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Abstract
The Duane and Crow-AMSAA reliability growth model has been traditionally used to model systems and products undergoing 

development testing. The Non-Homogeneous Poisson Process (NHPP) with a power intensity law has been often used as a model for 
describing the failure pattern of the repairable systems and the maximum likelihood (ML) estimates are used to calculate the 
unknown parameters widely. This study proposes the statistical analysis method of different stages and different level data based on 
Bayes analysis techniques. To this end, the Bayesian reliability growth model of multiple stages is coupled with the Weibull 
distribution product. By using the unique properties of the assumed prior distributions, the moments of the posterior distribution of 
the failure rate at various stages during a development test can be found. In this paper, it is assumed that the scale parameter has a 
Gamma prior density function, and the growth parameter has a Uniform prior distribution. Monte Carlo simulations are used to 
compute the Bayes estimates. Finally, the results obtained from the proposed method by implementing it on an application example 
are compared with Crow-AMSAA data and show that the proposed model has higher accuracy than the existing traditional methods. 

Keyword: Reliability Growth; Non-Homogeneous Poisson Process (NHPP); Bayes Analysis; Weibull Distribution; Monte Carlo 
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Nomenclature*

a Parameter of Gamma Distribution 
b Parameter of Gamma Distribution 
L Likelihood function 
m Number of stages 
n Number of failures 
N Cumulative number of failures  
R Reliability 
T Mission time 
� Scale parameter 
� Shape parameter 
� Density function 
� Gamma function 
CL Confides level 
ML Maximum likelihood 
MTBF mean time between failure 
MCMC Markov Chain Monte Carlo 
NHPP Nonhomogeneous Poisson Process 
                                                           
* Corresponding Author Email: m.nadjafi@ari.ac.ir 

Introduction 
Reliability growth models are models that are used to 
estimate or predict the improvement of mechanical 
system reliability as a function of the amount of system 
testing that is carried out. Reliability growth test will be 
done when the design of the product has met setting 
function so that the designer can find design defects to 
improve it, therefore it is important to do a reliability 
growth test in the system development in order to 
remove design, manufacture and operation defects, and 
improve product reliability.  

Traditional reliability growth modeling began with 
the empirical observations by Duane [1] on 
developmental testing programs for relatively complex 
aircraft apparatuses. For the systems he was tracking, on 
a log-log scale, the cumulative number of failures, N(T), 
tended to increase linearly with the cumulative test time, 
T. Since then, many reliability growth models have been 
developed. Crow [2] showed that this empirical model is 
essentially a Non-Homogeneous Poisson Process 
(NHPP) with a Weibull intensity function. This 
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statistical extension became what is known as the Crow-
AMSAA (NHPP) model. The Crow-AMSAA model is 
designed for tracking the reliability within a test phase. 
A development-testing program may consist of several 
separate test phases. In recent years, there has been 
much effort to develop the Crow-AMSAA model and 
create better models for mechanical systems [3-6]. 
Wang et al. [7] studied a reliability growth testing 
allocation problem to series-parallel systems that 
consider parameter uncertainty in the Crow-AMSAA 
models. They assumed the parameters of the model to be 
known as uncertain-but-bounded values. Lee and his 
colleagues [8] used the Crow-AMSAA model to analyze 
the reliability growth of multiple launch rocket 
components by using test data obtained from the 
development phase. Recently, the Crow-AMSAA model 
was developed by Nadjafi and Gholami [9] using the 
normal distribution and maximum likelihood (ML) 
estimate and proved its effectiveness on the data of an 
aerospace system. The main purpose of this study is to 
develop a model for the growth of reliability with a 
normal distribution based on the NHPP. Also, to 
evaluate the reliability model with the given failure data, 
the maximum likelihood estimation technique was used 
to estimate the effective parameter in reliability growth. 
Although current study proposes the statistical analysis 
method of different stages and different level data based 
on Bayes analysis techniques and gave the Bayesian 
reliability growth model of multiple stages Weibull 
distribution product. 

Given that the reliability growth models predict the 
reliability at different stages of the developmental 
process, depending on the nature of a process, various 
models can be used to estimate the desired parameters. 
Reliability growth models can be deterministic or 
probabilistic. They can be based on the classical or the 
Bayes estimation method. The classical approach to 
reliability growth estimation normally is in the form of a 
mathematical formula with one or more parameters to be 
estimated from the data collected at each stage of 
development. Estimates of these unknown parameters 
are usually obtained using Maximum Likelihood (ML) 
or least-squares estimators and are anticipated to reflect 
the characteristics of the system.  

