

 Online ISSN: 2676-3346

Vol. 4/ Issue 2/ 2021/ pp. 1-12

DOI : 10.30699/IJRRS.4.2.1

Received: 2021.09.21, Accepted: 2022.03.07

Original Research Article

LSTM Encoder-Decoder Dropout Model in
Software Reliability Prediction

Shahrzad Oveisi1, Ali Moeini1*, Sayeh Mirzaei1

1. Department of Algorithms and Computation, School of Engineering Sciences, College of Engineering,
University of Tehran, Tehran, IRAN

*moeini@ut.ac.ir

Abstract
Numerous methods have been introduced to predict the reliability of software. In general, these methods can be divided into two

main categories, namely parametric (e.g. software reliability growth models) and non-parametric (e.g. neural networks). Both
approaches have been successfully implemented in software testing applications over the past four decades. Since most software
reliability prediction data are available in the form of time series, deep recurrent network models (e.g. RNN, LSTM, NARX, and
LSTM Encoder-Decoder networks) are considered as powerful tools to be employed in reliability-related problems. However, the
problem of overfitting is a major concern when using deep neural networks for software reliability applications. To address this issue,
we propose the use of dropout; therefore, this study utilizes a deep learning model based on LSTM Encoder-Decoder Dropout to
predict the number of faults in software and assess software reliability. Experimental results show that the proposed model has better
prediction performance compared with other RNN-based models.

Keywords: LSTM; LSTM Encoder-Decoder; NARX, RNN; Dropout; Software Reliability Prediction; Bayesian.

1. Introduction
Today, the software has found important roles in
systems with sensitive applications such as medicine,
the military industry, and nuclear reactors. Therefore,
the risks and effects of software failures can lead to
irreversible damage [1-4]. The existence of such issues
has driven software system developers to check the
quality of software before launching the product to the
market as well as during the project completion stages
[5-6].

In general, there are two groups of reliability
growth models: parametric and non-parametric. A
majority of parametric models are based on the non-
homogenous Poisson process (NHPP), which has been
extensively used in software reliability engineering.
While NHPP models are widely used, they are always
associated with certain limitations. Such limitations
usually involve a series of basic assumptions regarding
the random nature of software fault, which may not be
completely observed in real-life conditions. Several
alternative solutions have been introduced to overcome
this problem, which falls into the group of non-
parametric models. In non-parametric models like neural
networks (NN), statistical failure data are a basis for
prediction [7].

For instance, neural networks are capable of
extracting a model from the existing datasets of fault
processes. There are several instances of successful use
of neural networks to solve software reliability
problems. In all these approaches, the main concern is to
augment the accuracy of the model for fault prediction
so that the software delivery process is attained with
more confidence.

SRGM models are described according to several
parameters, and the selection of appropriate estimation
of these parameters plays an important role in the
eventual accuracy of the model. The use of the
traditional neural network (NN) [8] based models for
software reliability prediction [9] is not efficient enough.
Overfitting is a major disadvantage of neural networks.
In addition, it is difficult to adjust their weight
parameters which requires several learning tricks. For
this reason, the predictive performance of these models
is always affected by the mentioned problems. In recent
years, deep neural networks and their diverse
architectures have been extensively studied and used to
overcome the weaknesses of simple neural networks. In
addition to taking advantage of the capabilities of
traditional neural networks, deep neural networks have
shown much higher performance in the field of
prediction in practice [10]. In particular, a group of
neural network methods has been widely used in time

2 / IJRRS / Vol. 4/ Issue 2/ 2021

Sh. Oveisi, A. Moeini, S. Mirzaei

series prediction issues. Convolutional neural networks
(CNN) [11], recurrent neural networks (RNN) [12], long
short-term memory networks (LSTM) [13-16], nonlinear
autoregressive with external input (NARX) [17] are
among these networks.

Recurrent neural networks are a special class of
deep neural networks that are characterized by internal
recurrent communication, have the ability to model
nonlinear dynamic systems, and have been used in
various predictive actions. More precisely, they perform
better than conventional time-series predictor models. A
recurrent neural network processes sequential
information and performs the same operation on any
part of the input sequence. Its input, at each time stage,
depends on previous inputs and previous calculations;
hence, networks integrate past and present information
and predict future values. This feature gives the network
the ability to expand the memory on previous data that is
different from the neural network, which assumes that
all its inputs are independent of each other.
Theoretically, recurrent neural networks can remember
long sequences conventionally and optionally.

One should also pay attention to the available data
set when choosing the appropriate method. In this paper,
according to the data used, LSTM, LSTM Encoder-
Decoder based model, NARX, and RNN networks are
used for software reliability prediction.

Deep neural networks consist of several hidden
nonlinear layers, which have caused these networks to
become highly expressive models that can learn the
complex relationships between their inputs and outputs.
If the available training data is limited, these complex
relationships can lead to sampling noise, so complicated
relationships may exist in the training set but not in the
real data set even when the distribution of both datasets
is the same. This causes overfitting, and many methods
have been introduced to reduce the overfitting problem
such as the dropout method, which is discussed in this
paper.

Dropout is a regularization method where input and
recurrent connections to LSTM units are
probabilistically excluded from activation and weight
updates while training a network [16,18]. This has the
effect of reducing overfitting and improving model
performance [18].

To evaluate the proposed method, we applied it to 3
datasets, including the Launch Abort System (LAS),
namely a space vehicle LAS with functional
dependencies among the elements. This system consists
of two main subsystems: The emergency Detection
System (EDS) as a module of the air/space vehicle
system and the Launch Escape System (LES). EDS is
used for detecting abnormal and emergency conditions
in a flying vehicle and is designed to treat mechanical
and electrical failures in each of the propulsion,
electrical, and control systems.

In this paper, we consider the fault detection time
as an input time series and the cumulative number of
detected faults as an output sequence. Furthermore, we

use LSTM Encoder-Decoder-based model to capture the
features from fault datasets and to predict the next-step
and end-point fault number. The experimental results
indicate that the proposed model can be used to
accurately predict the number of faults in software and
evaluate software reliability. In addition, software
reliability will be higher when the detected faults are
increased. In other words, when more faults are
detected, the probability of software failures becomes
lower. Therefore, accurately predicting the number of
software faults is of importance for ensuring the
reliability of software.

