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Abstract 
    A branch of human knowledge, which treats the behavior of cracked structures, is called fracture mechanics. Since there is no intact 
structure in the world, then the paramount importance of fracture mechanics in human life is accentuated. The main parameter of fracture 
mechanics is called crack compliance, which is the amount of flexibility added to the flexibility of the intact structure due to the presence of a 
crack with specified size. The compliance, similar to flexibility, is the sole characteristics of the cracked structure. In this way for a given 
structure with a specified crack, there should be a single compliance. Unfortunately, in classical fracture mechanics that is not the case! The 
number of crack compliances for a clacked structure is equal to the number of researchers who treated the case! This diversity in the results 
stems from the presence of epistemic uncertainty in the mathematical basis of classical fracture mechanics. In view of the need for remedy, 
the Abdolrasoul Ranjbaran Team (ART), investigated the case and proposed a reliable fracture mechanics, which is based on sound logical 
reasoning. The proposed reliable fracture mechanics is described in the presented paper. The paper is managed via fourteen titles as, 
introduction, the mathematical basis of the classical fracture mechanics, birthplace of the state based philosophy, strong form of governing 
equation, analytical solution by Laplace transform, the weak form equation, the finite element equation, logical basis of the state based 
philosophy, state functions, Persian curves, reliable crack compliance, energy release rate, stress intensity factor, and weight function for the 
stress intensity factor in sections one to fourteen respectively. The paper concludes with a list of cited references.    

Keywords: Classical fracture mechanics, Reliable fracture mechanics, State based philosophy, Persian Curves, Flexibility, Crack 
compliance, Stress intensity factor, Energy release rate. 

Introduction1
 

A branch of human knowledge, which treats the 
behavior of cracked structures, is called fracture 
mechanics. Since there is no intact structure in the 
world, then the paramount importance of fracture 
mechanics in human life is accentuated. The main 
parameter of fracture mechanics is called crack 
compliance, which is the amount of flexibility added to 
the flexibility of the intact structure due to the presence 
of a crack with a specified size [1-38]. A brief review of 
the current state of classical fracture mechanics is as 
follows. 

The development of classical fracture mechanics 
theory dates back to the studies of Inglis [1], Griffith [2], 
Westergaard [3] and Irwin (1957) [4] based on the 
concepts of linear elasticity. The stress solution for an 
elliptical hole in a semi-infinite plate subjected to 
uniform tension at far end is developed by Inglis [1]. 
The Inglis solution is used by Griffith [2] to introduce 
the energy criteria for fracture analysis based on the 
concept of energy release rate. Westergaard [3] derived 
the linear elastic solution for the stress field around a 
crack tip. The stress field ahead of a crack tip is 
described by means of only one parameter, the so called 
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stress intensity factor ( SIF ), by Irwin [4]. He shown 
that the ( SIF ) is uniquely related to the energy release 
rate. The ( SIF ) has become the fundamental concept in 
classical fracture mechanics. Various models and criteria 
of fracture and crack growth have been formulated in 
terms of the ( SIF ) by Anderson et al. [5]. The crack 
problem is formulated as a boundary value problem of 
elasticity, and solved in terms of the displacement field 
and/or the stress field and the ( SIF ) is obtained from 
the expansion of the stress field in the vicinity of a crack 
tip. The weight function concept proposed by Bueckner 
[6] and Rice [7] has proven to be the most efficient 
method for calculating the ( SIF ) (as noted by 
Atroschenko [8]). The weight function (Green’s 
function) represents the ( SIF ) for a crack subjected to a 
unit force applied to the crack surface. The ( SIF ) due 
to an arbitrary stress field can be determined by 
integrating the product of the weight function and the 
applied stress field over the crack domain. Because of 
singularities in the weight functions and nonlinearity of 
the stress field the classical process for computation of (
SIF ) is very difficult. During the last four decades, 
great attention has been paid by several authors to the 
diagnosis of cracks in rotating machinery. The review 
papers by Wauer [9], Gasch [10], Dimarogonas [11], 
and Papadopoulos [12] give valuable information and 
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knowledge. The strain energy release rate method is 
used to determine the compliance of cracked circular 
shaft. The ( SIF ) for circular cross section is not 
available (This argument was perhaps correct up to 10 
years ago, but now that is not the case, interested reader 
may refer to Ranjbaran [54] and related references!) 
consequently the shaft is considered to be a sum of 
elementary independent rectangular strips which are 
used in calculation of the compliance by integrating 
along the crack tip. If the crack depth exceeds the radius 
of the shaft the energy release rate method has 
singularity near the edges of the crack tip, Abraham et 
al. [13]. Dimarogonas [14] stated that this problem does 
not reflect reality, but it is due to the method of 
formulation. The difficulty in computation of the ( SIF ), 
and the fact that most of the problems stem from the 
methods of calculation, led the present authors to launch 
a new investigation to remedy the problems as described 
in this paper.  