When experimental data are limited, as they often 
are inexpensive or time-consuming testing and 
development percentage, it may be desirable to use prior 
information in conjunction with the data to estimate 
unknown parameters. Hence, Bayes methods may be 
desirable as they allow prior information to be 
incorporated into the inferential procedure. The Bayes 
approach to reliability growth estimation usually begins 
with an assumption of a prior distribution. The estimates 
of the prior distribution parameters are updated as 
samples from each development stage are collected.  

Several authors have proposed Bayes reliability 
growth models. The original work by Smith [10] 
developed a Bayes algorithm to estimate the reliability 
of a system during the development period. Fard & 
Dietrich [11] used Bayesian approaches for analyzing 
reliability growth that proposed a Bayesian analysis of 
the problem where failure causes are lumped into one 
category and a jointly ordered uniform prior is assumed 
for the reliability of the system at each stage. Robinson 
and Dietrich [12] propose a nonparametric reliability 
growth model based on Bayes analysis techniques.  

Lu and his colleagues [13] by considering the 
system debugging test phase as a Non-Homogeneous 
Poisson Process (NHPP) and the reliability 
demonstration test phase as a homogeneous Poisson 
Process established a joint likelihood function between 
the failure intensity of these two steps. The Bayesian 
method was used to obtain the upper limit of the failure 
intensity. A degradation model with a random failure 
threshold is proposed by Huang et al. [14] for the 
evaluation of the reliability of the multi-stage system by 
the Bayesian approach. Ming et al. [15] investigated 
Bayesian reliability growth models of the mechanical 
systems using new Dirichlet prior distribution when the 
sample of the system is small.  

Ruiz and his colleagues [16] developed a Bayesian 
framework to analyze accelerated life testing data in 
reliability growth. In this study, it is assumed that the 
failure modes of components of the system have 
multiple competing failure modes and the time to failure 
of each failure mode follows a Weibull distribution. 
Park et al. [17] used the Bayesian method to estimate the 
parameters of the reliability growth model when the 
number of sample data for the fault information is small 
and showed that the estimation accuracy of the Bayesian 
method is more accurate than that of Maximum 
Likelihood (ML) Estimation. Using multi-stage data in 
the product development test, Wang et al. [18] proposed 
a scaling factor method to calculate reliability growth 
and then used Bayesian posterior estimation to 
determine reliability parameters using the Markov Chain 
Monte Carlo (MCMC) sampling method. 

In this paper, the reliability growth of a system with 
m development process stages is studied. It is assumed 
that failures are removed after each testing phase. In this 
regard, the moments of the marginal distribution at 
various stages during a development test are used and 
the proposed model is compared with the Crow-
AMSAA model based on relative and mean square 
prediction errors. The quality and reliability index of the 
considered system is not constant due to the removal of 
failures on each state. Therefore, the assessment is not 
accurate and effective when using the traditional 
reliability growth model. Thus, according to these 
problems, in this paper, Bayes estimates are derived for 
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analyzing reliability growth with the assumption of an 
underlying distribution to describe the time to failure 
during any stages. In Bayesian statistics, the posterior 
parameter distribution is used for calculating parameter 
point estimates, to construct interval estimates or to 
predict future process values and provide the multistage 
Bayes reliability growth model of Weibull distribution. 
It should be assumed some prior distributions of the 
unknown parameters. Therefore, in this study, it is 
assumed that the scale parameter has a Gamma prior 
density function, and the growth parameter has a 
Uniform prior distribution. In the following, Monte 
Carlo techniques are used to compute the Bayes 
estimates. Then, the results of Bayes estimates have 
been compared with the traditional reliability growth 
model by a worked example. 

Modelling framework Equipment 
Depending on the characteristics of the system, some 
strategies and a number of phases could be created in the 
testing program. Indeed, the test program is applied to 
catch errors and defect in each phase of the defined 
lifecycle of the system. So, the number of test phases is 
determined in such a way that all the predicted and also 
the unpredicted failures in terms of project management 
are removed until the requirements of the user are 
satisfied. The reliability growth testing program 
provides opportunities to identify the weaknesses and 
failure modes in the design and manufacturing process. 
So, management makes decisions regarding the 
management strategy in each stage of the test program to 
correct problems or not correct problems and the 
effectiveness of the corrective actions. Assuming the 
reliability growth process of the product includes m 
stages and each stage is independent. The number of 
failures in each stage is n1, n2…, nm. Product time to 
failure is Weibull distribution in the ith stage, its hazard 
function is 1( )t t �� �� �� , if the mission time is T, then 
the product reliability of the ith stage is: 