The rest of this paper is organized as follows. After
the introduction, the research background is presented in
Section 2. Section 3 introduces research fundamentals.
Next, the main contributions of the paper are explained
in Section 4. A detailed case study using Launch Abort
System (LAS) and other datasets is provided in Section
6 together with the quantitative analysis based on the
proposed method. Finally, we conclude the paper in
Section 7.

2. Research Background
So far, several types of research have been done
regarding prediction using neural networks and recurrent
neural networks as well as the use of dropout in neural
networks. In this section, we briefly survey some of
these studies.

A surround vehicle motion prediction algorithm has
been presented in [19] for multi-lane turn intersections
using a Long Short-Term Memory (LSTM)-based
Recurrent Neural Network (RNN).

A novel model called LC-RNN has been presented
in [20] to achieve more accurate traffic speed prediction
than existing solutions. It takes advantage of both RNN
and CNN models by a rational integration of them to
learn more meaningful time-series patterns that can
adapt to the traffic dynamics of surrounding areas.

Srivastava [21] reviewed dropout with feed-
forward neural nets, as well as a dropout with
Boltzmann machines and marginalizing dropout.
Sutskever et al. [22] used deep neural networks to
improve the overall sequential learning problem and
proposed an end-to-end learning method (sequence
mapping) for machine translation. Pascanu et al. [23]
have studied several deep recurrent neural networks and
proposed a new framework for these networks. Wang et
al. [24] used the Deep Belief Neural Network model to
record the semantic characteristics of the program's
abstract syntax tree (ASTs) and used this model to
predict or detect software faults. Bhuyan et al. [25]
proposed a detailed feed-forward back propagation
network model for predicting reliability using failure
data, and the obtained results showed a good fit
compared with other models. Jinyong Wang et al. [26]

suggested a deep learning model based on the recurrent
neural network (RNN) Encoder-Decoder for software
reliability prediction, the architecture of which uses one

/ 3 IJRRS/ Vol. 4/ Issue 2/ 2021

LSTM Encoder-Decoder Dropout Model in Software Reliability
Prediction

input layer, two hidden layers, and one output layer. As
shown in the paper, the obtained results are optimal
compared with four neural networks (NN) models using
14 fault datasets in terms of end-point predictions and
next-step predictions.

Recent advances in CNNs for time series prediction
include [27] where the authors propose an undecimated
convolutional network for time series modeling based on
the undecimated wavelet transform and [28] in which
the authors suggest the use of an autoregressive-type
weighting system for forecasting financial time series
where the weights are allowed to be data-dependent by
learning them through a CNN. In general, literature on
financial time series forecasting with convolutional
architectures is still scarce as these types of networks are
much more commonly applied in classification
problems.

3. Research Fundamentals
In this section of the paper, we briefly review a number
of required backgrounds before starting the main parts
of the paper.

3.1 Dropout
Dropout prevents overfitting and provides a way to
effectively combine a large number of different neural
network architectures with an almost exponential order.
This method refers to the dilution of units in the neural
network. Diluting a unit is meant to temporarily remove
that unit from the network along with all input and
output connections. The units to be diluted are randomly
determined. In the simplest case, each unit with a
constant probability (p) is kept independent of the other
units, in which p can be selected using a validation set
and easily adjusted to 0.5 because this value appears to
be optimum for a wide range of networks and operations.
However, for input units, the optimum probability of units’
maintenance is close to 1 instead of 0.5.

Applying dropout to a neural network means
sampling a "thin" network from it. The thin network
contains all the units that remain after implementing the
random deletion method. A neural network with n units
can be considered as a set of 2n thin neural networks.
These networks have shared weights; therefore, the total
number of parameters is still equal to O(2n) or may be
lower than this value. If we show the state of training in
any case, a new thin network is sampled and trained.
Consequently, neural network training with the random
deletion method can be considered as training a set of 2n
thin networks with extensive weight sharing where each
thin network is rarely trained or not trained at all. At the
same time, it is not possible to obtain the average
predictions of thin models, the number of which is in
exponential order. However, there is a simple
approximate averaging method that works well in such a
situation. The idea is to use a neural network without

dropout during the test. The weights of this network are
versions of the trained weights. If a unit with p
probability is trained during training, the output weights
of that unit are multiplied by p at the time of testing.
This process ensures that for each hidden unit, the
expected output is the same as the actual output at test
time (given the distribution used to dilute the units
during training). By performing this scalability method,
the 2n network with shared weights can be combined
with a neural network that is used during the test. We
found that training a network with a random deletion
method and using this technique of approximate
averaging at the time of testing leads to a lower
generalization error[29-30,18].

3.2 Dropout model
Consider a neural network with L hidden layers.
Suppose ݈ ∈ ሼ1, … , ሽ to show the hidden layers of theܮ
network. Consider z(l) to represent the input vector to
layer l and y(l) to show the output vector of l layer (y(0)=x
is input). W(l) and b(l) are the weights and biases in l
layer. The feed-forward operation of a standard neural
network can be described as follows [for l∈ {0,…, L-1}
and each i hidden layer]: ݖ௜ሺ௟ାଵሻ = ௟ݕ௜ሺ௟ାଵሻݓ + ܾ௜ሺ௟ାଵሻ, ݕ௜ሺ௟ାଵሻ = ݂൫ݖ௜ሺ௟ାଵሻ൯,

(1)

In the above equations, f can be any activation
function and using the random deletion method, the
feed-forward operation is as follows: ݎ௝ሺ௟ሻ Bernoulli(p), ݕ෤௟ = ሺ௟ሻݎ ∗ ௜ሺ௟ାଵሻݖ ,ሺ௟ሻݕ = ෤௟ݕ௜ሺ௟ାଵሻݓ + ܾ௜ሺ௟ାଵሻ, ݕ௜ሺ௟ାଵሻ = ݂൫ݖ௜ሺ௟ାଵሻ൯

(2)

Here, * refers to element-wise multiplication. For each l
layer, r(l) is a vector of independent Bernoulli random
variables, each with a probability of p equal to one. This
vector is sampled and multiplied element-wise by the outputs
of that layer (y(l)) to produce the outputs of thinݕ෤௟ outputs.
These outputs are then used as input to the next layer, and
this process applies to each layer. The process can be
considered as sampling a partial network from a larger
network. In the learning process, the derivative of loss is
back propagated into the partial network. At the time of

testing, the weights are scaled asW୲ୣୱ୲ሺ୪ሻ = .ሺ௟ሻܹ݌
3.3 Learning random deletion networks
Random deletion neural networks can be trained using a
stochastic gradient random method similar to standard
neural networks. The only difference is that for each
training group in mini-batch mode, we are actually training
a thin network by diluting the units. Back propagation and
feed-forward processes for training mode are performed
only on this thin network. For training in each small group,

4 / IJRRS / Vol. 4/ Issue 2/ 2021

Sh. Oveisi, A. Moeini, S. Mirzaei

the gradients of each parameter are averaged. In any
training mode where the parameter is not used, the value of

the gradient of that parameter will be zero.