The compliance, similar to flexibility, is the sole 
characteristics of the cracked structure. In this way for a 
given structure with a specified crack, there should be a 
single compliance. But, in classical fracture mechanics 
that is not the case [1-38]! The number of crack 
compliances for a clacked structure is equal to the 
number of researchers who treated the case! This 
diversity in the results stems from the presence of 
epistemic uncertainty in the mathematical basis of 
classical fracture mechanics. In view of the need for 
remedy, the Abdolrasoul Ranjbaran Team (ART), 
investigated the case and proposed a reliable fracture 
mechanics, which is based on sound logical reasoning.  

Mathematical Basis of Classical Fracture 
Mechanics 

First, Mathematical basis of classical fracture mechanics 
is digested in determination of three parameters, i.e. the 
stress intensity factor ( K ), the energy released due to 
creation of a unit surface area of crack or the energy 
release rate (G ), and the flexibility added to the 

flexibility of the structure or the crack compliance( Sc ). 

The stress intensity factor, at the forefront of classical 
fracture mechanics, is defined in Eq. (1), in which (W ) 
is the weight function [6, 7] and ( ) is the effective stress. 

K W dxS    (1) 

The second parameter, i.e. the energy release rate, 
is defined in terms of the stress intensity factor and the 
elastic modulus ( E ) as in Eq. (2). 

2G K E     (2) 

The crack compliance is finally determined as the 
second derivative of released energy with respect to the 
load at far end ( P ) as in Eq. (3). 

2

2
d

c GdxSS
dP

      (3) 

A close insight into these equations revealed that all 
have epistemic uncertainty which stems from the 
assumptions and the principles used in their derivation. 
For example it is not possible to determine the released 
energy of a specific crack because the affected volume is 
not known! Moreover the crack compliance which is a 
characteristic of the structure, similar to the flexibility of 
the structure, is incorrectly related to the load at far end! 
These two and several other wrong bases, concluded in 
unreliable results in the classical fracture mechanics. In 
support of this detection, the crack compliance for 
several flexural members are compared as follows. 

Rizos et al [16] defined their flexural crack 
compliance ( FRIZ ) as in Eq. (4): 
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The flexural crack compliance ( FOST )proposed 
by Ostachowics and Krawczuk [17] is defined as in Eq. 
(5): 
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Chondros et al. [18] defined the flexural crack 

compliance ( FCHO ) as in Eq. (6):  
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The flexural crack compliance ( FBIL ) proposed 
by Bilello [19]as in Eq. (7): 
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The flexural crack compliance ( FLOY ) reported by 
Loya et al [20] as in Eq. (8):  
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Fig.1. Comparison of crack compliances 
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Loya et al [20] reported the crack compliance (LOYA) 
for cracked bar as in Eq. (9): 
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The crack compliance ( PAPO) defined by 
Papadopoulos [21] for the shaft in torsion as in Eq. (10): 
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Note that the original compliances, in Eq. (9) 

for cracked bar and in Eq. (10) for a cracked shaft 
are multiplied by 4 to be comparable with flexural 
compliances. Seven compliances in Eq. (4) to Eq. 
(10) are compared with each other in Fig. 1. 
Difference between the results is a clear flag for 
presence of epistemic uncertainty in classical 
fracture mechanics.  

As will be shown later in this paper there should 
be one compliance (CR ) as in Fig. 1. The 
investigations of the (ART) concluded in the birth of 
the state based philosophy which paved the way for 
proposition of a reliable fracture mechanics as 
follows. 

Birthplace of the State Based Philosophy 

Classical analysis of cracked structures is conducted 
via solution of a governing differential equation. The 
governing differential equation applies point wise 
along the intact part of the domain of the structure. 
When a crack introduced into the structure, a jump in 
a derivative of displacement at the point of crack 
occurs. This jump is used as continuity equation to 
combine the solutions of the intact parts on two sides 
of the cracked point. The conventional analysis is 
extensive, difficult, and time consuming. The aim of 
the (ART) is to combine the governing differential 
equation with the jump equation to obtain a single 
governing differential equation for the analysis of 
cracked structure. This is done as follows. 

Strong Form of the Governing Equation 

In common practice, investigation of cracked structures, 
is conducted via construction and solution of the 
governing equations subjected to the boundary and/or 
the initial conditions. The governing differential 
equation for a typical structure in its initial (intact) state, 
is defined as in Eq. (11), in which ( ) is the 

displacement function of an independent-variable ( x ), 

and  n is the core order of derivative with respect to ( x ) 

[40]. For example in structural mechanics, ( 1n ) for axial 
members, and ( 2n ) for flexural members.  