( ) exp( )k k kR R T T t ��� � � �  (1) 

Here, � is scale parameter and � is growth 
parameter. It is worth mentioning that the major 
advantages of using Weibull analysis are that it can be 
used for analyzing lifetimes with very small samples 
that can cover all regions of the life cycle (includes: 
increasing failure rate-IFR, constant failure rate CFR, 
and decreasing failure rate-DFR). It also produces an 
easy-to-understand plot. After each stage product 
reliability continuously raises because of removing 
defects, thus 

1 20 ... 1mR R R� � � � �  (2) 
Letting N(t) be the cumulative number of failures 

observed by time T, therefore N(t) can be modeled as a 
Non-Homogeneous Poisson process (NHPP), i.e., as a 
Poisson process with a time-dependent failure rate  

( )[ ( )]{ ( ) } ;    0,1,2,...
!

k TT eP N T k k
k

�� �
� � �  (3) 

Where ( )t T �� �� , that if �> 1 implying wear-out, 
�< 1 implying growth and � = 1 implying constant mean 
time between failure (MTBF). 

Bayes’ rule provides the framework for combining 
prior information with sample data. In this reference, we 
apply Bayes’ rule for combining prior information on 
the assumed distribution's parameters with sample data 
in order to make inferences based on the model. The 
prior knowledge about the parameters is expressed in 
terms of ( )	 � and ( )	 � called the prior distribution. 
The posterior distribution of � and � given the sample 
data, using Bayes’ rule, provides the updated 
information about the parameters � and �. This is 
expressed with the following posterior pdf 

( , ) ( ) ( )( , | )
( , ) ( ) ( )

Lf D
L d d

� � 	 � 	 �� �
� � 	 � 	 � � �




�

��
 

(4) 

Where � and � is a vector of the parameters of the 
chosen distribution, 
  is the range of � and �, ( , )L � � is 
the likelihood function based on the chosen distribution 
and data, ( )	 � and ( )	 � is the prior distribution for each 
of the parameters. In other words, a distribution (the 
posterior pdf) is obtained, rather than a point estimate as 
in classical statistics. Therefore, if a point estimate needs 
to be reported, a point of the posterior pdf needs to be 
calculated. Typical points of the posterior distribution 
used are the mean (expected value). 

It is desired that the prior distribution on the failure 
rate at each stage be consistent in terms of information 
available, and at the same time not be a computational 
burden.  In this model � is assumed to follow prior 
distribution with the density function ( ) 1	 � �� . The 
prior distribution of �, denoted as ( )	 � , can be assumed 
Gamma distribution with density function 

1( ) ( ) exp( )b a b� �	 � � �� �� � �� � , where � �� � is gamma 

function, while a and b represent gamma parameters. 
The joint prior distribution on the successive failure 

rates is 

1

1

( | , ) ( )

( , )

( ) ( )

m

i i
i

k k m

i i
i

a b

g

d d

	 � 	 �

� �
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�

�


�
�

���
 (5) 

From Bayes theorem, it is known that the joint 
posterior pdf of � and � is 

( , | ) ( | , ) ( )
1( , )
( , | ) ( | , ) ( )

1

m
h n a bi i i i i i i

if i i m
h n a b d di i i i i i i

i

� � 	 � 	 �
� �

� � 	 � 	 � � �

�
��

���
�


 

(6) 

Where, 
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( )[ ( )]( , | )
!

in T

i i i
i
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n

��� �
�

�  (7) 

Implementation of these priors and solving for the 
marginal distribution, ( , | )i if D� � , still remains a 
difficult problem. However, it is relatively easy to find 
the moments of this distribution and thus an 
approximation to the distribution can be found to any 
desired accuracy. 

The expected value of � is obtained by 

� �

� �

( | ) ( , | )

1
exp ( )

10 0                
1

exp ( )
10 0

E D f D d di i i i

m n ai i T b d di i iii
m n ai i T b d di i i ii

i
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� � � �
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� ���



�� � �
� ��� �
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� �� �

 (8) 

Similarly, the expected value of � is obtained by 

� �

� �

( | ) ( , | )
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1
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 (9) 

 

We now have the distribution of � and �, hence we 
can now make statistical inferences on this parameter, 
such as calculating probabilities. Specifically, the 
probability that � and � fall within a specified 
value ( , )L U L Up � � � � � �� � � �  can be obtained by 
integrating the posterior probability density function (pdf), or 