4. Feed-forward neural networks
based on time series

These networks were actually created to process comet
signals. In a typical neural network, all inputs and
outputs are independent of each other, but in many
cases, this idea can be very bad. For example, suppose
you are trying to predict the next word in a sentence. If
the network cannot learn the relationships between the
words, it is certainly unable to predict the next word
correctly.

Let's look at this type of network from another
perspective; these networks have a type of memory that
records information it has ever seen. In theory, it seems
that these networks can record and use the information
in a long sequence, but in practice, this is not the case
and they are very limited, in that they only record
information from a few steps ago. There are many types
of time series, including time series neural networks. In
this paper, RNN, LSTM, and NARX networks and a
proposed network based on LSTM Encoder-Decoder
will be examined.

4.1 NARX time series neural network
Conventional neural networks such as Feed-Forward
neural networks focus only on the input layers and
transmit the network inputs directly to the neurons in
each layer, producing an output [31-33]. NARX neural
networks are based on linear models and are a dynamic
return network that, in addition to removing the features
of the Feed Forward network model, use the network
outputs as feedback to the input of the previous layers of
the neural network. Also, in these networks, in addition
to normal inputs, there are other inputs called delay
inputs that are injected into the network. The time
required to maintain the values of the previous inputs of
the network x(t) and the output sequence is y(t);in these
networks, to start work, first, the training data is loaded,
and then with the delay lines specified for the inputs and
the output sequence, if there are two delays for input and
output, the neural network training will start from the
third point, the inputs are applied in parallel to the
network, and in fact, the output y(t) is one feedback and
one input. Now, for the neural network considered m,
the general equation of the NARX neural network is
given below: yሺtሻ = τ fሺyሺt െ 1ሻ, … , y൫t െ d୷൯, uሺt െ 1ሻ, uሺt െ 2ሻ, … , uሺt െd୳ሻሻ , (D=1,2,…)

(3)

yሺt + Dሻ = τ fሺyሺtሻ, … , yሺt െ d୳ሻ, uሺtሻ, uሺt െ 1ሻ, … , uሺt െd୳ሻሻ , (D=1,2,…) (4)

In this equation that is a nonlinear function, x(t) and
y(t) are the input and output of the model at time t, and
d(y) and d(u) are the delays for the input and output of
the system, respectively; if the value of D is one, the
prediction is one step ahead, and if the value of D is
more than one, the prediction is several steps ahead.

In fact, the general idea of time series is that from a
series of values specified in a time such as (t) to predict
other points in future times (t + x), the Figure below
shows the general representation of the neural network
system (Figure 1).

Figure 1. NARX neural network

4.2 Recurrent neural network (RNN)
In recurrent neural networks, for each sequential
element, the same task is performed and the output of
the current state depends on the previous states [34].
Because these networks retain the results of previous
calculations and use them for future computations, they
are also called memory networks. The simple
architecture for RNN is shown in Figure 2. Here are
some steps we can take to begin the process of
preparation for mediation: - Give input to the network (Input t). - Calculate the current state based on the

previous state and the current input; in other
words, calculate States as follows: State୲ = fሺState୲ିଵ, Input୲ሻ (5) - For the next time step, State t becomes State t-1. - At the request of the problem, perform the
required number of time steps and then
combine the information of all the previous
cases. - Calculate Outputt using the final current state: Output୲ = W୭୳୲୮୳୲ ∗ State୲ (6) - Here, W output is the weight in the output
neurons. - Calculate the error by finding the difference
between the actual and predicted output. - Update weights by error back propagation on
the network.

Figure 2. Recurrent Neural Network

/ 5 IJRRS/ Vol. 4/ Issue 2/ 2021

LSTM Encoder-Decoder Dropout Model in Software Reliability
Prediction

4.3 LSTM
Research has focused on applying dropout methods to
recurrent connections. Applying standard dropout to
these connections results in poor performance since the
noise caused by dropout at each time step prevents the
network from retaining long-term memory. However,
methods that are specialized for recurrent layers have
proved successful and are commonly used in practice.
Generally speaking, they apply dropout to recurrent
connections in a way that can still preserve long-term
memory [35-36]. Research into dropout in recurrent
neural networks (RNNs) has focused on long short-term
memory (LSTM) networks, although some proposed
methods can be applied to RNNs in general. The
following is a typical definition of an LSTM cell,
although variations exist in this regard. For an input xt at
time t, input, forget, and output, gate signals are defined
as:
 ݅௧ = ሺߪ ௜ܹݔ௧ + ௜ܷ݄௧ିଵሻ (7) ௧݂ = ൫ߪ ௙ܹݔ௧ + ௙ܷ݄௧ିଵ൯, (8)
And ݋௧ = ሺߪ ௢ܹݔ௧ + ܷ௢݄௧ିଵሻ (9)
Respectively, the cell state is defined as: ܿ௧ = ௧݂ܿ௧ିଵ + ݅௧݃௧, (10)
Where ݃௧ = tanh൫ ௚ܹݔ௧ + ௚ܷ݄௧ିଵ൯ (11)
The hidden state, which is the layer's output, is defined
as: ݄௧ = ௧݋ tanhሺܿ௧ሻ (12)

W and U matrices represent learned weights, σ(·)
shows a sigmoid activation function, and σ(·) and tan
h(·) are applied element-wise.