   
... 0

nn       (11) 

The derivatives of the displacement function are 
divided into the essential (displacement), and the natural 
(force) as defined in Eq. (12). Moreover the force per 
unit of displacement is called 

 

Fig. 2. Change in a derivative of the displacement function 

The stiffness and the displacement per unit of force 
is called the flexibility.  
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A crack in a structure, introduces a change in a 
derivative of displacement as shown in Fig. 2, and as 

defined in Eq.(13), where (  1n
C )is the change in a 

derivative of displacement at the cracked point,( Sc )is the 

crack stiffness/flexibility, (  H x x i ) is the Heaviside unit 

step function, and ( ix )is the crack position [40].  
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Apply the conventional rules of derivatives to 
obtain the derivative of Eq. (13) with respect to ( x ) as 

written in Eq. (14), in which (  ixx  ) is the Dirac 

delta (defined as derivative of the (  H x x i )). 
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In view of Fig. 3(b), the derivative of (
 n ) at the 

crack position ( ix ) is written as in Eq. (15). 
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Noting that (    n
i

n
i   ), therefore Eq. (15) is 

concluded in Eq. (16). 
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Fig. 3 Derivative of the displacement function at the 

discontinuous point 

  01 n  (16) 

Substitution of Eq. (16) into Eq. (14) ended in the 
so called, the Golden Derivative, as defined in Eq. (17). 
The paramount importance of this derivative and its rule 
in the birth of the state based philosophy will be 
observed in later sections.  
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The derivation of Eq. (11) to Eq. (17) were based 
on concise conventional mathematical rules, while the 
results introduced a new but nonconventional concept. 
For the first time the derivative at the point of 
discontinuity,(see Fig. 3(a), and compare Eq. (13) and 
Eq. (17)) is defined as in Eq. (17). The name Golden is 
selected because of this new finding and its effect in our 
future detections.  

Eq. (11) and Eq. (17) have the same style. These are 
combined (the crack reduces the core derivative, therefore 
the crack-core-derivative in Eq. (17) is subtracted from the 
core derivative in Eq. (11)) as in Eq. (18).  
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Eq. (18) is the governing differential equation for 
the cracked structure, which is derived, for the first time 
by the (ART) [40]. This equation has the same form as 
in Eq. (11), and can be solved by the same rules that are 
available for solution of Eq. (11). That is, Eq. (18) is the 
general equation and Eq. (11) is a special case, therefore 
from here on, Eq. (18) is placed on the table of human 
knowledge for the fracture analyses. 

Analytical Solution by the Laplace 
Transform 

As an example, the dynamic stability of beam-like 
cracked structures is considered as follows. The 
governing differential equation for the dynamic stability 
analysis of beam-like structures is defined in Eq. (19), in 

which ( ) is the lateral displacement, ( P ) is the load 

factor, and ( W ) is the frequency factor [42, 43].] 
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The method of Laplace Transform is used to solve 
Eq. (19). The solution is defined as in Eq. (20), in which 
the solution coefficient functions (   4,0,, omxAmo ) 

are defined as in Table 1.  

             

         
             

         
             

         
             

         
             

         
     3124

2
44

3
043

2
042

1
041

0
040

4

2
34

3
033

2
032

1
031

0
030

3

2
24

3
023

2
022

1
021

0
020

2

2
14

3
013

2
012

1
011

0
010

1

2
04

3
003

2
002

1
001

0
000

0













































P

ixxHiixxAScxA

xAxAxA

ixxHiixxAScxA

xAxAxA

ixxHiixxAScxA

xAxAxA

ixxHiixxAScxA

xAxAxA

ixxHiixxAScxA

xAxAxA

 

(20) 

Weak Form of the Governing Equation 

In order to prepare for analysis of cracked 
structures by numerical methods, the governing 
differential equation and the natural boundary 
conditions should be combined to obtain the Weak 
Form equation, which is the starting point of all 
numerical methods, such as the finite element 
method, the boundary element method, and etc. The 
method of weighted residual is the tool for doing the 
job [71]. In a numerical method the solution is 
approximated, therefore the left side of Eq. (18) is 
nonzero, and is defined as the residual of the 

governing equation ( GER ), defined as in Eq. (21). 
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The crack only affects the main differential (the 
core derivative such as the left term in Eq. (11)) in the 
governing differential equation, therefore the other terms 
i.e. those in the (…) is ignored. According to the rules of 
the method of weighted residual, the weighted error is 
set equal to zero as in Eq. (22), where (W )is the 
weighting function.  
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Making use of the chain rules of derivatives, Eq. 
(22) is changed to the Weak Form equation as in Eq. 
(23).  
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Table 1. Coefficient functions for solution of dynamic stability 
equation 
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         ... 0
n n n

W c x x dxS i       (23) 

Derivation of equations up to this end were done 
according to the accepted conventional rules. Although 
the derivative at discontinuity was exceptional, but it is 
also derived according to the accepted conventions. 
Passing from the weak form equation to the finite 
element equation confronted with the serious lack of 
knowledge which is resolved in the next section.  

Finite Element Equation 

For a phenomenon with the given weak form 
equation, deriving the finite element equation, 
conventionally begins with the definition of the 
weight function and the displacement function in 
terms of the nodal values ( &W DO  ), and the nodal 

shape functions ( &O DN N ), as defined in Eq. (24), 

where the repeated indices denote summation over the 
number of element nodes ( nen ). 