( , )

     ( , | )
U U

L L

L U L U

i i

CL p

f D d d
� �

� �
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� � � �

� � � � �

� � �  (11) 

Which is equivalent to: 

0 0

(1 ) 2 ( , | )
U U

i iCL f D d d
� �

� � � �� � � �  (12) 

0 0

(1 ) 2 ( , | )
L L

i iCL f D d d
� �

� � � �� � � �
 

(13) 

Where CL is the confidence level.  The above 
equations can be generalized for any distribution having 
a vector of parameters yielding the general equation for 
calculating Bayesian confidence bounds 

( , | ) ( | , ) ( )
10 0(1 ) 2

( , | ) ( | , ) ( )
10 0

mU U
h n a b d di i i i i i i

iCL m
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i

� �
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 (14) 

( , | ) ( | , ) ( )
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iCL m
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i

� �
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The above equations can be solved to get two-sided 
bounds estimate for parameters. 

Application Example 
To illustrate the application of the proposed model, an 
example that incorporates many of the above aspects 
discussed above is outlined. At the start of development 
testing, some failure rate information is available from 
similar equipment that is already operational.  

Assuming the mechanical engine will undergo 
multiple stages and different level tests in the 
development process. So, it is necessary to make a 
reliability growth plan in order to improve test 
efficiency. It should be noted that: the specifications 
(information, number of failures and other relevant 
issues) of the system studied in this paper are based on a 
mechanical system used in reference [19]. Here, our 
goal is to access a real and functional system so that we 
can implement the proposed model on it. 

Table 1. The data of each stage [19]

Test stage Number of 
failures 

Test time (hr.) 

The first stage 26 90 
The second stage 9 102 
The third stage 4 258 

 

A reliability growth example, comprising of three 
stages, is shown in Table 1.As can be seen from Table 1, 
the first stage of the testing program is 90 hours, in which 
26 failures occurred, and after the completion of the test in 
the first stage, it is assumed that all errors have been 
eliminated. In this phase, some predicted an also 
unpredicted weaknesses and failure modes in the design 
and manufacturing process are identified, and then 
appropriate corrective actions (or redesigns) are taken. 
Then the second stage of the test begins and lasts 102 hours 
and 9 failures are recorded in this time period. Indeed, a 
corrective action, or fix, for a problem failure mode in the 
previous typically removes a certain amount of the mode's 
failure intensity, but a certain amount will remain in the 
system. After removing the defects in the second stage, the 
final stage of the test is performed, and after 258 hours, the 
test is terminated and 4 failures are recorded in this stage. 

In order to judge whether the reliability of the product is 
growing after the test or not, should be identified the test data 
follow or not the Eq. (2).  For this purpose, the MTBF plot 
on a log-log scale with the average confidence 
interval/credible interval is presented in  Figure  1 and shows 
that the product has some given value of a measure of 
reliability at the start of a test period and at the end of this 
period the value of this measure has changed hopefully, it 
will be improved. So, the "growth" occurred. 
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(a) 

(b)

 Figure 5. Contour plot of the (a) joint prior distribution & (b) 
posterior distribution of (�, �) for third stage 

As previously mentioned, in the proposed model, 
the Bayesian model is used to estimate the unknown 
parameters, which requires a prior distribution for the 
unknown model. In this study, the Gamma and Uniform 
distributions are used for the prior distribution, and a 
specific value is used for the hyper parameters of this 
distribution. To this purpose, reliability growth analysis 
and improving the reliability of various multi-stage 
systems using the proposed model with different sample 
sizes, different sampling schemes, different parameter 
values, and different priors are proposed for future work. 

Conclusions

In this paper, the statistical analysis method of different 
stages of test data based on the Bayesian reliability 
growth model of multiple stages Weibull distribution 
product is investigated. By using the unique properties of 
the assumed prior distributions, the moments of the 
posterior distribution of the failure rate at various stages 
during a development test were obtained. Monte Carlo 
technique is performed to compute the approximate Bayes 
estimates and the corresponding credible intervals. Bayes 
estimates based on Gamma and Uniform priors’ 
distribution for scale and growth unknown parameters 

have been compared with the corresponding ML 
estimates. Consequently, it was found that the results of 
the worked sample show the proposed method is adaptive 
in engineering. It was indicated that unlike traditional 
models such as the Crow-AMSAA model, the quality and 
the reliability index of products based on the proposed 
model is not constant and the performance of the 
proposed model for multiple mechanical stage systems in 
the development process was much better than that of the 
ML estimate of the traditional model. 
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