5. Proposed approach

In this section, the proposed approach in subsection 5 is
presented. First, LSTM Encoder-Decoder is explained in
subsection 5.1, and Dropout in LSTM Cells is presented
in subsection 5.2, and in 5.3, the proposed method is
described in detail.

5.1 LSTM Encoder-Decoder Architecture
The LSTM Encoder-Decoder architecture was first
introduced for machine translation.

Figure 3. LSTM Encoder-Decoder

It has the ability to read and generate a sequence of
arbitrary length as illustrated in Figure.3. The
architecture employs two LSTM networks called the
encoder and decoder. The encoder processes the input
sequence u1,..., uT of the length T and produces the
summary of the past input sequence through the cell
state vector ct. After T times of recurrent updates from
(1) through (5), the encoder summarizes the whole input
sequence into the final cell state vector cT.. Then, the
encoder passes cT to the decoder so that the decoder uses
it as the initial cell state (i.e., ܿᇱ

0= cT) for the sequence
generation. The decoding step is initiated with a dummy
input s(init). The decoder recurrently generates the
output sequence ݏଵ,..., ்ݏᇲof the length ܶᇱ. In every
update, the decoder feeds the output st−1 obtained in the
previous update to the input for the current update. Note
that the output of the decoder is derived by applying the
affine transformation followed by the function that suits
the specific tasks (e.g. Softmax function for
classification task). Basically, the LSTM Encoder-
Decoder aims to model the conditional probability of the
output sequence given the input sequence, i.e. p(s1,..., sT0
|u1,..., uT). The encoder provides the summary of the
input sequence u1,..., uT through the LSTM cell state cT.
Given the encoder cell state cT, the conditional
probability is approximated to ݌ሺݏଵ, , … . , ଵݑ|′்ݏ … , ሻ்ݑ ൎ ∏ ܲሺݏଵ|்ܥ, ,ଵݏ . . , ௧ିଵሻ்′௧ୀଵݏ (13)

The decoder successively produces the probability
distribution of ܲሺݏଵ|ܿ́௧ିଵ, ௧ିଵሻ given the decoder cellݏ
state ܿ́௧ିଵ and the (t-1)the sample of the output sequence ݏ௧ିଵ: ݌ሺݏଵ, , … . , ଵݑ|′்ݏ … , ሻ்ݑ ൎ ∏ ܲሺݏଵ|ܿ́௧ିଵ, ௧ିଵሻ்′௧ୀଵݏ

(14)

Unfortunately, the decoder does not know the true
value of the previous output sample. Hence, in every
decoding step, the decoder decides on st based on the
probability distribution p(st|ܿ́௧ିଵ, st−1) obtained from the
decoder output and uses the tentative decision for the
next update of the decoder state.

5.2 Dropout in LSTM Cells
In this section, we applied dropout in LSTM and LSTM
Encoder-Decoder, both of which use the LSTM cell.
The key change is to generate a dropout mask for each
input sequence and then keep it.

Figure 4. Comparison of per-step (left) versus per-sequence (right)
sampling of dropout masks on an unrolled RNN. Horizontal
connections are recurrent while vertical connections are feed-
forward. Different colors represent various dropout masks applied to
the corresponding connection.

6 / IJRRS / Vol. 4/ Issue 2/ 2021

Sh. Oveisi, A. Moeini, S. Mirzaei

The same is true at every time step. This varies
from the naive way of applying dropout to RNNs, which
would generate new dropout masks for each input
sample regardless of which time sequence it was from.
Generating masks on a per-sequence basis means that
the elements in the network's hidden state that are not
dropped will persist throughout the entire sequence
without ever being affected by dropout, which allows
the network to maintain long-term memory. The
difference between per-step and per-sequence masks on
an unrolled RNN is illustrated in Figure 4. In particular,
the authors propose applying dropout to the hidden cell
state. Hence, the only change from the original LSTM
definition is the equation for ct, which becomes as
follows: ܿ௧ = ݉ሺ ௧݂ܿ௧ିଵ + ݅௧݃௧ሻ, ݉௜~݈݈݅ݑ݋݊ݎ݁ܤሺ1 െ ሻ, (15)݌

Various other proposed methods also use per-
sequence dropout mask sampling on recurrent
connections to help preserve long-term memory.
Variational RNN dropout, which was presented in 2016,
is one such method, but it operates in a way that is
theoretically justified in terms of a Bayesian
interpretation of RNN dropout. The authors show that if
dropout is seen as a variational Monte Carlo
approximation to a Bayesian posterior, then the natural
way to apply it to recurrent layers is to generate a
dropout mask that zeroes out both feed forward and
recurrent connections for each training sequence but to
keep the same mask for each time step in the sequence.
This is similar to RNN drop in that masks are generated
on a persequence basis, but the derivation leads to
dropout being applied at a different point in the LSTM
cell. Formally, the equations for it, ft, ot, and gt take the
following forms: ݅௧ = ൫ߪ ௜ܹሺݔ௧݉௫ሻ + ௜ܷሺ݄௧ିଵ݉௛ሻ൯ (16) ௧݂ = ߪ ቀ ௙ܹሺݔ௧݉௫ሻ + ௙ܷሺ݄௧ିଵ݉௛ሻቁ (17) ݋௧ = ൫ߪ ௢ܹሺݔ௧݉௫ሻ + ܷ௢ሺ݄௧ିଵ݉௛ሻ൯ (18) ݃௧ = ݄݊ܽݐ ቀ ௚ܹሺݔ௧݉௫ሻ + ௚ܷሺ݄௧ିଵ݉௛ሻቁ (19) ݉௫,௜, ݉௛,௜~݈݈݅ݑ݋݊ݎ݁ܤሺ1 െ ሻ (20)݌

With the equations for ct and h remaining the same
as in the original LSTM. This dropout method has
become one of the most widespread techniques for
regularizing RNNs. In training, these LSTM cells use
the following equations for it, namely ft, ot, and gt,
otherwise following the basic LSTM formulation given
below. ݅௧ = ሺߪ ௜ܹݔ௧ሺ ௜ܷܯሻ݄௧ିଵሻ (21) ௧݂ = ൫ߪ ௙ܹݔ௧ + ൫ ௙ܷܯ൯݄௧ିଵ൯ (22) ௧݂ = ሺߪ ௢ܹݔ௧ + ሺ ௢ܷܯሻ݄௧ିଵሻ (23) ݃௧ = ൫݄݊ܽݐ ௚ܹݔ௧ + ൫ ௚ܷܯ൯݄௧ିଵ൯ (24) ܯ௜௝~݈݈݅ݑ݋݊ݎ݁ܤሺ1 െ ሻ (25)݌