 
 

, 1,

, 1,

W W N x O nenO O

N x D nenD D 

 

 
 (24) 

The effective displacement function (whole terms 
in braces as in Eq. (18)), is different from that in Eq. 
(11), but since we were not able to find appropriate 
procedure for changing this function into the finite 
element terms in the literature, then for the time being 
we inserted Eq. (24) into Eq. (23) to obtain the finite 
element equation as defined in Eq. (25),  

IC
OD

S
OD

SS
OD

D
SS
OD

kkk

k



 0...
 (25) 

Where the structure stiffness matrix ( S
ODk ) is 

defined as in Eq. (26),  

   n nSk N N dxOD DO   (26) 

   and the initial crack stiffness matrix ( IC
ODk ) is defined 

as in Eq. (27).  

     n nIC
OD S i DOk c N x x N dx   (27) 

For the case of free vibration analysis of flexural 
members, and free vibration analysis of bar members, 
Eq. (25) is implemented in a personal software and 
applied for solution of free Vibration of members with 
the given analytical solutions. It is found that the initial 
crack-stiffness matrix as defined in Eq. (27) is not 
correct and should be modified [44-46]! For several bar 
members and several beam members, via hundreds of 
trial free vibration analyses, the numerical values for the 
survive function ( RS ) (A coefficient to be multiplied by 

the initial crack integral to obtain the correct result) are 
defined as in Table 2. 
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Table 2. Numerical data for the survive function SR 

Flexural, CS=1 Axial, CS=2 
L SFA SFB SFC L SAA SAB SAC 

0.50 0.1111 2/18 0.50/(0.50+4) 0.50 0.1999 2/10 0.50/(0.50+2) 
0.75 0.1575 3/19 0.75/(0.75+4) 0.75 0.2766 3/11 0.75/(0.75+2) 
1.00 0.1999 4/20 1.00/(1.00+4) 1.00 0.3344 4/12 1.00/(1.00+2) 
1.25 0.2393 5/21 1.25/(1.25+4) 1.25 0.3844 5/13 1.25/(1.25+2) 
1.50 0.2761 6/22 1.50/(1.50+4) 1.50 0.4283 6/14 1.50/(1.50+2) 
1.75 0.3111 7/23 1.75/(1.75+4) 1.75 0.4666 7/15 1.75/(1.75+2) 
2.00 0.3444 8/24 2.00/(2.00+4) 2.00 0.4999 8/16 2.00/(2.00+2) 

SF=L/(L+4 CS) SA=L/(L+ CS) 
  

For flexural members numerical values are changed 
via several steps, from (SFA) to (SFC), and an equation 

for the survive function ( FS ) in flexure is derived as in 

Eq. (28). 

   4 4F SS L L c   (28) 

Similarly for axial members, the numerical values are 
changed via several steps, from (SAA) to (SAC), and an 
equation for the survive function of axial member (SA ), is 

obtained as in Eq. (29).   

   S L L cA S   (29) 

The derived survive functions in Eq. (28) and Eq. 
(29), were changed into a unified equation for the 
survive function ( SR ), and its twin function, the so 

called the failure function ( FR ), as defined in Eq. (30).  

   
   

F c f cR S S S

S f f cR S S S

 

 
 (30) 

Finally the modified form of the cracked-stiffness-

matrix ( C
ODk ) are defined as in Eq. (31).  

     

     

n n
F f N x x N dxR DS OC ikOD n n
S c N x x N dxR DS O i














 (31) 

The present formulation shown that, the state of the 
art for analysis of behavior of cracked structures, is far 
from complete. Therefore the analysis of cracked 
structures needs more fundamental investigation! The 
achievements up to this point, concluded to the birth of 
the so called phenomenon functions ( &F SR R ), which 

opened the door to the world of the state based 

philosophy. Replacing the ( C
ODk ) in place of the ( IC

ODk ) 

into Eq. (25) concluded into the innovative finite 
element equation for analysis of the cracked structures. 
In view of the definition of the phenomenon functions, 
Eq. (25) may be written as in Eq. (32), in terms of the 

survived stiffness ( SS
ODk ). 

S
ODR

SS
OD

D
SS
OD

kSk

k



 0...
 (32) 

Eq. (32) shows that the survived stiffness of a 

cracked-structure is proportional to that of the intact one. 

As will be shown in the subsequent sections, the survive 

function is developed explicitly and therefore the 

survived stiffness is determined in a simple way. 

Moreover, Eq. (32) is an alternative finite element 

equation in place of the extended finite element method 

(XFEM). The formulation for the state based philosophy 

in this section is exact, but since it is managed by an 

extensive numerical experimentation, then it is confronted 

with some speculation by those who were accustomed 

with the conventional methods of analyses which are 

based on conventional mathematics. To pave the way for 

universal acceptance of the state based philosophy, the 

derivations is based on a sound mathematical basis as 

described in the following sections. 

Logical Basis of the State Based Philosophy 

In this section we derive the basic formulation for the 
state based philosophy via a sound logical basis. The 
traditional formulations in the academic universe are 
divided into, the so called stiffness method, in which the 
system characteristics (called the stiffness) reduces to 
zero during the change of state, and the flexibility (the 
inverse of the stiffness) method, where the flexibility 
goes toward the infinity during the change of state. Near 
the end of the phenomenon, the former includes error 
from the small numbers and the latter includes error 
from the large numbers. The basis of the proposed 
universal method is a trivial relationship, i.e. the 
survived-stiffness ( k k kSS S C  ) times the survived-

flexibility ( SSSS cff  ) is set equal to one (product 

of a quantity and its inverse is equal to one), defined as 

in Eq. (33), in which ( Sk )is the structure-stiffness, ( Ck ) 

is the crack-stiffness, ( Sf ) is the structure -flexibility, 

and ( Sc )is the crack-flexibility. Eq. (33), and the 

proposed formulation, which is shown in Fig. 4, is free 
of epistemic uncertainty. 

