder-
Decoder. A major issue that needs to be considered is 
that of overfitting. We show that the use of dropout in 
the training phase is highly efficacious in this regard. 
Simulations on three datasets using two different 
optimizers indicate that the best results in terms of MSE 
pertain to the LSTM Encoder-Decoder model with 
dropout (proposed method), especially in data sets with 
more data (dataset2, dataset 3). As a future direction, we 
may investigate the level of uncertainty involved in the 
predictions made by such networks using Bayesian 
approaches. 
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