This approach allowed the authors to achieve
results on language modeling benchmarks that were
state-of-the-art at the time. Recurrent dropout is an
alternative approach that can preserve memory in an
LSTM while still generating different dropout masks for

each input sample as in standard dropout. This is done
by only applying dropout to the part of the RNN that
updates the hidden state and not the state itself. So, if an
element is dropped, then it simply does not contribute to
network memory, rather than erasing the hidden state.
For an LSTM, the equations are the same as in the
original LSTM except that the equation for ct becomes
as follows: ܿݐ = 1−ݐܿݐ݂ + ,ݐ݉ݐ݃ݐ݅ 1)݈݈݅ݑ݋݊ݎ݁ܤ~݅,ݐ݉ − (26) .(݌

5.3 Model Design
The proposed architectural model is shown in Figure 5.
This network consists of two main components: i) an
Encoder-Decoder framework that captures the inherent
pattern in the time series, which is learned during the
pre-training step, and (ii) a prediction network that takes
input from both the learned embeddings from Encoder-
Decoder. We discuss the two components in more detail
below.

Figure 5. Neural network architecture, with a pre-training
phase using an LSTM Encoder-Decoder

5.3.1 Encoder-decoder
Before fitting the prediction model, we conduct a pre-
training step to fit an encoder that can extract useful and
representative embeddings from a time series. The goals
are to ensure that (i) the learned embedding provides
useful features for prediction and (ii) unusual input can
be captured in the embedded space, which will get
further propagated to the prediction network in the next
step. Here, we use an Encoder-Decoder framework with
two-layer LSTM cells.

Specifically, given a univariate time series {xt}t,
the encoder reads in the first T timestamps {x1, ..., xT }
and constructs a fixed-dimensional embedding state.
After that, from this embedding state, the decoder
constructs the following F timestamps {xT +1, ..., xT +F
} with guidance from {xT −F +1, ..., xT } (Figure 5,
bottom panel). The intuition is that in order to construct
the next few timestamps, the embedding state must
extract representative and meaningful features from the
input time series. This design is inspired by the success

/ 7 IJRRS/ Vol. 4/ Issue 2/ 2021

LSTM Encoder-Decoder Dropout Model in Software Reliability
Prediction

of video representation learning using a similar
architecture [Srivastava et al., 2015].

5.3.2 Prediction network
After the Encoder-Decoder is pre-trained, it is treated as
an intelligent feature-extraction black box. Specifically,
the last LSTM cell states of the encoder are extracted as
learned embedding. Then, a prediction network is
trained to forecast the next one or more timestamps
using the learned embedding as features. In the scenario
where external features are available, these can be
concatenated to the embedding vector and passed
together to the final prediction network. Here, we use a

multi-layer perceptron as the prediction network.

6. Evaluation

This section contains a number of subsections. We first
implemented our method on a data set taken from the
Launch Abort System (LAS) subsystem. We then
implemented our results in two other datasets
introduced in the papers [Tohma et al., 1991; Tohma et
al., 19 89].

Subsequently, for better comparison, in addition to
LSTM Encoder-Decoder (Proposed Method), we also
implemented this dataset on NARX and RNN recurrent
networks.

These datasets are all time-series identification
systems. It should be noted that the input is the software
test time and the output is the cumulative number of
faults at that time (Figure 6).

Figure 6. Failure process in software

6.1 Implementation on-air/space application
We applied the results of our approach to part of a
real CPS known as Launch Abort System (LAS), the
architecture of which is shown in Figure 7. As
indicated, the tree construction of a space vehicle
Launch Abort System (LAS) has functional
dependencies among the elements. This system
consists of two main subsystems, which include the
Emergency Detection System (EDS) as a module of
the air/space vehicle system and the Launch Escape
System (LES). EDS is used for detecting the
abnormal and emergency conditions in flying vehicles
that are designed to treat mechanical and electrical
failures in each of the propulsion, electrical, and
control portions. While the EDS system detects an
unusual and faulty condition in one of the main parts
of the LES system (i.e., electrical power failure,
structural failure, guidance, and control faulty, etc.),
it is sensed and transmitted through a signal to trigger

the FDEP gate of LES system. Generally, the launch
escape system consists of a launch escape motor,
pitch control motor, tower jettison motor, landing
parachute, and the Master Event Sequencing
Controller Subsystems (MESC). According to the
launch and flight regimes and based on the flight
altitude, the operation time of each motor-based
subsystem is different. A master event sequence
controller on LES is an intelligent standalone
microprocessor-based system, which monitors
external inputs and controls the time and sequence of
the event’s changes. MESCs are therefore utilized as
a prioritizing tool to dictate the occurrence of events.

Signal from

Loss of thrust

Signal from Excessive

vehicle angular rates

Signal from
Electrical failure

Instruments (Emergency conditions are
displayed to the crew on the main display

console to indicate necessity for abort)

Contactor

Detector for
loss of thrust

A

B

C

K-out-of-n

Detector for Excessive
vehicle angular rates

A

B

C

K-out-of-n

Detector for
Electrical Failure

A

B

C

K-out-of-n

t5t1 t2 t3 t4

Sending Emergency
Signal from EDS

Pitch Control
Motor

Launch
Escape Motor

Tower Jettison
Motor

Landing Parachute
Subsystem

Master Event
Sequence Controller

Timing Dynamic Events

 TFDEP[T] Trigger
Top Event for Normal

Operation of LES to Save Crew

Figure 7. Tree construction with the dependency on LAS

6.2 Other Datasets
This section compares the proposed model with NN and
other parametric models. We utilize the model
comparison results to compare our results with those
from previous studies. We employ two fault data sets to
compare the prediction performance of all the models in
the present study. These datasets have more data rather
than dataset 1.