   1k k f cS C S S    (33) 
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Fig.4. State based philosophy basic equation 

Solve Eq. (33) for ( Ck ), to obtain the crack-

stiffness ( Ck ), and the survived-stiffness ( SSk ), as 

defined in Eq. (34),  
k F kRC S
k S kRSS S




 (34) 

In which the phenomenon functions (the failure 
function ( FR ) and the survive function (SR )) are defined 

as in Eq. (35). Note that these phenomenon functions are 
exactly the same, as those defined in Eq. (30). 

     
     

0 1

1 0

R S S S

R S S S

F c f c

S f f c

  

  
 (35) 

The structure-flexibility, is expressed as product of 
the dimensioned-flexibility ( SF ), and the dimensionless-

structure –flexibility ( Nf ), moreover the crack-

flexibility is defined in terms of the dimensioned-
flexibility ( SF ), and the dimensionless-crack-flexibility 

( Nc ), as in Eq. (36).  

S N S

S N S

f f F

c c F




 (36) 

Substitution of Eq. (36) into Eq. (35) concluded 
into the dimensionless form of the phenomenon 
functions as defined in Eq. (37). 

   
   

R N N N

R N N N

F c f c

S f f c

 

 
 (37) 

 

The proposed form of phenomenon functions as in 

Eq. (37) are defined in terms of ( Nf ) and ( Nc ), which are 

unknown to this end. The process for explicit definition of 
these functions is continued in the next section via 
definition and construction of the state functions. 

State functions 

The phenomenon functions are customized for ( 1Nf  ) 

to define the state functions (( D )the destination, (O ) 

the origin, and ( R )the state ratio) as in Eq. (38). 

R

R

N

F D

S O

c R





 (38) 

Consequently the state functions are defined in 
terms of the state ratio as in Eq. (39).  

   
   

1

1 1

D R R

O R

R D O

 

 



 (39) 

The state functions may be considered as the 
solution of the boundary value problems as expressed in 
Eq. (40), and shown in Fig. 5, where min denotes 
minimum and max denotes maximum.  

min 0 @ 0

max 1 @

max 1 @ 0

min 0 @

R
D

R

R
O

R

 
    

 
    

 (40) 

The state ratio ( R ), with the far end in the infinity 
see Fig. 5, is not a good working parameter.  

 

Fig.5 State Functions D  and O  versus the state ratio R  

Moreover, this ratio is itself a function, so it is not 
wise to be used as an independent variable. Therefore, 

the state variable (  0 1  ) with a zero value ( 0  ) 

at the origin and a unit value ( 1  ) at the destination is 

innovatively defined. In term of the state variable, the 
boundary value problems in Eq. (40) is rewritten as in 
Eq. (41). 

min 0 @ 0

max 1 @ 1

max 1 @ 0

min 0 @ 1

D

O







 
   

 
   

 (41) 

Polynomial functions with the conditions as in Eq. 
(41), first defined by Hermite [28] and used as the shape 
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functions in numerical methods, are defined as in Eq. 
(42).  

    
    

2

2

1 2 1

1 1 2

D

O

 

 

  

  
 (42) 

The reviewers of papers containing Eq. (42), and 
our colleagues rejected this equation, and said more than 
thousands other equations, with the conditions as in 
(42), may be derived. Therefore it is not acceptable! Our 
extensive investigation, detected Eq. (43), which is 
selected from the well accepted field of the strength of 
material, as a solution for Eq. (41).  

 
 

0.50 1 cos

0.50 1 cos

D

O





 

 
 (43) 

 

 

Fig.6. State Functions D  and O  versus the State Variable   

Finally, via taking average of Eq. (42) and Eq. (43), 
an explicit, symmetric, and beautiful form of the state 
functions are defined as in Eq. (44), and shown in Fig. 6. 

 
 

2 3

2 3

0.25 2 1 6 4 cos

0.25 2 1 6 4 cos

D

O

  

  

    

    
 (44) 

It is clear that, any other formulation which is 
proposed for the state functions should fit those as in Eq. 
(44).   

In view of the definition of ( SSk ) and( SSf ), the 

(ART) detected (great detection)a fact that, the 
flexibility- and the stiffness-of the crack, as shown in 
Eq. (45),are proportional to each other (while for 
structures the stiffness and the flexibility are inverse of 
each other).  

C N S

S N S

k c K

k k K




 (45) 

Based on the definition of the state functions, the 

(stiffness) ratio of ( Ck ) over ( Sk ) is set equal to the 

state ratio ( R ), which after some manipulation led into 

an explicit definition for the ( Nc )as defined in Eq. (46).  

C S N N

N N

k k c k

c k D O




 (46) 

Substitution of Eq. (46) into Eq. (37) concluded in 
the general definition for the phenomenon functions as 
in Eq. (47). 