Dataset1: The first fault data set (DS1) was collected
from a real-time control application with approximately
870,000 code lines [37].
Datasat2: A total of 481 faults were detected from a
monitoring and real-time control system with
approximately 200,000 code lines for 111 days. The
second fault date set (DS2) was collected from [38].

6.3 Assessment methods
The performance of software reliability models is highly
dependent on the estimation of model parameters. In this
paper, to assess our models, we evaluate MSE errors using
two different optimizers, namely Adam and SGD on three

 ௡ݐ ௡ିଵݐଶݐଵݐ 0

 ௡ݐ∆ ଶݐ∆ ଵݐ∆

8 / IJRRS / Vol. 4/ Issue 2/ 2021

Sh. Oveisi, A. Moeini, S. Mirzaei

datasets. The MSEs are reported after 150 and 1000
iterations. As can be seen in Tables 1-2 and Figures 8-15,
the LSTM Encoder-Decoder model (proposed method)
outperforms rather another RNN-based model (especially
in datasets with more data(dataset 2,3)). Furthermore,
introducing dropouts can even further improve the results

that were obtained earlier. Therefore, the LSTM Encoder-
Decoder dropout achieves the lowest error rates, especially
with the Adam optimizer dropout method (proposed

method with dropout(Figures 11-13)).

Table 1. Validation Metrics for confirmed cases of LAS using MSE with 150 Epochs

LAS Dataset1 Dataset2

Optimizer Adam SGD Adam SGD Adam SGD

LSTM Encoder-Decoder 0.0015 0.05
9.2260e-

05
0.00099 9.4631e-06 0.0030

LSTM Encoder-Decoder+ Drop Out 0.0010 0.053 0.00011 0.00076 7.3260e-06 0.00072

LSTM 0.0128 0.0254 14.0857 1.5279e+03 7.5597 22.1092

LSTM+Dropout 0.0125 0.1173 13.9176 2.5611 9.7327 13.9842

NARX 1.85e-25 4.16e-22 0.0496 9.32e+03 63.5 0.0124

NARX +Dropout 1.83e-29 5.26e-30 13.8 86.1 0.0136 65.7

RNN 3.37e-29 1.02e-19 1.08e+3 0.000279 5.74e-5 1.49e-27

RNN+Dropout 1.88e-27 7.51e-29 6.72e+03 0.0155 3.19e+03 679

Figure 8. Validation Metrics for LAS dataset using MSE with 150 Epochs

Figure 9. Validation Metrics for dataset1 using MSE with 150 Epochs

0.0015 0.001

0.0128 0.0125

1.85E-25 1.83E-29 3.37E-29 1.88E-27

0.05
0.053

0.0254

0.1173

4.16E-22 5.26E-30 1.02E-19 7.51E-29

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

LSTM Encoder-Decoder LSTM Encoder-Decoder+
Drop Out

LSTM LSTM+Dropout Narx Narx+Dropout RNN RNN+Dropout

Adam SGD

9.23E-05 0.00011 14.0857 13.9176 0.0496 13.8

1.08E+03

6.72E+03

0.00099 0.00076

1.53E+03

2.5611

9.32E+03

86.1 0.000279 0.0155

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

8.00E+03

9.00E+03

1.00E+04

LSTM Encoder-Decoder LSTM Encoder-Decoder+
Drop Out

LSTM LSTM+Dropout Narx Narx+Dropout RNN RNN+Dropout

Adam SGD

/ 9 IJRRS/ Vol. 4/ Issue 2/ 2021

LSTM Encoder-Decoder Dropout Model in Software Reliability
Prediction

Figure 10. Validation Metrics for dataset2 using MSE with 150 Epochs

Table 2. Validation Metrics for confirmed cases LAS using MSE with 1000 Epochs

Dataset LAS Dataset1 Dataset2

Optimizer Adam SGD Adam SGD Adam SGD

LSTM Encoder-Decoder 0.00075 0.04 1.34155e-05 1.3415e-05 6.6070e-05 4.6826e-05

LSTM Encoder-Decoder+ Drop Out 0.00069 0.04 0.00021 0.0002 1.6009e-05 0.00011

LSTM
9.1421e-

04
0.0272 889.9926 1.0842e+04 86.5335 1.4553e+04

LSTM+Dropout 0.0077 0.1069 7.3391 7.1412
9.6365

27.4822

NARX 3.17e-27 2.61e-27
0.00057

226 50 177

NARX +Dropout 8.59 9.68e-25 154 101 0.00767 154

RNN 3.21e-25 2.05e-26 2.07e-25 5.18e+03 3.2e-25 2.53

RNN+Dropout 669 2.31e-30 1.25e-24 0.751 0.0599 3.68

Figure 11. Validation Metrics for LAS using MSE with 1000 Epochs

0.00E+00 7.33E-06 7.5597 9.7327 63.5
0.0136 5.74E-05

3.19E+03

0.003 0.0007 2.21E+01 13.9842 0.0124
65.7

1.49E-27

679

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

LSTM Encoder-Decoder LSTM Encoder-Decoder+
Drop Out

LSTM LSTM+Dropout Narx Narx+Dropout RNN RNN+Dropout

Adam SGD

0.00075 0.00069 0 0.0077 3.17E-27 8.59 3.21E-25

669

0.04 0.04 0.0272 0.1069 2.61E-27 9.68E-25 2.05E-26 2.31E-30

0

100

200

300

400

500

600

700

800

LSTM Encoder-Decoder LSTM Encoder-Decoder+
Drop Out

LSTM LSTM+Dropout Narx Narx+Dropout RNN RNN+Dropout

Adam SGD

10 / IJRRS / Vol. 4/ Issue 2/ 2021

Sh. Oveisi, A. Moeini, S. Mirzaei

Figure 12. Validation Metrics for dataset1 using MSE with 1000 Epochs

Figure 13. Validation Metrics for dataset2 using MSE with 1000 Epochs

Figure 14. Validation Metrics for confirmed cases of LAS based on Adam classification

1.34E-05 2.11E-04

889.9926

7.3391 0.00057 154 2.07E-25 1.25E-241.34E-05 0.00021

1.08E+04

7.1412 2.26E+02 101

5.18E+03

0.751

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

LSTM Encoder-Decoder LSTM Encoder-
Decoder+ Drop Out

LSTM LSTM+Dropout Narx Narx+Dropout RNN RNN+Dropout

Adam SGD

6.61E-05 1.60E-05 86.5335 9.6365 5.00E+01 7.67E-03 3.20E-25 5.99E-024.68E-05 0.0001

1.46E+04

27.4822 1.77E+02 1.54E+02 2.53E+00 3.68E+00

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1.40E+04

1.60E+04

LSTM Encoder-Decoder LSTM Encoder-
Decoder+ Drop Out

LSTM LSTM+Dropout Narx Narx+Dropout RNN RNN+Dropout

Adam SGD

0.0015 0.001 0.0128 0.0125 1.85E-25 1.83E-29 3.37E-29 1.88E-270.00075 0.00069 0 0.0077

6.63E+02

8.59 3.21E-25 3.71E-279.23E-05 0.00011 14.0857 13.9176 0.0496 13.8

1.08E+03

6.72E+03

1.34E-05 2.11E-04

889.9926

7.3391 0.000575
154

2.07E-25 1.25E-246.61E-05 7.33E-06 7.5597 9.7327 6.35E+01 1.36E-02 5.74E-05

3.19E+03

6.61E+00 1.60E-05 86.5335 9.6365 3.21E-25 3.71E-27 3.17E-27 8.59E+00

0

1000

2000

3000

4000

5000

6000

7000

8000

LSTM Encoder-Decoder LSTM Encoder-Decoder+ DropOut LSTM LSTM+Dropout Narx Narx+Dropout RNN RNN+Dropout

(LAS Dataset) Adam/150 (LAS Dataset) Adam/1000 Dataset1 Adam/150 Dataset1 Adam/1000 Dataset2 Adam/150 Dataset2 Adam/1000

/ 11 IJRRS/ Vol. 4/ Issue 2/ 2021

LSTM Encoder-Decoder Dropout Model in Software Reliability
Prediction

Figure 15. Validation Metrics for confirmed cases of LAS based on SGD classification

7. Conclusion
The use of non-parametric methods (e.g. deep recurrent
neural networks) in software reliability prediction
applications has shown great promise. In this paper, we
employed RNN-based networks to predict the reliability
of software and presented a method based on Encoder-
Decoder. A major issue that needs to be considered is
that of overfitting. We show that the use of dropout in
the training phase is highly efficacious in this regard.
Simulations on three datasets using two different
optimizers indicate that the best results in terms of MSE
pertain to the LSTM Encoder-Decoder model with
dropout (proposed method), especially in data sets with
more data (dataset2, dataset 3). As a future direction, we
may investigate the level of uncertainty involved in the
predictions made by such networks using Bayesian
approaches.

8. References
[1] H. Soltanali, Rohani, A., Abbaspour-Fard, M. H., &J. T.

Farinha, "A comparative study of statistical and soft
computing techniques for reliability prediction of
automotive manufacturing", Applied Soft Computing, vol.
98, 106738. 2021.

[2] S. Oveisi, , & R. Ravanmehr, "SFTA-Based Approach for
Safety/Reliability Analysis of Operational Use-Cases in
Cyber-Physical Systems", Journal of Computing and
Information Science in Engineering, vol. 17 no.3, 2017.

[3] S. Oveisi, M. A. Farsi, M. Nadjafi, & A. Moeini, "A New
Approach to Promote Safety in the Software Life Cycle,"
Journal of Computer & Robotics, vol. 12, no.1, pp.77-
91, 2019.

[4] S. Oveisi, M. A. Farsi, M. Nadjafi, A. Moeini, & M.
habankhah," Design Software Failure Mode and Effect
Analysis using Fuzzy TOPSIS Based on Fuzzy Entropy,"
Journal of Advances in Computer Engineering and
Technology, vol.6, no. 3, pp.171-180,2020.

[5] W. D. Van Driel, J. W. Bikker, & M. Tijink, "Prediction of
software reliability," Microelectronics Reliability, vol. 119,
114074, 2021.

[6] S. Oveisi, &M. A. Farsi, "Software safety analysis with
UML-Based SRBD and fuzzy VIKOR-Based FMEA,
"International Journal of Reliability, Risk and Safety:
Theory and Application, vol.1,no.1,pp.35-44, 2018.

[7] G. Aggarwal, V. K. Gupta, "Software reliability growth
model," International Journal of Advanced Research in
Computer Science and Software Engineering, vol.4, no.1,
2014.

[8] A. Jaiswal, & R. Malhotra, "Software reliability prediction
using machine learning techniques," International Journal
of System Assurance Engineering and Management,
vol.9,no.1, pp.230-244,2018.

[9] K. Sahu, & R. K. Srivastava, "Revisiting software
reliability, "in Data Management, Analytics and
Innovation. Advances in Intelligent Systems and
Computing, Balas, V., Sharma, N., Chakrabarti, A. (eds),
vol. 808. Springer, Singapore.

[10] J. Wang, & C. Zhang, "Software reliability prediction
using a deep learning model based on the RNN encoder–
decoder, "Reliability Engineering & System Safety,
vol.170, pp.73-82, 2018.

[11] A. Borovykh, S. Bohte, & C. W. Oosterlee, "Conditional
time series prediction with convolutional neural networks,
"Journal of Computational Finance, vol.22, no.4.2018.

[12] Z. Che, S. Purushotham, K. Cho, D. Sontag, &Y. Liu,
"Recurrent neural networks for multivariate time series
with missing values," Scientific reports, vol.8,no.1, pp.1-
12, 2018.

[13] Wang, H., Yang, Z., Yu, Q., Hong, T., & Lin, X. (2018).
Online reliability time series prediction via convolutional
neural network and long short term memory for service-
oriented systems. Knowledge-Based Systems, 159, 132-
147.

[14] K. L. H. Nguyen, "Uncertainty in Recurrent Neural
Network with Dropout", Master Thesis. Department of
Computer, Communication and Information Sciences,
AALTO University, 2020.

[15] Y. Gal, & Z. Ghahramani, "A theoretically grounded
application of dropout in recurrent neural networks,"
Advances in neural information processing systems,
vol.29, pp.1019-1027, 2016.