   
   

2 2

2

R N N

R N

F k D O k D

S O O k D

 

 
 (47) 

Similar to the state ratio, the ( Nk ) is not also 

explicitly known and so it is not a feasible working 
parameter. Therefore Eq. (47) is rewritten in a unified 
form as in Eq. (48), in terms of the control parameters (

Ma ), and ( b ) [39-70]. 

   
   

b b b
R M M

b b b
R M

F a D O a D

S O O a D

 

 
 (48) 

To this end the proposed formulation is 
mathematically in an abstract form, so it is a universal 
one in the sense that it is independent of geometrical and 
material properties, and the changing agent. Therefore, it 
applies to all natural phenomena. 

Persian curves 

For a given phenomenon, the lifetime is truncated at a 
workable interval, and the truncated lifetime, (

O T     ), is mapped onto the state variable as in 

Eq. (49), where ( O ) is the origin of lifetime and ( T
)is the end of lifetime. 

   
   
1 O T

O T O

    

    

  

  
 (49) 

In terms of the lifetime, the phenomenon functions 
are renamed as Persian (the ( RF ) is renamed as Fasa (

FP ), and the ( RS ) is renamed as Shiraz ( SP )) curves. 

In this way the Persian-Shiraz curve is the unified 
equation for the survived ratio of the system 
characteristics (or the capacity ratio). The feasible 
strength (capacity) data of the failure phenomenon is 
managed in the decreasing order. For the decreasing data 
the survive function is casted into the Persian-Shiraz 
curve, ( SP ), as defined in Eq. (50), in which ( TP )is the 

ordinate of the end point (T).  

   b b b b
S T M MP O P a D O a D    (50) 

The twin function of the Shiraz curve is the called 
the Persian-Fasa curve as defined in Eq. (51). 

   b b b
F T M MP P a D O a D   (51) 
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Fig.7. Key points on Persian (Shiraz) curve 

Moreover, if the reliable data is managed in 
decreasing order as shown in Fig. 7, then the control 
parameters may be obtained as in Eq. (52) in terms of 
the coordinates of the key-points (KPS). 

 
    NONDLog

MaNaLog
b

TPMP

MP

Ma

TPNP

NP

Na














11
 (52) 

The key points are defined as the origin point (O), 
the middle point (M), the end point (T), and the other 
point (N) (a point between the other three), defined as in 
Eq. (53) and shown in Fig. 7. 

   
   TPTTMPMM

NPNNOO

,00.1,50.0

,25.000.1,00.0








 (53) 

Similarly for the increasing reliable data as shown in 
Fig. 8, the control parameters may be obtained as in Eq. 
(54) in terms of the coordinates of the key-points (KPS).  

 
    NONDLog

MaNaLog
b

MPTP

MP

Ma

NPTP

NP

Na










 (54) 

Where the key points are defined as the origin point 
(O), the middle point (M), the end point (T), and the other 
point (N) (a point between the other three), defined as in 
Eq. (55) and shown in Fig. 8.   

 

Fig.8. Key points on Persian (Fasa) curve 

   
   TPTTMPMM

NPNNOO

,00.1,50.0

,25.000.0,00.0








 (55) 

Moreover, for both cases, the Persian (Zahedan) 
curve, ( ZP ), is defined as the derivative of the 

phenomenon functions with respect to the state variable, 

and expressed as in Eq. (56), in which (    1D  )is the 

derivative of (  D  )with respect to the state variable ( ). 

   

 
11 1

2

R R
Z Z

b b
M

Z
b b

M

dF dS
P P

d d

ba D O D
P

O a D

 

 

   




 (56) 

Here is the end of the proposed logical formulation. 
It is applied to fracture mechanics problems in the 
subsequent sections. 

Reliable Crack Compliance 

The crack compliance is directly determined from Eq. 
(46) which is inserted in Eq. (57), for completeness as 
follows. 

 
 


O

D
kc NS 

    (57) 

 

Fig.9. Comparison of crack compliances CB and CR  

Eq. (57) is verified via comparison with the results 
of the others in the literature, in the following examples. 

Example 1: Compare Eq. (57) with the flexural 
crack compliances computed by Bilello [19] as follows. 

Solution 1: Bilello [19] proposed compliance for a 
cracked beam as in Eq. (7) which is modified as in Eq. 
(58) (state variable plays the role of crack depth). 

 
 2
2

0.75 1
CB

 







 (58) 

 

The reliable state based compliance from Eq. (57), 

i.e. (    4CR D O  ) is compared with the (CB ) 
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in Fig. 9. The results are in close agreements with each 
other. The simplicity and accuracy and hence the 
reliability of the proposed formulation is apparent. 
Moreover the reliable crack compliance is derived as the 
sole characteristics of the structure. After computation 
of the crack compliance from Eq. (57) there is no need 
for other parameters, but in comply with the classical 
fracture mechanics they are derived as follows.  

Extensive research of the (ART) concluded into the 
fact that main parameters of fracture mechanics, 
including the stress intensity factor, the energy release 
rate, the crack compliance, and others are all abstract 
mathematical entities. Consequently these parameters 
may be derived accurately without any sort of 
singularity or epistemic uncertainty.  

Energy release rate 

Energy is defined for a volume of the considered region. 
The volume for the given stress at the crack tip is not 
known! Therefore in analyses regarding the crack tip, 
the energy density is used. Based on the definition of 
energy, the tip energy density ( TE ) is defined in terms 

of the crack tip displacement ( T ), as in Eq. (59). 
2

T N S TE k K   (59) 

Similarly the released energy density ( RE ), is 

defined as in Eq. (60). 
2

R N S TE c K   (60) 

Divide Eq. (60) by Eq. (59) and substitute for ( Nc ) 

from Eq. (57) into the ratio to obtain the released energy 

density ( RE )in terms of the tip energy density ( TE )as 

in Eq. (61). 

   R TE E D O   (61) 

For the case of elastic behavior the tip energy 
density is defined, in terms of the effective stress (
)and the elastic modulus ( E ), as in Eq. (62). 

2 2TE E  (62) 

While the energy release density is defined in terms 
of the energy release rate ( RG ) as in Eq. (63). 

0
R RE G dx


   (63) 

Substitute Eq. (62) and Eq. (63) into Eq. (61) as in 
Eq. (64). 

   2

0
2RG dx D E O


    (64) 

Now take derivative of Eq. (64) with respect to ( ) , to 

obtain the state based energy release rate RG  as in Eq. 

(65).  
   
 

12

22R

D
G

E O




   (65) 

Stress intensity factor 

The stress intensity factor ( K ), is defined in terms of 
the effective stress ( ), via the application of a 

mathematical operator ( L ) (there is no need for any 
information regarding this operator) as in Eq. (66).  

RLK   (66) 
In order to write the ( K ) in integral form, in terms 

of the effective stress ( ), the weight function ( RW ) is 

defined as in Eq. (67),  

 R iLW x x   (67) 

in which (  ixx  ) is the Dirac delta with the integral 

free property defined as in Eq. (68). 

     i iR x x x dx R x    (68) 

Define a parameter ( Q ) in terms of the stress ( ) 

and the weight function ( RW ) as in Eq. (69). 

RQ W dx   (69) 

 
Apply the operator (L) on Eq. (69) as in Eq. (70). 

RLQ LW dx   (70) 

Substitute for ( RLW ) from Eq. (67) and make use 

of the integral free property of the Dirac delta as in Eq. 
(68) to obtain the mathematical Eq. (71). 
LQ   (71) 

Compare Eq. (71) with Eq. (66) to obtain an 
integral definition for the stress intensity factor as in Eq. 
(72). 

R RK W dx   (72) 

Eq. (72) is derived based on sound mathematical 
basis. The necessary and sufficient condition for its 
computation is the presence of the weight function ( RW

) [6, 7, 29, and 44]. According to the classical fracture 
mechanics definition of ( RK ) the stress intensity factor 

has a unit of stress times the square root of unit of 
length, which introduces ambiguity! Since the derivation 
of Eq. (72) is based on mathematical logics, then it is 
under our control, and we may select its units ourselves.  

Substitution of Eq. (65) into Eq. (2) concluded in 
the state based stress intensity factor as in Eq. (73). 

 

   1

2R

D
K

O




   (73) 

Note that the proposed stress intensity factor as 
defined in Eq. (73) has the unit of stress as promised 
before. Two of the main parameters of state based 
fracture mechanics, i.e. ( RG ) and ( RK ), are 

independent of the crack compliance (  Nc ).  That 

was a great detection, because the main outcome of the 
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classical fracture mechanics is the compliance (  Nc ), 

which is directly obtained from Eq. (57). From now on, 
the state based compliance may be used in place of all 
compliance formulations in papers, handbooks, and etc. 
in the literature!  

Since ( RK ) and ( RG ) are related to each other, 

therefore only one is verified as follows. 
Example 2: The stress intensity factor ( ALIO ) proposed 
by Aliabadi [26] for the plate with central crack as in 
Eq. (74).  

2

3 4

5 6

7

1 0.043 0.491

7.125 28.403

59.583 65.278

29.762

ALIO

 

 


 



  
 
  

  
  
 
 

 (74) 
 

The same problem is analyzed by Patricio [27] via 
numerical analysis, and exactly the same result is 
obtained. Compare the ( ALIO ) with the ( KR )?  

Solution2: The ( ALIO ) and the ( KR ) are 

compared in Fig. 10. For ( 5.0 ) there is great 

difference between the two. Making use of the proposed 
formulation, Eq. (74) is modified as defined in Eq. (75), 
to be in compliance with Eq. (73).     

   































7
762.29

6
278.65

5
583.59

4
403.28

3
125.7

2
491.0043.01

21
06.1

1












ALIM  

 
(75) 

 

The ( ALIM ) is shown in Fig. 10.  

 

Fig.10. Comparison of stress intensity factors ALIO , 
ALIM and KR  

Example 3: The stress intensity factor defined by 
the ( ASTM ) special committee E-399 [22] for bending 
specimen ( BENO ) is given as in Eq. (76). 