[16] A. Labach, H. Salehinejad, &, S. Valaee "Survey of
dropout methods for deep neural networks" arXiv preprint
arXiv:1904.13310.2019.

0.05 0.053 0.0254 0.1173 4.16E-22 5.26E-30 1.02E-19 7.51E-290.04 0.04 0.0272 0.1069 2.05E-26 2.31E-30 2.61E-27 9.68E-250.00099 0.00076

1.53E+03

2.5611 4.16E-22 5.26E-30 1.02E-19 7.51E-290.003 0.0007 2.21E+01 13.9842 226 101

5.18E+03

0.7511.34E-05 0.00021

1.08E+04

7.1412
2.69E+02 8.61E+01 2.79E-04 1.55E-024.68E-05 0.0001

1.46E+04

27.4822 177 154 2.53 3.68

0

2000

4000

6000

8000

10000

12000

14000

16000

LSTM Encoder-Decoder LSTM Encoder-Decoder+ Drop Out LSTM LSTM+Dropout Narx Narx+Drop out RNN RNN+Dropout

(LAS Dataset) SGD/MSE-150 (LAS Dataset) SGD/MSE-1000 Dataset1 SGD/150 Dataset1 SGD/1000 Dataset2 SGD/150 Dataset2 SGD/1000

12 / IJRRS / Vol. 4/ Issue 2/ 2021

Sh. Oveisi, A. Moeini, S. Mirzaei

[17] F. Di Nunno, & F.Granata, "Groundwater level prediction
in Apulia region (Southern Italy) using NARX neural
network" Environmental Research, vol.190, 110062, 2020.

[18] Y.Gal & Z. Ghahramani, "Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning," In International conference on machine learning,
2016, pp. 1050-1059, PMLR..

[19] Y. Jeong, S. Kim, & K. Yi, "Surround vehicle motion
prediction using LSTM-RNN for motion planning of
autonomous vehicles at multi-lane turn intersections,
"IEEE Open Journal of Intelligent Transportation Systems,
vol.1, pp.2-14, 2020.

[20] Z. Lv, , Xu, J., Zheng, K., Yin, H., Zhao, P., & Zhou, X.
"Lc-rnn: A deep learning model for traffic speed
prediction" . IJCAI ,pp. 3470-3476,2018.

[21] N. Srivastava, "Improving neural networks with dropout".,
MSc thesis, University of Toronto, 2013.

[22] I. Sutskever, O. Vinyals, &Q. V. Le, "Sequence to
sequence learning with neural networks, "Advances in
neural information processing systems, pp. 3104-3112,
2014.

[23] R. Pascanu, C. Gulcehre, K. Cho, &Y. Bengio, "How to
construct deep recurrent neural networks". arXiv preprint
arXiv:1312.6026. 2013.

[24] H. Wang, Z. Yang, Q. Yu, T. Hong, &X. Lin, "Online
reliability time series prediction via convolutional neural
network and long short term memory for service-oriented
systems," Knowledge-Based Systems, vol. 159, pp.132-
147, 2018.

[25] M. K. Bhuyan, D. P. Mohapatra, & S. Sethi, "Software
Reliability Prediction using Fuzzy Min-Max Algorithm
and Recurrent Neural Network Approach," International
Journal of Electrical & Computer Engineering, vol. 6no.
4. Pp.2088-8708, 2016.

[26] J. Wang, & C. Zhang, "Software reliability prediction
using a deep learning model based on the RNN encoder–
decoder," Reliability Engineering & System Safety,
vol.170, pp.73-82, 2018.

[27] R. Mittelman, "Time-series modeling with undecimated
fully convolutional neural networks," arXiv preprint
arXiv:1508.00317. 2015.

[28] M. Binkowski, G. Marti, , & P. Donnat, "Autoregressive
convolutional neural networks for asynchronous time
series," In International Conference on Machine Learning
pp. 580-589, PMLR. 2018.

[29] S. N.rivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
&R. Salakhutdinov, "Dropout: a simple way to prevent
neural networks from overfitting," Journal of machine
learning research, vol.15,no.1,pp. 1929-1958,2014.

[30] A. Labach, H. Salehinejad, & S.Valaee, "Survey of
dropout methods for deep neural networks," arXiv preprint
arXiv:1904.13310,2019.

[31] F. Di Nunno, & F. Granata, "Groundwater level prediction
in Apulia region (Southern Italy) using NARX neural
network," Environmental Research, vol.190,110062. 2020.

[32] F.Di Nunno, G. de Marinis, R. Gargano, & F. Granata, "
Tide prediction in the Venice Lagoon using Nonlinear
Autoregressive Exogenous (NARX) neural network,"
Water, vol.13,no.9, 1173, 2021.

[33] F. Di Nunno, F. Granata, R. Gargano, & de Marinis, G.
"Forecasting of extreme storm tide events using NARX
neural network-based models," Atmosphere, vol.12, no.4,
512,2021.

[34] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V.K.
Menon, &K. P. Soman, "Stock price prediction using
LSTM, RNN and CNN-sliding window model," In 2017
international conference on advances in computing,
communications and informatics (icacci) (pp. 1643-1647).
September 2017.

[35] N. Srivastava, E. Mansimov, & R. Salakhudinov,
"Unsupervised learning of video representations using
lstms". In International conference on machine learning pp.
843-852, PMLR.,2015

[36] R. Wang, F. Yan, J. Lu, &W. Y. Yang, "COVID-19 Trend
Forecasting by Using Dropout-LSTM Model," Dianzi Keji
Daxue Xuebao/Journal of the University of Electronic
Science and Technology of China, vol.50,no.3, pp. 414-
421, 2021.

[37] Y. Tohma, H. Yamano, M. Ohba, & R. Jacoby, "Parameter
estimation of the hyper-geometric distribution model for
real test/debug data". In Proceedings. 1991 International
Symposium on Software Reliability Engineering (pp. 28-
29). IEEE Computer Society 1991.

[38] Y. Tohma, K. Tokunaga, S. Nagase, &Y. Murata, "
Structural approach to the estimation of the number of
residual software faults based on the hyper-geometric
distribution, "IEEE transactions on software engineering,
vol. 15,no. 3, pp. 345-355,1998.