  
  
























2
7.2

93.315.2
199.123

1212

21
3









BENO  (76) 

Compare the ( BENO ) with the ( KR )? 
Solution3: The ( BENO ) and the ( KR ) are 

compared in Fig. 11.  

 

Fig.11. Comparison of stress intensity factors BENO , 

BENM and KR  

Again here, there is difference between the two. 
Since the proposed formulation is based on sound 
foundation and is reliable, then it is used to modify Eq. 
(76) for better compliance as in Eq. (77). 

  
  
























2
7.2

93.315.2
199.123

1212

21
4.03









BENM  (77) 

The modified stress intensity factor is shown in Fig. 
11. Close agreement of the results verified the proposed 
formulation. 

The weight function for the stress intensity 
factor 

The state based philosophy is quite universal, in the 
sense that it is applicable to all natural phenomena 
including the fracture mechanics. But in order to pave 
the way for gradual transfer between the classical 
fracture mechanics and the state based fracture 
mechanics the weight function as the key function in 
classical fracture mechanics is derived in this section. 
The pioneers of computations of the weight function for 
computation of parameters of fracture mechanics were 
Bueckner [6] and Rice [7]. Their formulation as the 
other formulations in fracture mechanics are based on 
assumption that are partly incorrect. In the present 
section the aim is to propose a weight function, which is 
free of epistemic uncertainty as in Ranjbaran [52].  
 Set Eq. (72) equal Eq. (73) as in Eq. (78). 

   
 

1

22
R

D
W dx

O


 


   (78) 

Omit ( ) from both sides and take derivative with 

respect to ( ), to obtain the explicit definition for the 
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weight function as in Eq. (79). 
          

    


12

112

22

2

DO

DDOD
WR


  (79) 

The proposed weight function is verified via 
comparison with the results of the others in the literature 
as follows.  

Example 4: The weight function, (WFT ), for 
determination of the stress intensity factor is defined by 
Fett [25] as in Eq. (80). Compare the (WFT ) with the 

proposed weight function (WR )as defined in Eq. (79)? 

 










































23

1

4
2052.12

3
6391.11

2
7732.11

07567.084683.0

12 







WFT  (80) 

Solution4: The proposed weight function (WR ) 
defined as in Eq. (79) is compared with the (WFT ) in 
Fig. 12. Close agreement of the results verified the 
work. Eq. (80) is completely problem dependent. This is 
clear from the decimal numbers of coefficients and the 
style and power of the other terms. In brief, if the data is 
available, it is not easy, if not impossible, to reconstruct 
the equation! Since possibility of reconstruction of the 
results is a desirable property of equation construction, 
then the proposed Eq. (79) which can be derived directly 
and can be used for any problem, is undoubtedly the 
final choice, for the whole era of fracture mechanics. 

 

Fig.12. Comparison of weight function WR and WFT  

Example 5: Yuan R. [24], in the University of 
Berkeley, in his PhD thesis derived the weight function 
for determination of the stress intensity factor for a 
single edge notched plate (WY U ) as in Eq. (81). 

  
  

 

     
BAWYU

B
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 



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

2
5.05.0cos142.32.146.1

5.0cos
3

5.0sin137.0

02.22.1752.0
21

5.0tan2











 

(81) 

Compare the (WY U ) with the proposed weight 
function (WR ) as defined in Eq. (79)? 

Solution5: The proposed weight function (WR ) 
defined as in Eq. (79) is compared with the (WY U ) in 
Fig. 13. The results are in good agreement with each 
other, then the work is verified. 

 

Fig.13 Comparison of weight function WR and WY U  

Example 6: Analysis of stress intensity factor for a 
plate with an inclined crack. 

Solution6: A plate with an inclined crack is selected 
for study. This plate is analyzed by Azevedo [23]. The 
properties as in Eq. (82) are used. 
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mmhmmbmma

 (82) 

 

 

Fig.14. Comparison of stress intensity factors PROP and 
AZEV  

Corresponding to each angle the plate is modeled 
by two meshes each with about 20000 elements. The 
stress intensity factors were computed and shown as (
AZEV ) in Fig. 14. In this figure the abscissa is (

90  ) and the ordinate is the stress intensity factor 

ratio ( 0k K K ) where ( 0K ) is the factor for (
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0  ) and ( K ) is the factor for ( 0 ). The 

proposed result (  PROP O  ) is compared with the (

AZEV ) in Fig. 14. Close agreement of the results 
verified the work.  

Conclusions 

The following conclusions were obtained from the 
present work. 
 The highly advanced classical fracture mechanics is 

looked via a different perspective in which there is 
no problem of singularity and no need for 
calculation of difficult integrals. 

 The state functions and the generic compliances are 
introduced and defined as explicit functions of the 
crack depth ratio. 

 The crack energy is equal to the strain energy of the 
structure affected region times the generic 
compliance. 

 The crack compliance is equal to the product of the 
stiffness coefficient and the generic compliance. 

 The stress intensity factor is defined as an explicit 
function of the crack depth ratio. 

 The proposed formulation is derived in generic 
form and is applicable to all structures. 

 Through analysis of typical examples the validity of 
the work is verified. 
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